Classroom Note

Some partitions of $S(2,3,v^2)$ and $S(2,4,v^2)$

Marialuisa J. de Resmini

Dipartimento di Matematica Universitá di Roma "La Sapienza" I-00185 Rome, Italy.

Dedicated to the memory of Alan Rahilly, 1947 - 1992

Introduction

The aim of this note is to provide a Steiner triple system $STS(v^2)$ which admits a partition into v STS(v) for every $v \equiv 1$ or 3 (mod 6). The $STS(v^2)$ obtained in this way will also contain $\frac{1}{6}v(v-1)$ subsystems of order 3v. An analogous construction is provided of an $S(2, 4, v^2)$ with a partition into v S(2, 4, v)'s in the case $v \equiv 1 \pmod{12}$. The Steiner system constructed here will also contain $\frac{1}{12}v(v-1)$ subsystems of order 4v. We observe that the direct product construction of an $S(2, 3, v^2)$, an $S(2, 4, v^2)$, respectively, provides Steiner systems with a completely different structure. We assume the reader is familiar with the Steiner system terminology and refer to [1, 7] for background and to [5, 6] for more literature on the subject.

The constructions

1. $S(2, 3, v^2)$

Take any v pairwise disjoint STS(v)'s on the points $A_j, B_j, \ldots, Z_j, j = 1, 2 \ldots v$. Their blocks will be blocks of the $STS(v^2) S$ we want to construct. Each of the remaining $\frac{1}{6}v^2v(v-1)$ blocks consists of three points in distinct STS(v)'s. To decide how to form triples of subsystems, we take any STS(v), Σ , on the "points" A, B, \ldots, Z . For any block, ABC say, of Σ we use Construction 1 in [3], i.e. we construct an STS(3v) having A,B, and C as subsystems. Thus the v^2 blocks coming from the triple ABC are obtained from the v base blocks [3]:

$$b_j = A_i B_j C_{2j-1}$$
 for $j = 1, 2, \dots, \frac{v+1}{2}$,
 $b_{j+\frac{(v+1)}{2}} = A_i B_{j+\frac{(v+1)}{2}} C_{2j}$ for $j = 1, 2, \dots, \frac{v-1}{2}$.

Australasian Journal of Combinatorics 10(1994), pp.289-291

Each base block yields v blocks, all containing the same point B_j , under the action of \mathbb{Z}_v which acts on the subscript i of A_i by $i \to i + 1 \pmod{v}$ and on the subscript h of C_h , h = 2j - 1 and h = 2j, respectively, by $h \to h - 1 \pmod{v}$. It is easy to check that the construction produces an $\mathrm{STS}(v^2)$ and, as soon as v > 9, one obtains many non-isomorphic $\mathrm{STS}(v^2)$'s according to the choices of the subsystems of order v and to the system Σ .

2. $S(2,4,v^2)$

The construction is similar to that in 1. Take v pairwise disjoint S(2, 4, v)'s on the points $A_j, B_j, \ldots, Z_j, j = 1, 2 \ldots v, v \equiv 1 \pmod{12}$. Their blocks will be blocks of the wanted $S(2, 4, v^2) S$. The remaining $\frac{1}{12}v^2v(v-1)$ blocks of S all consist of four points in distinct S(2, 4, v)'s. So, in order to form quadruples of such subsystems, take any S(2, 4, v), Σ , on the "points" A, B, \ldots, Z . For any block of Σ , say ABCD, construct the S(2, 4, v) having A,B,C,D as subsystems using Construction 3 in [3]. This construction requires $v \equiv 1 \pmod{12}$, which takes care of our assumption. The v^2 blocks provided by the block ABCD of Σ are obtained by the action of \mathbb{Z}_v on the following v base blocks [3]:

$$A_i B_j C_j D_{2j-1}$$
 for $j = 1, 2 \dots \frac{v+1}{2}$,

for each j, the subscript j of B_j is fixed and Z_v acts on the subscript i of A_i by $i \to i+1 \pmod{v}$, on the subscript j of C_j by $j \to j-1 \pmod{v}$ and on the subscript h = 2j-1 of D_h by $h \to h-1 \pmod{v}$;

 $A_i B_{j+\frac{v+1}{2}} C_{j+\frac{v+1}{2}} D_{2j}$ for $j = 1, 2 \dots \frac{v-1}{2}$,

for each j, the subscript j of B_j is fixed and \mathbb{Z}_v acts on the subscript i of A_i by $i \to i+1 \pmod{v}$, on the subscript $h = j + \frac{(v+1)}{2}$ of C_h by $h \to h-1 \pmod{v}$ and on the subscript s = 2j of D_s by $s \to s - 1 \pmod{v}$. It is easy to check that the construction indeed provides the required Steiner system.

We observe that any construction of an STS(3v) with three disjoint subsystems of order v [4] can be used instead of Construction 1. Similarly, any construction of an S(2, 4, 4v) containing four disjoint subsystems of order v can be used. Moreover, if such a construction can be used also when $v \equiv 4 \pmod{12}$, there is no unsettled case in the examined partition problem. (It should be possible to adapt some of the results in [2].)

References

- Th. Beth, D. Jungnickel, and H. Lenz. Design Theory. Bibliographisches Institut Mannheim, 1985.
- [2] A.E. Brouwer and H. Lenz. Subspaces of linear spaces of line size 4. European J. Combinat., 2:323-330, 1981.

- [3] M. J. de Resmini. Some naive constructions of S(2,3,v) and S(2,4,v). Discrete Math., 97:149-153, 1991.
- [4] J. Doyen. Sur la croissance du nombre des systemes triples de Steiner nonisomorphes. J. Combin. Theory, 8:424-441, 1970.
- [5] J. Doyen and A. Rosa. A bibliography and Survey of Steiner system. Ann. Discr. Math., 7:317-349, 1980.
- [6] J. Doyen and A. Rosa. A bibliography and Survey of Steiner system, (updated version). *Preprint*, April 1989.
- [7] D. R. Hughes and F. C. Piper. *Design Theory*. Cambridge University Press, 1985.

(Received 15/1/93)

