On the Integrity of Distance Domination in Graphs

Timothy J. Bean
Department of Mathematics
University of Natal
Durban, South Africa

Michael A. Henning
Department of Mathematics
University of Natal
P.O. Box 375
Pietermaritzburg, South Africa

Henda C. Swart
Department of Mathematics
University of Natal
Durban, South Africa

Abstract

Let n and k be positive integers and let G be a graph. A set \mathcal{D} of vertices of G is defined to be an (n, k)-dominating set of G if every vertex of $V(G)-\mathcal{D}$ is within distance n from at least k vertices of \mathcal{D}. The minimum cardinality among all (n, k)-dominating sets of G is called the (n, k)-domination number of G and is denoted by $\gamma_{n, k}(G)$. A set I of vertices of G is defined to be an (n, k) independent set in G if every vertex of I is within distance n from at most $k-1$ other vertices of I in G. We denote by $\beta_{n, k}(G)$ the maximum cardinality of an (n, k)-independent set of G. We show that the problem of computing $\gamma_{n, k}$ is in the NP-complete class, even when restricted to bipartite graphs and chordal graphs. We prove that in every graph there exist some subsets of vertices that are both (n, k)-independent and (n, k)-dominating, so $\gamma_{n, k} \leq \beta_{n, k}$. We also investigate lower and upper bounds on $\gamma_{n, k}$.

1 Introduction

Let $n \geq 1$ be an integer. The open n-neighbourhood $N_{n}(v)$ of a vertex v in a graph G is the set of all vertices, different from v, which are within distance n from v, that is to say, $N_{n}(v)=\{u \mid 0<d(u, v) \leq n\}$. The n-degree $\operatorname{deg}_{n} v$ of v in G is given by $\left|N_{n}(v)\right|$, while $\Delta_{n}(G)\left(\delta_{n}(G)\right)$ denotes the maximum (respectively, minimum) n-degree among all the vertices of G. For A a subset of vertices of G, let us denote by $m_{n}(A)$ the number of pairs (u, v) of vertices with $u, v \in A$ and $d_{G}(u, v) \leq n$. Further, we let $\operatorname{deg}_{n}(x, A)=\left|\left\{a \in A \mid 0<d_{G}(x, a) \leq n\right\}\right|$ and $\Delta_{n}(A)=\max _{x \in A} \operatorname{deg}_{n}(x, A)$. For other graph theory terminology, we follow [11]. Specifically, $p(G)$ denotes the number of vertices (order) and $q(G)$ denotes the number of edges (size) of a graph G with vertex set $V(G)$ and edge set $E(G)$.

Let n and k be positive integers and let G be a graph. We define a set \mathcal{D} of vertices of G to be an (n, k)-dominating set of G if every vertex of $V(G)-\mathcal{D}$ is within distance n from at least k vertices of \mathcal{D}. The minimum cardinality among all (n, k) dominating sets of G is called the (n, k)-domination number of G and is denoted by $\gamma_{n, k}(G)$. We note that (1,1)-dominating sets are the classical dominating sets, that is, $\gamma_{1,1}(G)=\gamma(G)$. When $n=1$, our definition of (n, k)-domination coincides with the notion of k-domination, introduced by Fink and Jacobson [15, 16] and further studied by Cockayne, Gamble and Shepherd [12], Favaron [13, 14], Hopkins and Staton [24] and Jacobson and Peters [25]. When $k=1$, our definition of (n, k)-domination coincides with the notion of n-domination, results on which have been presented by, among others, Bacsó and Tuza [1,2], Beineke and Henning [3], Bondy and Fan [4], Chang [7], Chang and Nemhauser [8-10], Fraisse [17], Fricke, Hedetniemi and Henning [18], Henning, Oellermann and Swart [20-23], Meir and Moon [26], Mo and Williams [27] and Topp and Volkmann [28, 29].

The vertices of G may represent centres, some pairs of which are in direct communication with each other (represented by adjacent vertices), and \mathcal{D} a set of centres from which signals may be sent, where a signal may be reliably transmitted along a route between centres corresponding to a path in G of length at most n. A breakdown in reliable communication may occur for a number of reasons. For example, an erroneous massage may be sent from one or more of the transmitting centres, or a transmitter may fail. To retain the integrity of the communication network in the event of such failures, further conditions must be imposed on the set of transmitting centres represented by \mathcal{D}. One may require the each non-transmitting centre be able to receive messages from at least k transmitters, where k is a positive integer sufficiently large to allow for adequate security of transmission in all likely events of a breakdown in reliable communications as mentioned above. The set of transmitting centres then corresponds to an (n, k)-dominating set of G.

Next we define the set I of G to be an (n, k)-independent set in G if every vertex of I is within distance n from at most $k-1$ other vertices of I in G, that is to say, $\Delta_{n}(I)<k$. Let $\beta_{n, k}(G)$ denote the maximum cardinality of an (n, k)-independent set
of G. We note that $(1,1)$-independent sets are the classical independent sets, that is, $\beta_{1,1}(G)=\beta(G)$. For $n=1$, our definition of (n, k)-independence coincides with the notion of k-independence (also called ($k-1$)-small in [24]) introduced by Fink and Jacobson [15, 16] and further studied by Favaron [13, 14], Hopkins and Staton [24] and Jacobson and Peters [25].

In this paper we show the problem of determining $\gamma_{n, k}$ and $\beta_{n, k}$ is in the NPcomplete class, even when restricted to bipartite graphs and chordal graphs. We prove that for any graph G, and for all positive integers n and $k, \gamma_{n, k}(G) \leq \beta_{n, k}(G)$. Finally we present bounds on $\gamma_{n, k}$ that do not involve $\beta_{n, k}$.

2 Complexity Issues

Jacobsen and Peters [25] showed that the problem of determining γ_{k} for an arbitrary graph is in the NP-complete class. In this section, we show that even when restricted to bipartite graphs and chordal graphs the problem of determining γ_{k} is in the NPcomplete class. We also show that the problem of determining $\gamma_{n, k}$ for bipartite graphs and chordal graphs is NP-complete. The following decision problem for the domination number of a bipartite graph is known to be NP-complete (see [19]).

Problem: Bipartite Domination (BDM)

INSTANCE: A bipartite graph G and a positive integer m.
QUESTION: Is $\gamma(G) \leq m$?
We will demonstrate a polynomial time reduction of this problem to the bipartite k-domination problem. For notational convenience we will write γ_{k} instead of $\gamma_{1, k}$.

Problem: Bipartite k-Domination ($\mathrm{B} k \mathrm{DM}$)

INSTANCE: A bipartite graph G^{*} and positive integers $k \geq 2$ and m^{*}. QUESTION: Is $\gamma_{k}\left(G^{*}\right) \leq m^{*}$?

Theorem 1 Problem $B k D M$ is NP-complete.

Proof. It is obvious that $\mathrm{B} k \mathrm{DM}$ is a member of NP since we can, in polynomial time, guess a subset of vertices \mathcal{D} and then verify, in polynomial time, whether or not \mathcal{D} is a k-dominating set of G^{*} and that $|\mathcal{D}| \leq m^{*}$.

We next show how a polynomial time algorithm for $\mathrm{B} k \mathrm{DM}$ could be used to solve BDM in polynomial time. Given a graph G and positive integer m, construct the graph G^{*} by adding to each $v \in V(G)$ a set of $k-1$ paths of length 1 . Let $p=|V(G)|$ and $q=|E(G)|$. We have $\left|V\left(G^{*}\right)\right|=p k$ and $\left|E\left(G^{*}\right)\right|=q+(k-1) p$, and so G^{*} can be constructed from G in polynomial time. Note that if G is bipartite, then G^{*} is also bipartite.

We will show that G has a dominating set \mathcal{D} with $|\mathcal{D}| \leq m$ if and only if G^{*} has a k-dominating set \mathcal{D}^{*} with $\left|\mathcal{D}^{*}\right| \leq m^{*}=m+p(k-1)$. Let \mathcal{D}^{*} be a k-dominating set of
G^{*} with $\left|\mathcal{D}^{*}\right| \leq m^{*}=m+p(k+1)$. Note that every vertex of G^{*} of degree less than k must be in \mathcal{D}^{*}. In particular, each end-vertex of G^{*} must be in \mathcal{D}^{*}. Consider the set $\mathcal{D}=\mathcal{D}^{*} \cap V(G)$. We claim that \mathcal{D} is a dominating set of G. Suppose $v \in V(G)-\mathcal{D}$. Since v is adjacent to only $k-1$ vertices of $V\left(G^{*}\right)-V(G)$, it follows that v is adjacent to at least one vertex of \mathcal{D}. Thus \mathcal{D} is a dominating set of G of cardinality $\left|\mathcal{D}^{*}\right|-p(k-1) \leq m$, so $\gamma(G) \leq|\mathcal{D}| \leq m$. Next suppose that G has a dominating set \mathcal{D} with $|\mathcal{D}| \leq m$. Then it is evident that \mathcal{D}, together with the set $V\left(G^{*}\right)-V(G)$, forms a k-dominating set of G^{*} of cardinality $|\mathcal{D}|+p(k-1) \leq m+p(k-1)=m^{*}$, so $\gamma_{k}\left(G^{*}\right) \leq m^{*}$.

The following decision problem for the domination number of a chordal graph is known to be NP-complete (see $[5,6]$).

Problem: Chordal Domination (CDM)
INSTANCE: A chordal graph G and a positive integer m.
QUESTION: Is $\gamma(G) \leq m$?
Using the same construction as that in the proof of Theorem 1 , we may demonstrate a polynomial time reduction of this problem to the chordal k-domination problem.

Problem: Chordal k-Domination ($\mathrm{C} k \mathrm{DM}$)
INSTANCE: A chordal graph G^{*} and positive integers $k \geq 2$ and m^{*}.
QUESTION: Is $\gamma_{k}\left(G^{*}\right) \leq m^{*}$?
Hence we have the following result.

Theorem 2 Problem CkDM is NP-complete.

Next we demonstrate a polynomial time reduction of the problem BDM to our bipartite (n, k)-domination problem.

Problem: Bipartite (n, k)-Domination (B $n k$ DM)
INSTANCE: A bipartite graph G^{*} and integers $n, k \geq 2$ and m^{*}.
QUESTION: Is $\gamma_{n, k}\left(G^{*}\right) \leq m^{*}$?

Theorem 3 Problem BnkDM is NP-complete.

Proof. Clearly there exists a nondeterministic-polynomial algorithm for deciding whether or not a graph G^{*} has a subset \mathcal{D} of $V\left(G^{*}\right)$ that is an (n, k)-dominating set with $|\mathcal{D}| \leq m^{*}$. So $B n k D M$ is in the class $N P$.

We next show how a polynomial time algorithm for $\mathrm{B} n k \mathrm{DM}$ could be used to solve $B D M$ in polynomial time. Given a graph G with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and size q and a positive integer m, we construct a graph G^{*} as follows. Consider a complete bipartite graph $K_{k-1, k-1}$ with partite sets U and W. Add three new vertices u, v and w to this graph, join u to every vertex in U, join w to every vertex in W, and join v and w. Now subdivide each of the $k-1$ edges incident with $u n-1$ times,
let $H_{1}, H_{1}, \ldots, H_{p}$ be p (disjoint) copies of H. Let W_{i} be the name of the set in H_{i} corresponding to W, and let u_{i}, v_{i} and w_{i} be the names of the vertices of H_{i} that are named u, v and w, respectively, in H. For each $i=1,2, \ldots, p$, identify the vertex v_{i} of G and the vertex v_{i} of H_{i}. Let G^{*} be the graph so constructed from G. We have $\left|V\left(G^{*}\right)\right|=|V(H)| \cdot p=k(n+1) p$ and $\left|E\left(G^{*}\right)\right|=q+|E(H)| \cdot p=q+\left[k^{2}+(n-1) k-1\right] p$, so G^{*} can be constructed from G in polynomial time. An example is presented in Figure 1 with $n=3$ and $k=4$, and where G is the 4 -cycle $v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. Note that if G is bipartite, then G^{*} is also bipartite.

Figure 1: G is a. $(4,4)$ graph; G^{*} is a $(64,96)$ graph.

We will show that G has a dominating set \mathcal{D} with $|\mathcal{D}| \leq m$ if and only if G^{*} has an (n, k)-dominating set \mathcal{D}^{*} with $\left|\mathcal{D}^{*}\right| \leq m^{*}=m+k p$. Suppose first the G has a dominating set \mathcal{D} with $|\mathcal{D}| \leq m$. Then it is evident that $\mathcal{D} \cup\left(W_{1} \cup W_{2} \cup \ldots \cup W_{p}\right) \cup$ $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ is an (n, k)-dominating set of G^{*} of cardinality $|\mathcal{D}|+p(k-1)+p \leq$ $m+k p=m^{*}$.

Now let \mathcal{D}^{*} be an (n, k)-dominating set of G^{*} with $\left|\mathcal{D}^{*}\right| \leq m^{*}=m+k p$. Before proceeding further, we introduce some notation. Let $\mathcal{D}_{i}=\mathcal{D}^{*} \cap V\left(H_{i}\right)$ and let P_{i} denote the $v_{i}-w_{i}$ path. For each $j=0,1,2, \ldots, 2 n+1$, let $U_{i j}$ be the set of all vertices of H_{i} at distance j from v_{i}. Note that $U_{i o}=\left\{v_{i}\right\}, U_{i n}=W_{i}$, and $U_{i, 2 n+1}=\left\{u_{i}\right\}$. Further, let U_{i} be the set of all vertices, distinct from u_{i}, that are within distance n from u_{i}, so $U_{i}=\bigcup_{j=n+1}^{2 n} U_{i j}$. We now prove five claims.

Claim $1\left|\mathcal{D}_{i}\right| \geq k$ for all i.

Proof. If $u_{i} \notin \mathcal{D}_{i}$, then the vertex u_{i} is within distance n from at least k vertices of \mathcal{D}_{i}, so $\left|\mathcal{D}_{i}\right| \geq k$. On the other hand, if $u_{i} \in \mathcal{D}_{i}$, then consider the set of vertices $U_{i, 2 n}$. If some vertex of $U_{i, 2 n}$ does not belong to \mathcal{D}_{i}, then $\left|\mathcal{D}_{i}\right| \geq k$. If every vertex of $U_{i, 2 n}$ belongs to \mathcal{D}_{i}, then \mathcal{D}_{i} contains these $k-1$ vertices in addition to the vertex u_{i}, so $\left|\mathcal{D}_{i}\right| \geq k$.

Claim 2 If $u_{i} \notin \mathcal{D}_{i}$, then $\left|\mathcal{D}_{i}\right| \geq k+1$.

Proof. Assume, to the contrary, that $\left|\mathcal{D}_{i}\right|<k+1$. Then, by Claim $1,\left|\mathcal{D}_{i}\right|=k$. Since $u_{i} \notin \mathcal{D}_{i}$, the vertex u_{i} is within distance n from each of the k vertices of \mathcal{D}_{i}, so $\left|\mathcal{D}_{i} \cap U_{i}\right|=k$ and $\mathcal{D}_{i} \subset U_{i}$. Note that by the way in which H_{i} is constructed, each vertex $v \in U_{i}$ belongs to exactly $k-2$ cycles of length $2 n+2$ that contain no chords. Hence, for each $v \in U_{i}$, there is a (unique) set S_{v} of $k-2$ vertices of U_{i} at distance $n+1$ from v, and $S_{v} \subset U_{i j}$ for some j with $n+1 \leq j \leq 2 n$. Now consider a vertex $v \in \mathcal{D}_{i}$. Then each vertex of S_{v} is within distance n from at most $\left|\mathcal{D}_{i}-\{v\}\right|=k-1$ vertices of \mathcal{D}_{i}. This means that $S_{v} \subset \mathcal{D}_{i}$. Since $\left|\mathcal{D}_{i}\right|=k$, and $\left|S_{v} \cup\{v\}\right|=k-1$, there is a vertex $u \in \mathcal{D}_{i}$ that does not belong to $S_{v} \cup\{v\}$, so $\mathcal{D}_{i}=S_{v} \cup\{u, v\}$. Since $v \neq u, S_{v} \neq S_{u}$. Let $u^{*} \in S_{u}-S_{v}$. Since $u \notin S_{v}$, we note that $d(u, v) \leq n$, so since $d\left(u, u^{*}\right)=n+1$ we know that $u^{*} \neq v$. Hence $u^{*} \notin \mathcal{D}_{\boldsymbol{i}}$. But this means that u^{*} must be within distance n from each of the k vertices of \mathcal{D}_{i}. This contradicts the fact that $d\left(u, u^{*}\right)=n+1$ and $u \in \mathcal{D}_{i}$. We deduce, therefore, that $\left|\mathcal{D}_{i}\right| \geq k+1$.

Claim 3 If $\left|\mathcal{D}_{i}\right|=k$, then $\mathcal{D}_{i}=U_{\text {in }} \cup\left\{u_{i}\right\}$.

Proof. Necessarily, $u_{i} \in \mathcal{D}_{i}$ by Claim 2. Now consider a vertex $v \in U_{i n}$. Then $d\left(u_{i}, v\right)=n+1$. Furthermore, $d\left(v, v_{i}\right)=n$, so $d\left(v, V\left(G^{*}\right)-V\left(H_{i}\right)\right) \geq n+1$. Hence if v does not belong to \mathcal{D}_{i}, then $\left|\mathcal{D}_{i}-\left\{u_{i}\right\}\right| \geq k$, so that $\left|\mathcal{D}_{i}\right| \geq k+1$, which produces a contradiction. We deduce that every vertex of $U_{\text {in }}$ belongs to \mathcal{D}_{i}, so $U_{\text {in }} \cup\left\{u_{i}\right\} \subseteq \mathcal{D}_{i}$. But $\left|\mathcal{D}_{i}\right|=k$, and $\left|U_{i n} \cup\left\{u_{i}\right\}\right|=k$, whence $U_{\text {in }} \cup\left\{u_{i}\right\}=\mathcal{D}_{i}$.

As an immediate consequence of Claim 3 , we have the following result.

Claim 4 If \mathcal{D}_{i} contains some vertex of P_{i}, then $\left|\mathcal{D}_{i}\right| \geq k+1$.

For each $i=1,2, \ldots ., p$, do the following. If $\left|\mathcal{D}_{i}\right|=k$, then let $\mathcal{D}_{i}^{\prime}=\mathcal{D}_{i}$. If $\left|\mathcal{D}_{i}\right| \geq k+1$, then let $\mathcal{D}_{i}^{\prime}=U_{i n} \cup\left\{u_{i}, v_{i}\right\}$, so $\left|\mathcal{D}_{i}^{\prime}\right|=k+1$. Now let $\mathcal{D}^{\prime}=\mathcal{D}_{1}^{\prime} \cup \mathcal{D}_{2}^{\prime} \cup \ldots \cup \mathcal{D}_{p}^{\prime}$. Then $\left|\mathcal{D}^{\prime}\right|=\sum_{i=1}^{p}\left|\mathcal{D}_{i}^{\prime}\right| \leq \sum_{i=1}^{p}\left|\mathcal{D}_{i}\right|=\left|\mathcal{D}^{*}\right|$. We show next that \mathcal{D}^{\prime} is an (n, k)-dominating set of G^{*}.

Proof. If $\left|\mathcal{D}_{i}^{\prime}\right|=k+1$, then it is evident that every vertex of H_{i} is (n, k)-dominated by \mathcal{D}_{i}^{\prime}, and therefore by \mathcal{D}^{\prime}. If $\left|\mathcal{D}_{i}^{\prime}\right|=k$, then $\mathcal{D}_{i}^{\prime}=\mathcal{D}_{i}=U_{i n} \cup\left\{u_{i}\right\}$ by Claim 3. Hence every vertex of H_{i} that is not on the $v_{i}-w_{i}$ path P_{i} is clearly (n, k)-dominated by \mathcal{D}_{i}^{\prime}, and therefore by \mathcal{D}^{\prime}. The only vertices of H_{i} whose (n, k)-domination are in doubt are those vertices on P_{i}. That these vertices are (n, k)-dominated by \mathcal{D}^{\prime} may be seen as follows. Consider the vertex w_{i}. Since $d\left(u_{i}, w_{i}\right)>n, w_{i}$ is within distance n from only $k-1$ vertices of \mathcal{D}_{i}. However D^{*} is an (n, k)-dominating set of G^{*}, so there must exist a vertex $w \in D^{*}-D_{i}$ that is within distance n from w_{i}. Since $d\left(v_{i}, w_{i}\right)=n-1$, and $w \notin V\left(H_{i}\right)$, it follows that $d\left(w, w_{i}\right)=n$. Thus w is a vertex of G that is adjacent to v_{i}, that is to say, $w=v_{r}$ for some r with $1 \leq r \leq p$ and $i \neq r$. Since $v_{r} \in D_{r}$, we have by Claim 4 that $\left|D_{r}\right| \geq k+1$, and therefore that $D_{r}^{\prime}=U_{r n} \cup\left\{u_{r}, v_{r}\right\}$. Hence we note that $U_{i n} \cup\left\{v_{r}\right\} \subset D^{\prime}$. Consequently, every vertex on P_{i} is within distance n from at least k vertices of D^{\prime}. Hence if $\left|D_{i}^{\prime}\right|=k$, then every vertex of H_{i} is (n, k)-dominated by D^{\prime}. The result now follows. \square

It follows from Claim 5 that D^{\prime} is an (n, k)-dominating set of G^{*} with $\left|D^{\prime}\right| \leq\left|D^{*}\right| \leq$ $m^{*}=m+p k$. Now consider the set $D=D^{\prime} \cap V(G)$. We claim that D is a dominating set of G. Suppose $v_{i} \in V(G)-D$. Then $v_{i} \notin D_{i}^{\prime}$, so we must have $\left|D_{i}^{\prime}\right|=k$. As in the proof of Claim 5 , there exists a vertex v_{r} of G that belongs to D^{\prime} which is adjacent to v_{i}. So $v_{r} \in D$ and v_{i} is adjacent to at least one vertex of \mathcal{D}. Hence D is a dominating set of G with $|D|=\left|D^{\prime}\right|-\sum_{i=1}^{p}\left|U_{i n} \cup\left\{u_{i}\right\}\right| \leq m^{*}+p k=m$. This completes the proof of Theorem 3 .

Finally, we demonstrate a polynomial time reduction of the problem CDM to our chordal (n, k)-domination problem.
Problem: Chordal (n, k)-Domination (CnkDM)
INSTANCE: A chordal graph G^{*} and integers $n, k \geq 2$ and m^{*}.
QUESTION: Is $\gamma_{n, k}\left(G^{*}\right) \leq m^{*}$?
Theorem 4 Problem CnkDM is NP-complete.

Proof. Clearly CnkDM is in the class $N P$. We next show how a polynomial time algorithm for $C n k D M$ could be used to solve $D C M$ in polynomial time. Given a graph G with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and size q and a positive integer m, we construct a graph G^{*} as follows. Consider a complete bipartite graph $K_{k, k-1}$ with partite sets U and W, where $|U|=k$. Add a new vertex w to this graph and join every two vertices of $W \cup\{w\}$ with an edge. Attach to every vertex of U a path of length n in such a way that the resulting paths $Q_{1}, Q_{2}, \ldots, Q_{k}$ (say) are pairwise disjoint. For $j=1,2, \ldots, k$, let u_{i} be the end-vertex of Q_{i} that does not belong to U. Finally, attach to w a $w-v$ path P of length $n-1$. Let H denote the resulting graph. Further, let $H_{1}, H_{2}, \ldots, H_{p}$ be p (disjoint) copies of H. Let W_{i} be the name of the set in H_{i} corresponding to
W, and let $Q_{i 1}, Q_{i 2}, \ldots, Q_{i k}$ and P_{i} be the names of the paths of H_{i} corresponding to $Q_{1}, Q_{2}, \ldots, Q_{k}$ and P, respectively, in H. Further, let $u_{i 1}, u_{i 2}, \ldots, u_{i k}, v_{i}$ and w_{i} be the names of the vertices of H_{i} that are named $u_{1}, u_{2}, \ldots, u_{k}, v$ and w, respectively, in H. For each $i=1,2, \ldots, p$, identify the vertex v_{i} of G and the vertex v_{i} of H_{i}. Let G^{*} be the graph so constructed from G. We have $\left|V\left(G^{*}\right)\right|=|V(H)| \cdot p=[k(n+2)+n-1] \cdot p$ and $\left|E\left(G^{*}\right)\right|=q+|E(H)| \cdot p=q+\left[\frac{3}{2} k^{2}+\left(n-\frac{3}{2}\right) k+n-1\right] p$, so G^{*} can be constructed from G in polynomial time. An example is presented in Figure 2 with $n=k=3$, and where G is the 3 -cycle $v_{1}, v_{2}, v_{3}, v_{1}$. Note that if G is chordal, then G^{*} is also chordal.

Figure 2: G is a $(3,3)$ graph; G^{*} is a $(51,63)$ graph.

We will show that G has a dominating set \mathcal{D} with $|\mathcal{D}| \leq m$ if and only if G^{*} has an (n, k)-dominating set D^{*} with $\left|\mathcal{D}^{*}\right| \leq m^{*}=m+(2 k-1) p$. Suppose first that G has a dominating set \mathcal{D} with $|\mathcal{D}| \leq m$. Then it is evident that $\mathcal{D} \cup\left(W_{1} \cup W_{2} \cup \ldots \cup W_{p}\right) \cup$ $\left(\bigcup_{i=1}^{p} \bigcup_{j=1}^{k}\left\{u_{i j}\right\}\right)$ is an (n, k)-dominating set of G^{*} of cardinality $|D|+(k-1) p+k p \leq$ $m+(2 k-1) p=m^{*}$.

Now let \mathcal{D}^{*} be an (n, k)-dominating set of G^{*} with $\left|\mathcal{D}^{*}\right| \leq m^{*}=m+(2 k-1) p$. Let $\mathcal{D}_{i}=\mathcal{D}^{*} \cap V\left(H_{i}\right)$. For each $j=0,1,2, \ldots, 2 n+1$, let $U_{i j}$ be the set of all vertices of H_{i} at distance j from v_{i}. Note that $U_{i n}=W_{i}$ and $U_{i, 2 n+1}=\left\{u_{i 1}, u_{i 2}, \ldots, u_{i k}\right\}$. Before proceeding further we prove five claims.

Claim $6\left|\mathcal{D}_{i}\right| \geq 2 k-1$ for all i.

Proof. Let J be the set of all integers j for which $u_{i j} \notin \mathcal{D}_{i}$. If $|J| \geq 1$, then for each $j \in J$, the vertex $u_{i j}$ is within distance n from at least k vertices of \mathcal{D}_{i} which must lie
on the patn $Q_{i j}$, so $\left|\nu_{i} \| V\left(Q_{i j}\right)\right| \geq \kappa$. Inus, it $|J| \geq 1$, then $\left|D_{i}\right| \geq \sum_{j=1}\left|\mathcal{D}_{i} \cap V\left(Q_{i j}\right)\right|=$
$\sum_{j \in J}\left|\mathcal{D}_{i} \cap V\left(Q_{i j}\right)\right|+\sum_{j \notin J}\left|\mathcal{D}_{i} \cap V\left(Q_{i j}\right)\right| \geq k .|J|+(k-|J|)=(k-1)(|J|+1)+1 \geq 2 k-1$.
On the other hand, if $|J|=0$, then $U_{i, 2 n+1} \subset \mathcal{D}_{i}$. Now consider the set $U_{i n}$. If some vertex of $U_{\text {in }}$ does not belong to \mathcal{D}_{i}, then since this vertex is at distance $n+1$ from each vertex of $U_{i, 2 n+1}$, we have $\left|\mathcal{D}_{i}-U_{i, 2 n+1}\right| \geq k$, so $\left|\mathcal{D}_{i}\right| \geq k+\left|U_{i, 2 n+1}\right|=2 k$. If every vertex of $U_{i n}$ belongs to \mathcal{D}_{i}, then $\left|\mathcal{D}_{i}\right| \geq\left|U_{i n}\right|+\left|U_{i, 2 n+1}\right|=2 k-1$.

Claim 7 If $U_{i, 2 n+1} \not \subset \mathcal{D}_{i}$, then $\left|\mathcal{D}_{i}\right| \geq 2 k$.

Proof. Let J be the set of all integers j for which $u_{i j} \notin \mathcal{D}_{i}$. Since $U_{i, 2 n+1} \not \subset \mathcal{D}_{i}$, we know that $|J| \geq 1$. If $|J| \geq 2$, then, as in the proof of Claim $6,\left|\mathcal{D}_{i}\right| \geq(k-1)(|J|+$ 1) $+1 \geq 3 k-2 \geq 2 k$ since $k \geq 2$. On the other hand, if $|J|=1$, then, without loss of generality, we may assume that $u_{i 1}$ is the vertex in $U_{i, 2 n+1}$ that does not belong to \mathcal{D}_{i}, so $\left|\mathcal{D}_{i} \cap V\left(Q_{i 1}\right)\right| \geq k$. For $r=1,2, \ldots, k$, let $u_{i r}^{\prime}$ be the vertex that immediately precedes $u_{i r}$ on the path $Q_{i r}$, and consider the set $U_{i, 2 n}-\left\{u_{i 1}^{\prime}\right\}$. If $u_{i r}^{\prime}$ is a vertex in this set that does not belong to \mathcal{D}_{i}, then it is evident that $\left|\mathcal{D}_{i} \cap\left(V\left(Q_{i r}\right) \cup U_{i n}\right)\right| \geq k$, so in this case $\left|\mathcal{D}_{i}\right| \geq\left|\mathcal{D}_{i} \cap V\left(Q_{i 1}\right)\right|+\left|\mathcal{D}_{i} \cap\left(V\left(Q_{i r}\right) \cup U_{i n}\right)\right|+\left|U_{i, 2 n+1}-\left\{u_{i 1}, u_{i r}\right\}\right| \geq$ $k+k+(k-2)=3 k-2 \geq 2 k$. If $U_{i, 2 n}-\left\{u_{i 1}^{\prime}\right\} \subset \mathcal{D}_{i}$, then $\left|\mathcal{D}_{i}\right| \geq\left|U_{i, 2 n+1}-\left\{u_{i 1}\right\}\right|+$ $\left|U_{i, 2 n}-\left\{u_{i 1}^{\prime}\right\}\right|+\left|\mathcal{D}_{i} \cap V\left(Q_{i 1}\right)\right| \geq(k-1)+(k-1)+k=3 k-2 \geq 2 k$. In both cases, $\left|\mathcal{D}_{i}\right| \geq 2 k$.

Claim 8 If $\left|\mathcal{D}_{i}\right|=2 k-1$, then $\mathcal{D}_{i}=U_{\text {in }} \cup U_{i, 2 n+1}$.

Proof. Necessarily, $U_{i, 2 n+1} \subset \mathcal{D}_{i}$ by Claim 7. Now consider the set $U_{i n}$. If some vertex of $U_{i n}$ does not belong to \mathcal{D}_{i}, then this vertex is within distance n from at least k vertices of \mathcal{D}_{i}, so $\left|\mathcal{D}_{i}-U_{i, 2 n+1}\right| \geq k$; that is to say, $\left|\mathcal{D}_{i}\right| \geq 2 k$, which contradicts the fact that $\left|\mathcal{D}_{i}\right|=2 k-1$. We deduce, therefore, that $U_{i n} \cup U_{i, 2 n+1} \subseteq \mathcal{D}_{i}$. But $\left|U_{i n} \cup U_{i, 2 n+1}\right|=2 k-1$, implying that $U_{i n} \cup U_{i, 2 n+1}=\mathcal{D}_{i}$.

As an immediate consequence of Claim 8 , we have the following result.

Claim 9 If \mathcal{D}_{i} contains some vertex of P_{i}, then $\left|\mathcal{D}_{i}\right| \geq 2 k$.

For each $i=1,2, \ldots, p$, do the following. If $\left|\mathcal{D}_{i}\right|=2 k-1$, then let $\mathcal{D}_{i}^{\prime}=\mathcal{D}_{i}$. If $\left|\mathcal{D}_{i}\right| \geq$ $2 k$, then let $\mathcal{D}_{i}^{\prime}=\left\{v_{i}\right\} \cup U_{i n} \cup U_{i, 2 n+1}$, so $\left|\mathcal{D}_{i}^{\prime}\right|=2 k$. Now let $\mathcal{D}^{\prime}=\mathcal{D}^{\prime}{ }_{1} \cup \mathcal{D}^{\prime}{ }_{2} \cup \ldots \cup \mathcal{D}_{p}^{\prime}$. Then $\left|\mathcal{D}^{\prime}\right|=\sum_{i=1}^{p}\left|\mathcal{D}_{i}^{\prime}\right| \leq \sum_{i=1}^{p}\left|\mathcal{D}_{i}\right|=\left|\mathcal{D}^{*}\right|$. We show next that \mathcal{D}^{\prime} is an (n, k)-dominating set of G^{*}.

Claim $10 \mathcal{D}^{\prime}$ is an (n, k)-dominating set of G^{*}.
Proof. If $\left|\mathcal{D}_{i}^{\prime}\right|=2 k$, then it is evident that every vertex of H_{i} is (n, k)-dominated by \mathcal{D}_{i}^{\prime}, and therefore by \mathcal{D}^{\prime}. If $\left|\mathcal{D}_{i}^{\prime}\right|=2 k-1$, then $\mathcal{D}_{i}^{\prime}=\mathcal{D}_{i}=U_{i n} \cup U_{i, 2 n+1}$ by Claim 8 . Hence every vertex of H_{i} that is not on the $v_{i}-w_{i}$ path P_{i} is clearly (n, k)-dominated by \mathcal{D}_{i}^{\prime}, and therefore by \mathcal{D}^{\prime}. The only vertices of H_{i} whose (n, k)-domination are in doubt are those vertices on P_{i}. That these vertices are (n, k)-dominated by D^{\prime}, may be seen as follows. Consider the vertex w_{i}. Since w_{i} is at distance $n+2$ from each vertex of $U_{i, 2 n+1}$, the vertex w_{i} is within distance n from only $k-1$ vertices of \mathcal{D}_{i}. However \mathcal{D}^{*} is an (n, k)-dominating set of G^{*}, so there must exist a vertex $w \in \mathcal{D}^{*}-\mathcal{D}_{i}$ that is within distance n from w_{i}. Since $d\left(v_{i}, w_{i}\right)=n-1$, and $w \notin V\left(H_{i}\right)$, it follows that $d\left(w, w_{i}\right)=n$. Thus w is a vertex of G that is adjacent to v_{i}, so $w=v_{s}$ for some s with $1 \leq s \leq p$ and $i \neq s$. Since $v_{s} \in \mathcal{D}_{s}$, we have by Claim 9 that $\left|\mathcal{D}_{s}\right| \geq 2 k$, and therefore that $\mathcal{D}_{s}^{\prime}=\left\{v_{s}\right\} \cup U_{s n} \cup U_{s, 2 n+1}$. Hence we note that $U_{i n} \cup\left\{v_{s}\right\} \subset \mathcal{D}^{\prime}$. Consequently, every vertex on P_{i} is within distance n from at least k vertices of \mathcal{D}^{\prime}. Hence, if $\left|\mathcal{D}_{i}^{\prime}\right|=2 k-1$, then every vertex of H_{i} is (n, k)-dominated by \mathcal{D}^{\prime}. The result now follows.

It follows from Claim 10 that \mathcal{D}^{\prime} is an (n, k)-dominating set of G^{*} with $\left|\mathcal{D}^{\prime}\right| \leq$ $\left|\mathcal{D}^{*}\right| \leq m^{*}=m+(2 k-1) p$. Now consider the set $\mathcal{D}=\mathcal{D}^{\prime} \cap V(G)$. We claim that \mathcal{D} is a dominating set of G. Suppose $v_{i} \in V(G)-\mathcal{D}$. Then $v_{i} \notin \mathcal{D}_{i}^{\prime}$, so we must have $\left|\mathcal{D}^{\prime}\right|=2 k-1$. As in the proof of Claim 10 , there exists a vertex v_{s} of G that belongs to \mathcal{D}^{\prime} and that is adjacent to v_{i}. So $v_{s} \in \mathcal{D}$ and v_{i} is adjacent to at least one vertex of \mathcal{D}. Hence \mathcal{D} is a dominating set of G with $|\mathcal{D}|=\left|\mathcal{D}^{\prime}\right|-\sum_{i=1}^{p}\left|U_{i n} \cup U_{i, 2 n+1}\right| \leq$ $m+(2 k-1) p-(2 k-1) p=m$. This completes the proof of Theorem 4 .

The following decision problem for the independence number is known to be NPcomplete for general graphs (see [19]).

Problem: Independence (ID)

INSTANCE: A graph G and an integer m.
QUESTION: Is $\beta(G) \geq m$?
We will demonstrate a polynomial reduction of this problem to the bipartite (n, k) independence problem with n even.

Problem: Bipartite (n, k)-Independence (BnkID)

INSTANCE: A bipartite graph G^{*} and integers $n, k \geq 2$ and m^{*}.
QUESTION: Is $\beta_{n, k}\left(G^{*}\right) \geq m^{*}$?

Theorem 5 Problem BnkID with n even is $N P$-complete.

Proof. Clearly $B n k I D$ is in the class $N P$. In what follows let $n=2 r$ where r is a positive integer. We show how a polynomial time algorithm for $B n k I D$ could be used to solve $I D$ in polynomial time. Given a graph $G=(V, E)$ of order p and size q, and a positive integer m, we construct a graph $G^{*}=\left(V^{*}, E^{*}\right)$ as follows: Replace
each edge $u v$ of x by the tree ℓ_{4} snown in rigure 3, and attach to each vertex of $G k-1$ paths of length 1. Let $S_{u v}$ denote the set of k end-vertices in $T_{u v}$ at distance $n+1$ from u and v, and for each $v \in V$, let S_{v} denote the set of $k-1$ end-vertices of G^{*} adjacent to v. Then $\left|V^{*}\right|=k p+\left(\frac{3 n}{2}+k-1\right) q$ and $\left|E^{*}\right|=(k-1) p+\left(\frac{3 n}{2}+k\right) q$, so G^{*} can be constructed from G in polynomial time. Since every cycle in G^{*} is of. even length, we note that G^{*} is bipartite.

Figure 3: The tree $T_{u v}$.

We will show that the problem of determining the independence number of G can be transformed to the problem of determining the (n, k)-independence number of the bipartite graph G^{*}. We will prove that $\beta_{n, k}\left(G^{*}\right)=\beta(G)+(k-1) p+k q$.

Let S be a maximum independent set in G and consider the set $S^{*}=S \cup \bigcup_{u \cup \in E}\left(S_{u} \cup\right.$ $\left.S_{v} \cup S_{u v}\right)$. For any $x \in V^{*}$ and $y \in S_{u v}, d_{G^{*}}(x, y) \leq n$ implies x is a vertex of $T_{u v}-\{u, v\}$, so each vertex of $S_{u v}$ is within distance n from exactly $k-1$ other vertices of S^{*}, namely the $k-1$ other vertices in $S_{u v}$. For any $u, v \in S, u v \notin E$ so $d_{G^{*}}(u, v) \geq 4 r>n$. Thus each $u \in S$ is within distance n from exactly $k-1$ other vertices of S^{*}, namely the $k-1$ vertices in S_{u}. For any $x \in S_{u}, x$ is within distance n from at most $k-1$ other vertices of S^{*}, namely the $k-2$ other vertices of S_{u} and, if $u \in S$, then also u. Thus S^{*} is an (n, k)-independent set of G^{*}, whence $\beta_{n, k}\left(G^{*}\right) \geq\left|S^{*}\right|=\beta(G)+(k-1) p+k q$.

Conversely, suppose S^{*} is a maximum (n, k)-independent set in G^{*}. Let $S_{u v}^{*}$ be the set of vertices of $T_{u v}-\{u, v\}$ that belong to S^{*}. Since every two vertices of $T_{u v}-\{u, v\}$ are within distance n from each other, it is evident that $\left|S_{u v}^{*}\right| \leq k$. Since $\left(S^{*}-S_{u v}^{*}\right) \cup S_{u v}$ is an (n, k)-independent set of G^{*} of cardinality at least $\left|S^{*}\right|$, we may assume, without loss of generality, that $S_{u v}^{*}=S_{u v}$. Further, let $S_{u}^{*}=S^{*} \cap$ $\left(S_{u} \cup\{u\}\right)$. If $\left|S_{u}^{*}\right|<k-1$, then $\left(S^{*}-S_{u}^{*}\right) \cup S_{u}$ is an (n, k)-independent set of
G^{*} of cardinality exceeding that of S^{*}, which is impossible. Hence we know that $\left|S_{u}^{*}\right| \geq k-1$. If $\left|S_{u}^{*}\right|=k-1$, then, since $\left(S^{*}-S_{u}^{*}\right) \cup S_{u}$ is an (n, k)-dominating set of G^{*} of cardinality $\left|S^{*}\right|$, we may assume, without loss of generality, that S^{*} contains the $k-1$ vertices of S_{u}. So either $\left|S_{u}^{*}\right|=k-1$, in which case $S_{u}^{*}=S_{u}$, or $\left|S_{u}^{*}\right|=k$, in which case $S_{u}^{*}=S_{u} \cup\{u\}$. Now consider the set $S=S^{*} \cap V$. We claim that S is an independent set of G. If $u, v \in S$ and $u v \in E$, then $d_{G^{*}}(u, v)=2 r=n$, so u is within distance n from at least k vertices of S^{*}, namely the k vertices in $S_{u} \cup\{v\}$, which contradicts the (n, k)-independence of S^{*}. Hence S is an independent set of G, so $\beta(G) \geq|S|=\left|S^{*}\right|-\left|\bigcup_{u v \in E}\left(S_{u} \cup S_{v} \cup S_{w}\right)\right|=\beta_{n, k}\left(G^{*}\right)-(k-1) p-k q$. This, together with the earlier observation that $\beta(G) \leq \beta_{n, k}\left(G^{*}\right)-(k-1) p-k q$, implies that $\beta_{n, k}\left(G^{*}\right)=\beta(G)+(k-1) p+k q$. This completes the proof of the theorem.

3 Results concerning (n, k)-domination and (n, k)-independence.

It is well-known that any maximal independent set is a dominating set; therefore $\gamma_{1,1} \leq \beta_{1,1}$. Fink and Jacobson [15] proved that $\gamma_{1,2} \leq \beta_{1,2}$ and conjectured that for any graph G and for all positive integers $k, \gamma_{1, k} \leq \beta_{1, k}$. This conjecture was proven by Favaron [13]. Here we prove that, for any graph G, and for all positive integers n and $k, \gamma_{n, k} \leq \beta_{n, k}$. To do this, we shall prove the following stronger property: In every graph, and for all positive integers n and k, there exist some subsets of vertices which are both (n, k)-independent and (n, k)-dominating. This result generalizes that of Favaron [13].

Theorem 6 For any graph G and positive integers n and k, every (n, k)-independent set \mathcal{D} such that $k|\mathcal{D}|-m_{n}(\mathcal{D})$ is a maximum is an (n, k)-dominating set of G.

Proof. Let \mathcal{D} be an (n, k)-independent set such that $k|\mathcal{D}|-m_{n}(\mathcal{D})$ is maximum. We show that \mathcal{D} is an (n, k)-dominating set of G. If this is not the case, then there exists a vertex v of $V(G)-\mathcal{D}$ which is not (n, k)-dominated by \mathcal{D}. Let B be the set of vertices of \mathcal{D} within distance n from v, so $N_{n}(v) \cap \mathcal{D}=B$. Then $0 \leq|B|<k$. Further, let A be the set of all vertices a in B such that $\operatorname{deg}_{n}(a, \mathcal{D})=\bar{k}-1$, and let S be a maximal $(n, 1)$-independent set of A. The set $C=(\mathcal{D}-S) \cup\{v\}$ is still (n, k)-independent. Indeed $\operatorname{deg}_{n}(v, C)=|B|-|S| \leq|B|<k ; \operatorname{deg}_{n}(x, C) \leq$ $\operatorname{deg}_{n}(x, \mathcal{D})<k$ for any x in $\mathcal{D}-B ; \operatorname{deg}_{n}(b, C) \leq \operatorname{deg}_{n}(b, \mathcal{D})+1<(k-1)+1=k$ for any b in $B-A ; \operatorname{deg}_{n}(a, C) \leq \operatorname{deg}_{n}(a, \mathcal{D})=k-1$ for any a in $A-S$ because every vertex of $A-S$ is within distance n from at least one vertex in S (the ($n, 1$)independent set S being maximal in A). Furthermore, $|C|=|\mathcal{D}|-|S|+1$ and $m_{n}(C)=m_{n}(\mathcal{D})-(k-1)|S|+|B|-|S|=m_{n}(\mathcal{D})-k|S|+|B|$. Thus $k|C|-m_{n}(C)=$ $k|\mathcal{D}|-k|S|+k-m_{n}(\mathcal{D})+k|S|-|B|=k|\mathcal{D}|-m_{n}(\mathcal{D})+k-|B|>k|\mathcal{D}|-m_{n}(\mathcal{D})$, in contradiction with the hypothesis on \mathcal{D}. Therefore \mathcal{D} is an (n, k)-dominating set of G.

Proof. Let \mathcal{D} be an (n, k)-independent set and an (n, k)-dominating set of G (such a set exists by Theorem 6$)$. Then $\gamma_{n, k}(G) \leq|\mathcal{D}| \leq \beta_{n, k}(G)$.

4 Bounds on $\gamma_{n, k}$

The following result yields a lower bound on the difference between $\gamma_{n, k}$ and $\gamma_{n, 1}$ for $k \geq 2$. The idea of the proof is the same as that of Fink and Jacobson's theorem [16], which follows from our theorem by replacing n by 1 .

Theorem 7 If G is a graph with $\Delta(G) \geq k \geq 2$, then $\gamma_{n, k}(G) \geq \gamma_{n, 1}(G)+k-2$.
Proof. Let \mathcal{D} be a minimum (n, k)-dominating set of G. Since $\Delta(G) \geq k$, we note that $V(G)-\mathcal{D} \neq \emptyset$. Let $u \in V(G)-\mathcal{D}$, and let $v_{1}, v_{2}, \ldots, v_{k}$ be distinct members of \mathcal{D} that are within distance n from u. Since \mathcal{D} is an (n, k)-dominating set of G, each vertex in $V(G)-\mathcal{D}$ is within distance n from at least one member of $\mathcal{D}-\left\{v_{2}, v_{3}, \ldots, v_{k}\right\}$. It follows that the set $\mathcal{D}^{*}=\left(\mathcal{D}-\left\{v_{2}, v_{3}, \ldots, v_{k}\right\}\right) \cup\{u\}$ is an $(n, 1)$-dominating set in G. Hence $\gamma_{n, 1}(G) \leq\left|\mathcal{D}^{*}\right|=\gamma_{n, k}(G)-(k-1)+1$, so that $\gamma_{n, k}(G) \geq \gamma_{n, 1}(G)+k-2$.

The following lower bound on $\gamma_{n, k}$ generalizes the well-known bound $\gamma \geq \frac{p}{\Delta+1}$.
Theorem 8 If G is a graph with p vertices and maximum n-degree Δ_{n}, then $\gamma_{n, k}(G) \geq$ $k p /\left(\Delta_{n}+k\right)$.

Proof. Let \mathcal{D} be a minimum (n, k)-dominating set of G. Let $S=V(G)-\mathcal{D}$ and let N denote the number of pairs (u, v) with $u \in \mathcal{D}, v \in S$ and $d(u, v) \leq n$. Then, since the n-degree of each vertex in \mathcal{D} is at most Δ_{n}, we have $N \leq \Delta_{n} \cdot|\mathcal{D}|=\Delta_{n} \cdot \gamma_{n, k}(G)$. Also, since each vertex in S is within distance n from at least k vertices of \mathcal{D}, we have $N \geq k \cdot|S|=k \cdot\left(p-\gamma_{n, k}(G)\right)$. It follows that $k \cdot\left[p-\gamma_{n, k}(G)\right] \leq \Delta_{n} \cdot \gamma_{n, k}(G)$ whence $\gamma_{n, k}(G) \geq k p /\left(\Delta_{n}+k\right)$. .

That the bound given in Theorem 8 is sharp may be seen by considering the graph G obtained from a complete bipartite graph $K_{k, k}$ by subdividing each edge $n-1$ times. Then $\Delta_{n}=n k, p=(n+1) k$ and $\gamma_{n, k}(G)=k=k p /\left(\Delta_{n}+k\right)$.

We close with the following:
Conjecture 1 If G is a graph with p vertices and minimum n-degree at least $n+k-1$, then $\gamma_{n, k}(G) \leq \frac{k p}{n+k}$.

The conjecture is true for $k=1$ and all integers $n \geq 1$ as proven by Oellermann, Henning and Swart [20]. The conjecture is also true for $n=1$ and all integers $k \geq 1$ as proven by Cockayne, Gamble and Shepherd [12].

References

[1] G. Bascó and Z. Tuza, Dominating cliques in P_{5}-free graphs, Periodica Math. Hungar. 21 (1990), 303-308.
[2] G. Bascó and Z. Tuza, A characterization of graphs without long induced paths, J. Graph Theory 14 (1990), 455-464.
[3] L. Beineke and M.A. Henning, Some extremal results on independent distance domination in graphs, to appear in Ars. Combin.
[4] J.A. Bondy and Geng-hau Fan, A sufficient condition for dominating cycles, Discrete Math. 76 (1987), 205-208.
[5] K.S. Booth, Dominating sets in chordal graphs, CS-80-34, Univ. Waterloo, Waterloo, Ontario (1980).
[6] K.S. Booth and J.H. Johnson, Dominating sets in chordal graphs, SIAM J. Comput. 11 (1982), 191 - 199.
[7] G.J. Chang, k-domination and graph covering problems. Ph.D. Thesis, School of OR and IE, Cornell University, Ithaca, N.Y., 1982.
[8] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problems on sunfree chordal graphs, SIAM J. Algebraic Discrete Methods 5(3) (1984), 332 345.
[9] G.J. Chang and G.L. Nemhauser, R-domination of block graphs, Oper. Res. Lett 1(6) (1982), 214-218.
[10] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problem on graphs, Tech. Report 540, School of Operations Res. and Industrial Eng., Cornell Univ., 1982.
[11] G. Chartrand and L. Lesniak, Graphs and Digraphs, Second Edition, Wadsworth and Brooks/Cole, Monterey, CA (1986).
[12] E.J. Cockayne, B. Gamble, and B. Shepherd, An upper bound for the k domination number of a graph, J. Graph Theory 9 (1985), 533-534.
[13] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, J. Combin. Theory B39 (1985), 101-102.
[14] O. Favaron, k-Domination and k-independence in graphs, Ars. Combin. 25C (1988), 159-167.
[15] J.F. Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, Proc. 5th Quadrennial International Conf. on Graph Theory with Applications to Algorithms and Computer Science (1984), 283-300.
[16] J.F. Fink and M.S. Jacobson, n-Domination in graphs, Proc. 5th Quadrennial International Conf. on Graph Theory with Applications to Algorithms and Computer Science (1984), 301-312.
[17] P. Fraisse, A note on distance dominating cycles, Discrete Math. 71 (1) (1988), 89-92.
[18] G. Fricke, S.T. Hedetniemi and M.A. Henning, Distance independent domination in graphs, to appear in Ars Combin.
[19] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.M. Freeman, San Francisco, 1979.
[20] M.A. Henning, O.R. Oellermann, and H.C. Swart, Bounds on distance domination parameters, J. Combin. Inform. \& Syst. Sciences 16 (1991), 11-18.
[21] M.A. Henning, O.R. Oellermann, and H.C. Swart, Distance domination critical' graphs, to appear in J. Combin. Inform. \& Syst. Sciences.
[22] M.A. Henning, O.R. Oellermann, and H.C. Swart, Relating pairs of distance domination parameters, to appear in J. Combin. Math. Combin. Comput.
[23] M.A. Henning, O.R. Oellermann, and H.C. Swart, The diversity of domination, to appear in Discrete Math.
[24] G. Hopkins and W. Staton, Vertex partitions and k-small cutsets of graphs, Ars. Combin. 22 (1988), 19-24.
[25] M.S. Jacobson and K. Peters, Complexity questions for n-domination and related parameters, Congress. Numer. 68 (1989), 7-22.
[26] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975), 225-233.
[27] Z. Mo and K. Williams, (r, s)-domination in graphs and directed graphs, Ars. Combin. 29 (1990), 129-141.
[28] J. Topp and L. Volkmann, On packing and covering numbers of graphs, manuscripts, 1990.
[29] J. Topp and L. Volkmann, On graphs with equal domination and independent domination numbers, Discrete Math. 96 (1991), 75-80.

