Maximum Packings of K_{n} with Hexagons: Corrigendum

Janie Ailor Kennedy
Department of Discrete and Statistical Sciences
120 Mathematics Annex
Auburn University, Alabama 36849-5307 U.S.A.

In [1], the following example should be included:
Example 4.31. $\left(K_{16}, P\right): P=\{(1,3,5,10,16,15),(1,4,6,13,14,11)$,
$(1,5,7,12,15,10),(1,16,12,10,9,14),(2,3,6,9,11,13),(2,4,7,10,13,9)$,
$(2,5,13,7,11,10),(1,6,2,7,3,8),(1,7,8,11,6,12),(3,13,1,9,7,14)$,
$(2,11,3,10,6,14),(3,15,14,16,8,12),(4,9,16,7,15,11),(4,10,14,8,13,15)$,
$(4,13,16,11,5,14),(8,2,12,5,9,15),(16,3,9,12,4,5),(5,15,6,16,4,8)\} ;$
$L=\{(5,6),(6,7),(6,8),(8,9),(8,10),(11,12),(12,13),(12,14),(1,2),(2,15)$, $(2,16),(3,4)\}$.

Also, Theorem 5.5 should include Example 4.31; that is, it should say:
Theorem 5.5. If $n \equiv 4$ or $10(\bmod 12)$ a maximum packing has one of the leaves in Examples 4.10-4.31 plus a disjoint 1 -factor, and all 22 leaves are possible for all $n \equiv 4$ or $10(\bmod 12) \geq 16$. For $n=10$, the only possible leaves are those in Examples 4.10-4.22.
[1] Janie Ailor Kennedy, Maximum Packings of K_{n} with Hexagons, Australasian Journal of Combinatorics 7 (1993), 101-110.
-

