Smallest defining sets for $2-(9,4,3)$ and $3-(10,5,3)$ designs

Tony Moran

Centre for Combinatorics
Department of Mathematics
The University of Queensland
Queensland 4072 AUSTRALIA

Abstract

A set of blocks which can be completed to exactly one $t-(v, k, \lambda)$ design is called a defining set of that design. A known algorithm is used to determine all smallest defining sets of the 11 non-isomorphic $2-(9,4,3)$ designs. Nine of the designs have smallest defining sets of eight blocks each; the other two have smallest defining sets of six blocks each. Various methods are then used to find all smallest defining sets of the seven non-isomorphic $3-(10,5,3)$ designs, all of which are extensions of 2 $(9,4,3)$ designs. Four of the $3-(10,5,3)$ designs have smallest defining sets of eight blocks each; the other three have smallest defining sets of six blocks each.

Whereas in previous computations of sizes of smallest defining sets of classes of non-isomorphic designs with the same parameters, the size of smallest defining sets was found to be non-decreasing as automorphism group order increases, both of these classes of designs provide cases which show that this is not a universal rule.

1. Introduction

A t - (v, k, λ) design is a collection of k-subsets (called blocks) of a v-set, V, such that every t-subset of V occurs in exactly λ blocks. Sometimes such designs will be referred to as t-designs. A t - (v, k, λ) design is simple if it contains no repeated blocks.

If a set, S, of blocks is a subset of the set of blocks of a $t-(v, k, \lambda)$ design, D, then it is said that S completes to D or that D is a completion of S to a $t-(v, k, \lambda)$ design. If S completes to D but to no other design with the same parameters (t, v, k and λ), then S is a defining set of D (notation $d(D)$). A defining set of D such that no other defining set has smaller cardinality is called a smallest defining set of D (notation $d_{s}(D)$). The size of a defining set (notation $|d(D)|$) is its number of blocks.

For any subset, X, of the blocks of a design, D, on a v-set, V, a permutation of the elements of V which preserves the blocks of X is an automorphism of X. The
set of all automorphisms of X is the automorphism group of X, denoted by G_{X}; hence G_{D} denotes the automorphism group of the whole design, D. If G_{D} contains no permutations which are single transpositions of elements, then D is said to be single-transposition-free or $S T F$.

In the following, given a set, S, of blocks from a design and a permutation, ρ, on the elements of the underlying set of the design, ρS will denote the image of S under the action of ρ. If T_{1} is a sub-collection of the blocks of a t - (v, k, λ) design, D, and if there exists a disjoint collection, T_{2}, of k-sets such that any t-set which occurs in T_{1} occurs with the same frequency in T_{2}, then T_{1} and T_{2} are said to constitute a trade. For ease of reference, the single collection T_{1} will henceforth also be called a trade. Clearly, if T_{1} is a trade in D and $\rho \in G_{D}$, then ρT_{1} is also a trade in D. The volume of a trade is the number of blocks in the trade. A minimal trade is a trade, no proper sub-collection of which is also a trade. It is noted that Hwang [13] uses the term minimal trade to mean a trade containing the smallest possible number of elements and the smallest possible number of blocks.

If D is a $t-(v, k, \lambda)$ design and the set of blocks of D containing a particular element x is chosen, the deletion of the element x from each block leaves a set of blocks, D^{x}, which is called the restriction of D on x. It is well known that each such D^{x} is a $(t-1)-(v-1, k-1, \lambda)$ design.

In the following, given a set, S, of blocks, $S(x)$ will denote the set of blocks formed by adding a new element x to each block of S. Given a t - (v, k, λ) design, D, with underlying v-set, V, it may be possible to create another set, M, of blocks such that $D(x) \cup M=E$ is a $(t+1)-(v+1, k+1, \lambda)$ design. Then E is called an extension of D. If the set, M, can be chosen in more than one way, then D has more than one extension to a $(t+1)-(v+1, k+1, \lambda)$ design. If $\widetilde{D(x)}$ is the set of complements in $V \cup\{x\}$ of the blocks of $D(x)$, and if $M=\widetilde{D(x)}$, then E is called an extension by complementation of D. Clearly no design can have more than one extension by complementation; also any extension by complementation is a self-complementary design and any self-complementary design is an extension by complementation of its restrictions.

2. Useful results

The theory of defining sets was first studied by Gray [7], [8]. The following four lemmata were stated and proven, inter alia, by Gray.

Lemma 1 [7] A defining set of a design, D, intersects every trade in D.
Lemma 2 [8] If S is a defining set of a simple $S T F$ design, D, and if D contains precisely n configurations isomorphic to S, then $n=\left|G_{D}\right| /\left|G_{S}\right|$.

Lemma 3 [8] If S is a defining set of a design, D, and if ρ is a permutation on the elements of the underlying set of D such that $\rho S \subseteq D$, then $\rho \in G_{D}$ and ρS is a defining set of D.

Lemma 4 [8] If S is a defining set of a design, D, based on the set V, then \tilde{S} is a defining set of \tilde{D}, the design comprising the complements of the blocks of D with respect to V.

Gray [8] showed that a converse of Lemma 2 applies in certain circumstances, as explained in the next Lemma.

Lemma 5 [8] Let D be a simple $S T F t-(v, k, \lambda)$ design and let S be a subset of the set of blocks of D, containing at least $v-1$ distinct elements, such that there are n configurations in D isomorphic to S and $n=\left|G_{D}\right| /\left|G_{S}\right|$. If there is no set of blocks isomorphic to S contained in any design with the same parameters (t, v, k and λ) as D, but not isomorphic to D, then S is a $d(D)$.

Gray also produced several results which can help to put a lower bound on the size of smallest defining sets of simple STF designs. One such result follows.

Lemma 6 [8] If S is a defining set of a STF $t-(v, k, \lambda)$ design, D, if $s=|S|$ and if $k^{*}=\min (k, v-k)$, then

$$
s \geq \frac{2(v-1)}{k^{*}+1}
$$

It is clear that a necessary condition for a $t-(v, k, \lambda)$ design to have an extension by complementation is that $v=2 k+1$. The following lemma, guaranteeing the existence of certain extensions, was proven by Alltop [1].

Lemma 7 Any $t-(2 n-1, n-1, \lambda)$ design, where t is even, has an extension by complementation to a $(t+1)-(2 n, n, \lambda)$ design.

It is easy to extend Alltop's proof to show the following lemma.
Lemma 8 At-(2n-1,n-1, λ) design, where t is odd, has an extension by complementation to a $(t+1)-(2 n, n, \lambda)$ design if and only if either $t=n-1$ (i.e. the design is a multiple of the full design) or the t-design is also a ($t+1$)-design.

The following lemmata, relating the defining sets of a design to the defining sets of its extension(s) or restriction(s), generalize and extend results of Gray [7]; Gray proved the special cases of Lemmata 9, 10 and 12 for which $t=2$ and all 3 -designs with the given parameters are self-complementary.

Lemma 9 If at- (v, k, λ) design, D, has exactly one extension to a $(t+1)-(v+1, k+1, \lambda)$ design, $E=D(x) \cup M$, then for each defining set S of D, there is a defining set $S(x)$ of E.

Proof: Let $S(x) \subseteq E_{1}, \mathrm{a}(t+1)-(v+1, k+1, \lambda)$ design.
Let $D_{1}=E_{1}^{x}$; then D_{1} is a $t-(v, k, \lambda)$ design and $S \subseteq D_{1}$.
But S is a $d(D)$, so $D_{1}=D$.
But D has only one extension, so $E_{1}=E$ and $S(x)$ is a $d(E)$.
The following corollary is immediately clear.
Corollary 9.1 If a $t-(v, k, \lambda)$ design D, has exactly one extension, E, then

$$
\left|d_{s}(D)\right| \geq\left|d_{s}(E)\right|
$$

At the end of this paper, a case is noted in which $\left|d_{s}(D)\right|>\left|d_{s}(E)\right|$.
Lemma 10 If D is a $t-(v, k, \lambda)$ design, where t is even, such that $E=D(x) \cup \widetilde{D(x)}$ is an extension of D and if S is a defining set of E, then $(S \cup \tilde{S})^{x}$ is a defining set of D.

Proof: Let $(S \cup \tilde{S})^{x} \subseteq D_{1}$, a $t-(v, k, \lambda)$ design.
Since D has an extension by complementation, so does D_{1}. Let $E_{1}=D_{1}(x) \cup \widetilde{D_{1}(x)}$. Then $S \cup \tilde{S} \subseteq E_{1}$ and so $S \subseteq E_{1}$.

But S is a $d(E)$, so $E_{1}=E$.
But $E^{x}=D$, so $E_{1}^{x}=D_{1}=D$.
Hence $S \cup \tilde{S}$ is a $d(D)$.
The following corollary is now clear.
Corollary 10.1 If D is a t-design, where t is even, such that $E=D(x) \cup \widetilde{D(x)}$ is an extension of D, then

$$
\left|d_{s}(D)\right| \leq\left|d_{s}(E)\right| .
$$

It should be noted that Lemma 10 and its Corollary do not necessarily apply in the case that t is odd, since it is conceivable that, whereas there may be several t-designs with the same parameters, not all of them are also ($t+1$)-designs, and so not all are extendable by complementation.

Lemma 11 If D_{1} and D_{2} are t-designs, where t is even, such that there exists a common extension, $E=D_{1}(x) \cup \widetilde{D_{1}(x)}=D_{2}(y) \cup \widetilde{D_{2}(y)}$, then $\left|d_{s}\left(D_{1}\right)\right|=\left|d_{s}\left(D_{2}\right)\right|$ and D_{1} and D_{2} have the same number of smallest defining sets.

Proof: Let S be a $d_{s}\left(D_{2}\right)$ and let D_{2} have an extension $E_{1}=D_{2}(y) \cup M$, such that $S(y) \cup \widetilde{S(y)} \subseteq E_{1}$. Then M is a t-design with the same parameters as $\widetilde{D_{2}(y)}\left(=\widetilde{D_{2}}\right)$.

Now S is a $d\left(D_{2}\right)$, so by Lemma $4, \widetilde{S(y)}(=\tilde{S})$ is a $d\left(\widetilde{D_{2}}\right)$. So, if $S(y) \cup \widetilde{S(y)} \subseteq E_{1}$, then $\widetilde{S(y)} \subseteq M$ and $M=\widetilde{D_{2}}$. Hence $E_{1}=E$ and $S(y) \cup \widetilde{S(y)}$ is a $d(E)$.

So, by Lemma $10,(S(y) \cup S(y))^{x}$ is a $d\left(D_{1}\right)$. But $\left|(S(y) \cup S(y))^{x}\right|=|S|$, so there is a $d\left(D_{1}\right)$ of the same size as the $d_{s}\left(D_{2}\right)$.

Similarly, there is a $d\left(D_{2}\right)$ of the same size as a $d_{s}\left(D_{1}\right)$.
Hence $\left|d_{s}\left(D_{1}\right)\right|=\left|d_{s}\left(D_{2}\right)\right|$.
Now any $d_{s}\left(D_{1}\right)$, say S_{1}, yields a unique set $\left(S_{1}(x) \cup \widetilde{S_{1}(x)}\right)^{y}$, which, by the above argument, is a $d_{s}\left(D_{2}\right)$. Similarly any $d_{s}\left(D_{2}\right)$ yields a unique $d_{s}\left(D_{1}\right)$.

Hence D_{1} and D_{2} have the same number of smallest defining sets.
Lemma 12 If D is a t-design, where t is even, such that $E=D(x) \cup \widetilde{D(x)}$ is the only extension of D, then $\left|d_{s}(D)\right|=\left|d_{s}(E)\right|$.

Proof: The result follows immediately from Corollary 9.1 and Corollary 10.1.
Lemma 13 If D is a t-design, where t is even, such that $E=D(x) \cup \widetilde{D(x)}$ is the only extension of D, and if there are precisely $n d_{s}(D)$ (each comprising q blocks) and precisely $m d_{s}(E)$, then

$$
n \leq m \leq 2^{q} n
$$

with the upper bound being attained if all designs with the same parameters as E are self-complementary.

Proof: Since $E=D(x) \cup \widetilde{D(x)}$ is the only extension of D, if S_{1} and S_{2} are $d_{s}(D)$, then by Lemma $9, S_{1}(x)$ and $S_{2}(x)$ are $d(E)$ and, by Lemma $12, d_{s}(E)$. Further, $S_{1}(x)=S_{2}(x)$ only if $S_{1}=S_{2}$. Hence, if there are precisely $n d_{s}(D)$ and precisely m $d_{s}(E)$, then $n \leq m$.

If S is a $d_{s}(D)$ and $|S|=q$, then there are 2^{q} sets S^{*} such that $S^{*} \cup \widetilde{S^{*}}=S(x) \cup \widetilde{S(x)}$; each such S^{*} contains exactly one block from each set $\{\mathbf{b}, \tilde{\mathbf{b}}\}$, where \mathbf{b} is any block of $S(x)$. There are $2^{q} \times n$ such sets arising from the $n d_{s}(D)$; no other set can be a $d_{s}(E)$, since if S^{\prime} is a $d_{s}(E)$, there is, by Lemmata 10 and 12 a $d_{s}(D)$, namely $S=\left(S^{\prime} \cup \widetilde{S^{\prime}}\right)^{x}$, such that $S^{\prime} \cup \widetilde{S^{\prime}}=S(x) \cup \widetilde{S(x)}$. Thus $m \leq 2^{q} \times n$.

If all designs with the parameters of E are self-complementary, then for any $d_{s}(D)$, S, if $S^{*} \cup \widetilde{S^{*}}=S(x) \cup \widetilde{S(x)}$ then S^{*} forces $\widetilde{S^{*}}, S \cup \widetilde{S^{*}}$ contains $S(x)$ and $S(x)$ is a $d(E)$. Hence each of the $2^{q} \times n$ such sets S^{*} is a $d_{s}(E)$.

3. The algorithm

Greenhill [10] [11] used Lemmata 1 to 4 and 6 above to construct an algorithm to determine all smallest defining sets of simple $S T F$ designs; the algorithm is implementable for small designs, but as the number of blocks and the block size increase, the computer time necessary to implement it in full becomes vast. For a given simple $S T F t-(v, k, \lambda)$ design, D, the steps in the algorithm are as follows.

STEP 1: Using Lemma 6, or otherwise, estimate a lower bound, l, on the number of blocks in any $d(D)$.

STEP 2: List any known minimal trades in D and use G_{D} to generate, if possible, more minimal trades.

STEP 3: Generate all subsets of l blocks of D and sort them into m isomorphism classes (under the symmetric group of all permutations on v elements). Take one representative of each isomorphism class; by Lemma 3, if the representative is a defining set, then all isomorphs of the representative under the action of G_{D} are also defining sets of D. If S_{i} is the representative of the i th isomorphism class, record n_{i} (the number of sets of l blocks in the isomorphism class) and $\left|G_{S_{i}}\right|$.

STEP 4: From the list ($S_{1}, S_{2}, \ldots, S_{m}$), eliminate any S_{i} for which either

$$
\text { (a) } n_{i} \times\left|G_{S_{i}}\right| \neq\left|G_{D}\right| \text { (using Lemma 2) or }
$$

(b) $S_{i} \cap T=\emptyset$ for any trade, T, in D (using Lemma 1).

If all S_{i} are eliminated, then there are no defining sets of size l. Hence the value of l should be increased by one and the algorithm restarted at STEP 3.

If any S_{i} remain, they are called feasible sets.
STEP 5: Determine all completions to $t-(v, k, \lambda)$ designs of each S_{i}. If any S_{i} completes uniquely, it is a $d(D)$; if the original value of l was determined using Lemma 6 , then S_{i} is a $d_{s}(D)$. If the original value of l was estimated by other means, the value of l should be decreased by one and the algorithm restarted at STEP 3.

If no S_{i} completes uniquely, then the different completions may be used to determine more trades. The value of l is increased by one and the algorithm restarted at STEP 2.

Whether the value of l has to be iteratively increased or decreased, both the size of a $d_{s}(\dot{D})$ and a complete list of $d_{s}(D)$ can be theoretically determined by the above algorithm.

Greenhill [10] gave computer programs which facilitate STEPS 2 to 5 above; in the program for STEP 3 she made use of the program nauty by McKay [14]. Delaney [4], [5] subsequently modified and improved Greenhill's programs and it is Delaney's versions (which still use nauty) which have been used here. The automation of the program for STEP 5, allowing for the input of sometimes several thousand sets of blocks for completion, is due to Sharry [15].

Completion of large numbers of feasible sets can use much computer time, especially for t-designs with $t \geq 3$. Lemma 5 provides an alternative to STEP 5 which can be much quicker; this is discussed in Section 6.

4. The 2-(9,4,3) and 3-(10,5,3) designs

There are exactly eleven non-isomorphic $2-(9,4,3)$ designs; these were enumerated and constructed by Stanton, Mullin and Bate [16] and independently by Gibbons [6] (by means of a computer algorithm) and by Breach [2]; the result was also claimed by van Lint, van Tilborg and Wiekama [17] though without specific details of the
constructions. Each design, by Lemma 7 above, has at least one extension (by complementation) to a $3-(10,5,3)$ design.

There are exactly seven non-isomorphic $3-(10,5,3)$ designs; these were also listed, with their relations to the $2-(9,4,3)$ designs, by Gibbons [6]. Breach [2], [3] produced an independent theoretical verification of these results, along with other useful properties of the designs. Breach's tabulation, which neatly shows the relations between the 2 -designs and the 3 -designs, will be used here.

Each block in a 2 - $(9,4,3)$ design either is disjoint from exactly one other block in the design or intersects exactly one other block in exactly three elements, but not both; Breach consequently called each pair of blocks disjoint or friendly. The designs below are tabulated in these pairs, with a space separating the fiendly pairs (above) from the disjoint pairs (below). The $2-(9,4,3)$ designs are grouped according to their common extensions to $3-(10,5,3)$ designs. In each case, the symbol used for the extension is that one missing from the set $\{0,1,2,3,4,5,6,7,8,9\}$ in the $2-(9,4,3)$ design. In the listing of the eleven $2-(9,4,3)$ designs in Tables $1,2,3,4$ and 5 , the block numbers, in bold type, precede the blocks in each case.

				1:	1247	10:	2478
1 :	0247	10:	3569	2 :	1259	11:	2569
2 :	0259	11:	3478	3:	1268	12:	2368
3:	0268	12:	4579	4	1346	13:	3469
4:	0346	13:	2578	5	1358	14:	3578
5 :	0358	14:	2469	6	1379	15:	2379
6:	0379	15:	4568	7:	1489	16:	4589
7:	0489	16:	2367	8:	1567	17:	4567
8 :	0567	17:	2389				
9 :	6789	18:	2345	9 9,	2345	18:	6789
M_{1}				M_{2}			

Table 1: The 2-(9,4,3) designs M_{1} and M_{2}
Designs M_{1} and M_{2}, listed in Table 1 , have a common extension by complementation, as do designs M_{3} and M_{4}, listed in Table 2. M_{1} is the only $2-(9,4,3)$ design comprising nine pairs of disjoint blocks.

Designs M_{5}, M_{6} and M_{7}, listed in Table 3 , all have a common extension by complementation.

Designs M_{8} and M_{9}, listed in Table 4, have a common extension by complementation, as do designs M_{10} and M_{11}, listed in Table 5. M_{11} is the only 2-($9,4,3$) design comprising nine pairs of friendly blocks; it can be developed from blocks 1 and 10 by cycling $(\bmod 9)$. Each of M_{8} and M_{9} contains four pairs of friendly blocks with a single element common to all eight blocks (the element 1 in M_{8} and the element 8 in M_{9}).

All eleven designs are simple and all except M_{8} are $S T F: M_{8}$ has the permutation (89) as an automorphism.

$\mathbf{1 :}$	1246	$\mathbf{1 0}:$	1268	$\mathbf{1}:$	0246	$\mathbf{1 0}:$	0268
$\mathbf{2}:$	1347	$\mathbf{1 1}:$	1379	$\mathbf{2}:$	0347	$\mathbf{1 1}:$	0379
$\mathbf{3 :}$	1489	$\mathbf{1 2}:$	4589	$\mathbf{3}:$	2578	$\mathbf{1 2}:$	4578
$\mathbf{4}:$	1358	$\mathbf{1 3}:$	3568	$\mathbf{4}:$	3569	$\mathbf{1 3}:$	4569
$\mathbf{5 :}$	1567	$\mathbf{1 4}:$	4567				
$\mathbf{6}:$	1259	$\mathbf{1 5}:$	2579	$\mathbf{5 :}$	0259	$\mathbf{1 4}:$	3468
$\mathbf{7}:$	2369	$\mathbf{1 6}:$	3469	$\mathbf{6}:$	0358	$\mathbf{1 5}:$	2479
$\mathbf{8}:$	2378	$\mathbf{1 7}:$	2478	$\mathbf{7 :}$	0489	$\mathbf{1 6}:$	2367
			$\mathbf{8}:$	0567	$\mathbf{1 7}:$	2389	
$\mathbf{9 :}$	2345	$\mathbf{1 8}:$	6789	$\mathbf{9 :}$	2345	$\mathbf{1 8}:$	6789
M_{3}				M_{4}			

Table 2: The 2-(9,4,3) designs M_{3} and M_{4}

$1:$	1236	10:	1268	1 :	0236	10:	0268	1 :	0158	10:	0189
2 :	1259	11:	2579	2 :	0347	11:	0379	2 :	0235	11:	1235
3 :	1347	12:	1379	3 :	0458	12:	0489	3:	0269	12:	0369
4:	1458	13:	1489	4.	2467	13:	2479	4:	1267	13:	1279
5 :	1567	14:	4567	5 :	2578	14:	3578	5	1368	14:	3678
6 :	2378	15:	2478	6 :	3569	15:	4569	6:	3579	15:	5789
7 :	2469	16:	3469								
8 :	3568	17 :	3589	7 :	0259	16:	3468	7 7	0137	16:	2568
				8	0567	17:	2389	8:	0278	17:	1569
9 :	2345	$18:$	6789	9	2345	18 :	6789	9	0567	18:	2389
M_{5}				M_{6}				M_{7}			

Table 3: The 2-(9,4,3) designs M_{5}, M_{6}, M_{7}

1 :	1238	10:	1239	1:	0148	10:	0158
2 :	1267	11:	1367	2 :	0678	11:	1678
3 :	1456	12:	1457	3:	2368	12:	2378
4:	1489	13:	1589	4.	2458	13:	3458
5 :	2468	14:	2469				
6 :	2578	15	2579	5 :	0123	14:	4567
7:	3478	16:	3479	6	0246	15:	1357
8 8	3568	17:	3569	7:	0257	16:	1346
				8:	0347	17:	1256
9 9:	2345	18:	6789	9 9:	0356	18:	1247
M_{8}				M_{9}			

Table 4: The 2-(9,4,3) designs M_{8} and M_{9}

$\mathbf{1}:$	1237	$\mathbf{1 0}:$	2367	$\mathbf{1}:$	0124	$\mathbf{1 0}:$	0146			
$\mathbf{2}:$	1249	$\mathbf{1 1 :}$	1469	$\mathbf{2 :}$	1235	$\mathbf{1 1}:$	1257			
$\mathbf{3 :}$	1389	$\mathbf{1 2}:$	3589	$\mathbf{3}:$	2346	$\mathbf{1 2}:$	2368			
$\mathbf{4}:$	1457	$\mathbf{1 3}:$	1578	$\mathbf{4}:$	3457	$\mathbf{1 3}:$	3470			
$\mathbf{5 :}$	2345	$\mathbf{1 4}:$	2458	$\mathbf{5}:$	4568	$\mathbf{1 4}:$	4581			
$\mathbf{6}:$	2569	$\mathbf{1 5}:$	5679	$\mathbf{6}:$	5670	$\mathbf{1 5}:$	5602			
$\mathbf{7}:$	3468	$\mathbf{1 6}:$	4678	$\mathbf{7}:$	6781	$\mathbf{1 6}:$	6713			
				$\mathbf{8}:$	7802	$\mathbf{1 7}:$	7824			
$\mathbf{8 :}$	1268	$\mathbf{1 7}:$	3479	$\mathbf{9}:$	8013	$\mathbf{1 8}:$	8035			
$\mathbf{9 :}$	1356	$\mathbf{1 8}:$	2789							
M_{10}							M_{11}			

Table 5: The 2-($9,4,3$) designs M_{10} and M_{11}
The orders of the automorphism groups of the eleven non-isomorphic 2-(9,4,3) designs together with their extensions to $3-(10,5,3)$ designs are given in Table 6; the blocks of the extensions are given in later tables.

Design (D)	$\left\|G_{D}\right\|$	Extensions
M_{1}	144	N_{1}, N_{1}^{*}, N_{2}
M_{2}	16	N_{2}
M_{3}	2	N_{3}
M_{4}	8	N_{3}
M_{5}	1	N_{4}
M_{6}	2	N_{4}
M_{7}	6	N_{4}
M_{8}	8	N_{6}
M_{9}	32	N_{5}, N_{6}
M_{10}	1	N_{7}
M_{11}	9	N_{7}

Table 6: Automorphism group orders and extensions of the 2-(9,4,3) designs
Breach [2] showed that only two types of blocks, classified according to their intersections with the other 35 blocks in the design, are possible in a $3-(10,5,3)$ design; these will be called Type I and Type II here. Breach referred to Type I blocks as blocks of type ($0,5,10,20,0$) and to Type II blocks as blocks of type ($1,1,16,16,1$); these ordered quintuples give the numbers of other blocks whose intersections with the block in question are $0,1,2,3,4$ elements respectively. The self-complementary $3-(10,5,3)$ designs clearly contain only blocks of Type II.

Breach also showed that there are three completions of $M_{1}(1)$ and two completions of $M_{9}(9)$ to 3-($10,5,3$) designs; the following information about these designs
is adapted from his listings. Each of the three sets of eighteen blocks, A, B and C, given in Table 7, combines with $M_{1}(1)$ to form a $3-(10,5,3)$ design. A, B and C are mutually disjoint. $M_{1}(1) \cup A$ and $M_{1}(1) \cup B$ are isomorphic; the design N_{1} is chosen here to be $M_{1}(1) \cup A$, while $M_{1}(1) \cup B$ is referred to in Table 6 as $N_{1}^{*} . N_{1}$ consists entirely of blocks of Type I. $M_{1}(1) \cup C$ is the extension by complementation of M_{1}, which is referred to here as N_{2}.

23479	24567	35689
24678	24789	34678
23480	23490	34579
24560	24580	25789
23570	23780	24679
27890	26790	24568
45780	34570	23567
46790	46780	23489
23690	23560	67890
34590	45690	24780
56890	57890	25690
24589	25689	23680
25679	23579	34690
36780	36890	35780
23568	23468	23790
34567	34679	45890
34689	34589	45670
35789	35678	23450
A	B	C

Table 7: Sets of blocks which combine with $M_{1}(1)$ to form 3 - $(10,5,3)$ designs
To facilitate consideration of the extensions of $M_{9}, M_{9}(9)$ is partitioned into two sets of blocks:
$G=\{1,2,3,4,5,10,11,12,13,14\}$ and $H=\{6,7,8,9,15,16,17,18\}$.
Now, let $F=\{12578,12468,13568,13478,03468,03578,02478,02568\}$.
It is noted that the application of either the permutation (23) or the permutation (67) to the elements of the blocks of \tilde{H} gives F. Then $G \cup \tilde{G} \cup H \cup \tilde{H}$ is N_{6}, the extension by complementation of M_{9}, while $G \cup \tilde{G} \cup H \cup F$ is the other extension of M_{9}, here called N_{5}. N_{5} comprises 20 blocks of Type II and 16 blocks of Type I.

The design $G \cup \tilde{G} \cup F \cup \tilde{F}$, although not an extension of M_{9} as written, is isomorphic to N_{6}, while $G \cup \tilde{G} \cup \tilde{F} \cup \tilde{H}$ is isomorphic to N_{5}.

In the listings of the seven non-isomorphic $3-(10,5,3)$ designs in Tables 8 and 9 , the block numbers, in bold type, precede the blocks in each case. The blocks are arranged so that the restriction on the common element in blocks $1-18$ in each case gives one of the $2-(9,4,3)$ designs.

1	10247	19:	23479	1 :	10247	19:	35689
2 :	10259	20:	24678	2 :	10259	20:	34678
3 :	10268	21 :	23480	3 .	10268	21:	34579
4 :	10346	22.	24560	4 :	10346	22 :	25789
5 :	10358	23:	23570	5 :	10358	23:	24679
6 :	10379	24:	27890	6 :	10379	24:	24568
7 :	10489	25:	45780	7 :	10489	25:	23567
8 :	10567	26:	46790	8 :	10567	26:	23489
9 9:	16789	27:	23690	9 :	16789	27:	02345
10:	13569	28:	34590	10:	13569	28:	02478
11:	13478	29 :	56890	11:	13478	29:	02569
12:	14579	30:	24589	12:	14579	30:	02368
13:	12578	31:	25679	13:	12578	31:	03469
14:	12469	32:	36780	14:	12469	32:	03578
15:	14568	33:	23568	15:	14568	33:	02379
16:	12367	34:	34567	16:	12367	34:	04589
17:	12389	35 :	34689	17:	12389	35:	04567
18:	12345	36:	35789	18:	12345	36:	06789
N_{1}				N_{2}			
1:	01489	19:	23567	$1:$	01489	19:	23567
2 :	06789	20 :	12345	2 .	06789	20:	12345
3 :	23689	21:	01457	3 :	23689	21:	01457
4 :	24589	22:	01367	4 :	24589	22:	01367
5.	01239	23 :	45678	5 :	01239	23 :	45678
6 :	02469	24:	13478	6 :	02469	24:	13578
7 :	02579	25:	13568	7 :	02579	25:	13468
8 :	03479	26:	12578	8 :	03479	26:	12568
9 :	03569	27:	12468	9 9:	03569	27:	12478
10:	01589	28 :	23467	10:	01589	28:	23467
11:	16789	29:	02345	11:	16789	29.	02345
12:	23789	30:	01456	12:	23789	30:	01456
13:	34589	31:	01267	13:	34589	31:	01267
14:	45679	32:	01238	14:	45679	32:	01238
15:	13579	33:	02478	15:	13579	33:	02468
16:	13469	34:	02568	16:	13469	34:	02578
17:	12569	35:	03468	17:	12569	$35:$	03478
18:	12479	36:	03578	18:	12479	36:	03568
N_{5}				N_{6}			

Table 8: The 3-(10,5,3) designs which are extensions of M_{1} and M_{9}

1:	01246	19:	35789	1.	01458	19	23679	1:	01249	19:	356789
2 .	01347	20:	25689	2 .	02345	20:	16789	2	12359	20:	04678
3 :	12578	21:	03469	3 :	02469	21:	13578	3 :	23469	21:	01578
4:	13569	22:	02478	4 :	12467	22.	03589	4 :	34579	22:	01268
5 :	01259	23:	34678	5 .	13468	23:	02579	5	45689	23:	01237
6 :	01358	24	24679	6	34579	24	01268	6 :	05679	24:	12348
7 :	01489	25:	23567	7 :	01347	25:	25689	7 :	16789	25:	02345
8	01567	26:	23489	8 :	02478	26:	13569	8 :	02789	26:	13456
9.	12345	27:	06789	9 :	04567	27:	12389	9 :	01389	27:	24567
10 :	01268	28:	34579	10:	01489	28:	23567	10:	01469	28:	23578
11:	01379	29:	24568	11	12345	$29:$	06789	11:	12579	29:	03468
12:	14578	30:	02369	12:	03469	30:	12578	12:	23689	30:	01457
13:	14569	31	02378	13:	12479	31:	03568	13:	03479	31 :	12568
14:	13468	32.	02579	14	34678	32:	01259	14:	14589	32:	02367
15:	12479	33:	03568	15:	45789	33:	01236	15:	02569	33:	13478
16:	12367	34	04589	16	24568	34:	01379	16:	13679	34:	02458
17:	12389	35:	04567	17:	14569	35:	02378	17:	24789	35:	01356
18:	16789	36:	02345	18:	23489	36:	01567	18:	03589	36:	12467
N_{3}				N_{4}				N_{7}			

Table 9: The 3-(10,5,3) designs N_{3}, N_{4}, N_{7}

Design (D)	$\left\|G_{D}\right\|$	Restrictions
N_{1}	720	$10 \times M_{1}$
N_{2}	144	$1 \times M_{1} ; 9 \times M_{2}$
N_{3}	16	$8 \times M_{3} ; 2 \times M_{4}$
N_{4}	6	$6 \times M_{5} ; 3 \times M_{6} ; 1 \times M_{7}$
N_{5}	320	$10 \times M_{9}$
N_{6}	64	$8 \times M_{8} ; 2 \times M_{9}$
N_{7}	9	$9 \times M_{10} ; 1 \times M_{11}$

Table 10: Automorphism group orders and restrictions of the 3-($10,5,3$) designs

The orders of the automorphism groups of the $3-(10,5,3)$ designs, together with their restrictions to 2-(9,4,3) designs, are given in Table 10; this information is given by Gibbons [6].

5. Smallest defining sets of the 2-(9,4,3) designs

In order to determine all smallest defining sets of each of the $2-(9,4,3)$ designs, it is strictly only necessary to determine those of one of each of the following sets of designs: $\left\{M_{1}, M_{2}\right\},\left\{M_{3}, M_{4}\right\},\left\{M_{5}, M_{6}, M_{7}\right\},\left\{M_{8}, M_{9}\right\},\left\{M_{10}, M_{11}\right\}$. All smallest defining sets of the other designs in each set can then be determined by the extension and restriction process described in the proof of Lemma 11. For checking purposes, however, the algorithm was used on all eleven designs.

Since there are no trades of volumes one, two, three or five in any t-design, for $t \geq 2$ (see Hwang [13]), all trades of volumes four or six were determined for each design. There are two possible structures of trades of volume four and ten structures of minimal trades of volume six in these designs. These structures are shown in Tables 11 and 12.

$a b c d$	$a b c e$	$a b c d$	$a b c e$
$a b e f$	$a b d f$	$a b e f$	$a b d f$
$a g c e$	$a g c d$	ghce	ghcd
$a g d f$	$a g e f$	ghdf	ghef

Table 11: The two types of trade of volume 4 in 2-(9,4,3) designs

$a b d e$	$a b d f$	$a b c d$	$a b c e$	$a c d e$	$a c d h$	$a c d e$	$a c d f$	$a c d e$	$a c d g$
$a b f g$	$a b e h$	$a b e f$	$a b d g$	$a c f g$	$a c f i$	$a c f g$	$a c e h$	$a c f g$	$a c h i$
$a b h i$	$a b g i$	$a b g h$	$a b f h$	$a d h i$	$a d e g$	$a d e h$	$a d e g$	$a d h i$	$a d e f$
$a c d f$	$a c d e$	$c d e g$	$c d e f$	$b c d h$	$b c d e$	$b c d f$	$b c d e$	$b c d g$	$b c d e$
$a c e h$	$a c f g$	$c e f h$	$c d g h$	$b c f i$	$b c f g$	$b c e h$	$b c f g$	$b c h i$	$b c f g$
$a c g i$	$a c h i$	$d f g h$	$e f g h$	$b d e g$	$b d h i$	$b d e g$	$b d e h$	$b d e f$	$b d h i$
$a c d e$	$a c d g$	$a c d e$	$a c d h$	$a c d e$	$a c e h$	$a c d e$	$a c d h$	$a c d e$	$a c d h$
$a c d f$	$a c e f$	$a c f g$	$a c e f$	$a c d f$	$a c d g$	$a c f g$	$a c e f$	$a c f g$	$a c e f$
$a e g h$	$a d e h$	$a d f h$	$a d f g$	$a g h i$	$a d f i$	$a d f h$	$a d f g$	$a d h i$	$a d g i$
$b c f g$	$b c d f$	$b c d h$	$b c d e$	$b c d g$	$b c d e$	$b c e h$	$b c e g$	$b c d h$	$b c d e$
$b d g h$	$b e g h$	$b c e f$	$b c f g$	$b c e h$	$b c d f$	$b d g h$	$b d e h$	$b c e f$	$b c f g$
$b e f h$	$b f g h$	$b d f g$	$b d f h$	$b d f$	$b g h i$	$b e f g$	$b f g h$	$b d g i$	$b d h i$

Table 12: The 10 types of minimal trade of volume six in 2-($9,4,3$) designs
All isomorphs of these structures were selected from the lists of all 4 -sets and 6 -sets of blocks for each design. Each of designs M_{8} and M_{9} contains eight trades of volume
four and no trades of volume six. Each of the other nine designs contains 18 trades of volume four and 36 minimal trades of volume six. The intuitive expectation, then, is that since smallest defining sets of M_{8} and M_{9} need to intersect fewer small trades, they will be smaller than the smallest defining sets of the other nine designs.

For each design except M_{8} (which is not $S T F$), Lemma 6 gives a lower bound of four on the size of the smallest defining sets. Hence the starting value of l in the application of the algorithm to design M_{1} was four; there were, however, no feasible sets (given the 54 trades mentioned above) of size seven or less. The starting value of l in the application of the algorithm to designs $M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}, M_{10}$ and M_{11} was consequently taken to be seven; while there were feasible sets of seven blocks for most of these designs, none of them was a defining set. In Table $13, n_{7}$ denotes the number of isomorphism classes of 7 -sets of blocks and f_{7} the number of feasible 7 -sets of blocks, given the 54 trades found for each design; n_{8} denotes the number of isomorphism classes of 8 -sets of blocks, f_{8} the number of feasible 8 -sets of blocks, d_{8} the number of isomorphism classes of defining sets of eight blocks and Δ_{8} the total number of defining sets of eight blocks.

Design	n_{7}	f_{7}	n_{8}	f_{8}	d_{8}	Δ_{8}
M_{1}	264	0	360	30	25	3276
M_{2}	2036	0	2862	248	209	3276
M_{3}	10519	48	19463	1992	1644	3276
M_{4}	3416	12	5367	506	417	3276
M_{5}	14030	130	32741	4100	3222	3222
M_{6}	9846	72	18789	2071	1617	3222
M_{7}	4730	26	7173	693	539	3222
M_{10}	14217	174	32903	4182	3204	3204
M_{11}	3188	18	4764	446	356	3204

Table 13: Summary of algorithm output for nine of the 2-(9,4,3) designs
For design M_{9}, the starting value of l in the application of the algorithm was taken to be four. There were no feasible sets of four blocks and just seven feasible sets of five blocks, given the eight trades of volume four; none of the feasible sets of five blocks has a unique completion to a $2-(9,4,3)$ design. There were 113 feasible sets of six blocks given the eight trades of volume four but completion from six blocks proved very time-consuming, so 122 further trades of volume eight were derived from some early completions. These trades reduced the number of feasible sets to 36 , just six of which have unique completions to M_{9}. Although M_{8} is not $S T F$, the algorithm was applied to it with the knowledge that $\left|d_{s}\left(M_{8}\right)\right|=6$, by Lemma 11. Given the eight trades of volume four, there were 32 feasible sets of five blocks, none of which has a unique completion, and 461 feasible sets of six blocks. When 272 trades of volume eight were taken into account, there were 90 feasible sets of 6 blocks, 23 of which completed uniquely to M_{8}. It is of interest that M_{8} behaved just the same as the $S T F$ designs in the application of the algorithm. In Table $14, n_{5}$ denotes the number
of isomorphism classes of 5 -sets of blocks and f_{5} the number of feasible 5 -sets of blocks, given the eight trades of volume four found for each design. Similarly, n_{6} denotes the number of isomorphism classes of 6 -sets of blocks, f_{6} the number of feasible sets of blocks given just the trades of volume four, f_{6}^{*} the number of feasible sets of 6 -sets of blocks given also the trades of volume eight, d_{6} the number of isomorphism classes of defining sets of six blocks and Δ_{6} the total number of defining sets of six blocks.

Design	n_{5}	f_{5}	n_{6}	f_{6}	f_{6}^{*}	d_{6}	Δ_{6}
M_{8}	376	32	1393	461	90	23	80
M_{9}	222	7	590	113	36	6	80

Table 14: Summary of algorithm output for M_{8} and M_{9}
In previous computations of sizes of smallest defining sets for classes of designs with the same parameters (see [7], [9], [10], [11], [12]), the size of the smallest defining set has been non-decreasing as the size of the automorphism group of the design increases. The existence of smallest defining sets of six blocks for M_{8} and M_{9} shows, however, that this does not always apply, since there are several $2-(9,4,3)$ designs with smaller automorphism groups but larger smallest defining sets than M_{8} and M_{9}. There does, however, seem to be a relationship between the number of small trades in a design and the size of the smallest defining sets.

In Tables 15-18 which follow, the smallest defining sets of the $2-(9,4,3)$ designs are classified according to the orders of their automorphism groups. For each group order, the number of isomorphism classes of defining sets with that group order (n_{c}) and the number of defining sets in each isomorphism class (n_{i}) are also given. Hence the sum of the entries n_{c} in the table for each design is the number of non-isomorphic smallest defining sets for that design, while the sum of the products, $n_{i} \times n_{c}$ for each group order, is the total number of smallest defining sets for the relevant design. For each group order, examples of defining sets are given, sufficient to show the diversity of structures, with respect to the numbers of pairs of friendly blocks ($n_{f p}$) and pairs of disjoint blocks ($n_{d p}$) contained in the defining sets.

The results of this section are summarized in the following theorem.

Theorem 1 The 2-(9,4,3) designs $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}, M_{10}$ and M_{11} have smallest defining sets of eight blocks. The remaining two $2-(9,4,3)$ designs, M_{8} and M_{9}, have smallest defining sets of six blocks.

Table 15: Some smallest defining sets of M_{1}, M_{2}, M_{3} and M_{4}

Design (D)	$\left\|G_{S}\right\|$	$n_{f p}$	$n_{d p}$	example of $d_{s}(D)$							n_{i}	n_{c}
M_{5}	1	4 4 3 2 1 0 3 2 1 1 0	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 4 \\ 1 & 2 & 5 \\ 1 & 2 & 5 \\ 1 & 2 & 5 \\ 1 & 2 & 9\end{array}$		5 4 4 4 7 9 8 9 12	10 7 5 7 8 10 9 11 13	11 11 10 8 12 11 10 12 16	$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 13 \\ & 14 \\ & 14 \\ & 14 \\ & 17 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 16 \\ & 16 \\ & 15 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	1	3222
	2	$\begin{aligned} & \hline 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{array}{ll} \hline 1 & 2 \\ 1 & 7 \end{array}$	$\begin{aligned} & 3 \\ & 8 \end{aligned}$	$\begin{aligned} & 4 \\ & 9 \end{aligned}$	$\begin{gathered} 5 \\ 11 \end{gathered}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	1	12
M_{6}	1	4 3 2 1 0 3 2 1 0 2 1 0 1 0	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{lll}1 & 2 & 4 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 4 \\ 1 & 2 & 4 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 7 \\ 1 & 2 & 5 \\ 1 & 2 & 5 \\ 1 & 7 & 8 \\ 1 & 5 & 7\end{array}$	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 7 \\ & 5 \\ & 5 \\ & 8 \\ & 7 \end{aligned}$	6 4 4 5 5 7 5 5 5 8 7 6 9	10 6 5 5 8 8 10 7 6 6 10 8 7 10 9	11 10 6 12 12 11 12 8 8 11 10 8 16 16	13 11 10 15 15 13 14 11 13 16 16 16 17 17	$\begin{aligned} & 15 \\ & 13 \\ & 11 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 18 \\ & 18 \end{aligned}$	2	1605
	2	2	0	12	4	5	11	14	16	17	3	4
M_{7}	1	4 3 2 1 0 3 2 1 0 2 1 0	0 0 0 0 0 1 1 1 1 2 2 2	$\begin{array}{ll}1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2\end{array}$	3 3 3 3 3 3 3 3 3 7 5	5 4 4 4 6 7 5 5 5 8 7 7	10 10 5 5 8 10 7 6 8 10 8 8	11 11 10 6 13 11 10 7 9 11 11	12 12 11 12 14 12 11 11 16 16 16 16	14 16 16 16 16 16 16 16 16 17 17 17	6	535

Table 16: Some smallest defining sets of M_{5}, M_{6} and M_{7}

Design (D)	$\left\|G_{S}\right\|$	$n_{f p}$	$n_{d p}$		exa	mpl	e of	$d_{s}(D)$		n_{i}	n_{c}
M_{8}	4	2	0	2	5	6	14	15	18	2	6
	2	3	0	1	2	5	10	11	14	4	17
		2	0	2	3	5	7	14	16		
		1	0	2	3	4	5	14	18		
		2	1	1	5	9	10	14	18		
M_{9}	4	2	1	1	3	6	10	12	15	8	2
		0	2	1	3	8	9	17	18		
	2	2	1	1	2	6	10	11	15	16	4
		0	1	1	2	3	4	8	17		
		1	2		5	6	10	14	15		
		0	2		2	6	8	15	17		

Table 17: Some smallest defining sets of M_{8} and M_{9}

Design (D)	$\left\|G_{S}\right\|$	$n_{f p}$	$n_{d p}$				xampl	le of	$d_{s}(D)$			n_{i}	n_{c}
M_{10}	1	碞	0		2	3	5	10	11	12	14	1	3204
		3	0		12	3	4	5	10	12	13		
		2	0		2	3	4	5	7	13	16		
		1	0		12	3	4	5	9	10	16		
		0	0		12	4	5	6	8	9	16		
		3	1		12	4	9	10	11	13	18		
		2	1		12	3	4	9	12	13	18		
		1	1		12	3	4	5	8	13	17		
		0	1		12	3	5	6	8	9	17		
		2	2		14	8	9	10	13	17	18		
		1	2		12	3	8	9	10	17	18		
		0	2		12	3	4	8	9	17	18		
M_{11}	1	4	0		12	3	4	10	11	12	13	9	356
		3	0		12	3	4	6	10	12	13	9	
		2	0		12	3	4	5	7	11	14		
		1	0		12	3	4	5	7	8	11		
		0	0		12	4	5	7	12	15	17		

Table 18: Some smallest defining sets of M_{10} and M_{11}

6. Smallest defining sets of the $3-(10,5,3)$ designs

The total numbers of smallest defining sets of each of the 3 -($10,5,3$) designs are now determined. The five self-complementary $3-(10,5,3)$ designs, $N_{2}, N_{3}, N_{4}, N_{6}$ and N_{7}, are considered first. Because they are extensions by complementation and they are the only extensions of the $2-(9,4,3)$ designs $M_{2}, M_{4}, M_{7}, M_{8}$ and M_{11}, respectively, these $3-(10,5,3)$ designs can be said, by Lemma 12 , to have smallest defining sets of the same cardinality as those of their restrictions.

By Lemma 9, smallest defining sets of these self-complementary 3-designs can be formed by adding the appropriate extra element to each block of the smallest defining sets of the restrictions which have unique extensions. By the proof of Lemma 13, any other smallest defining set of one of these 3 -designs must be formed by replacing one or more blocks of one of these established smallest defining sets by their complements.

Given two isomorphic defining sets, the replacement of corresponding blocks in each by their complements yields two sets of blocks which are also isomorphic. Hence, in searching for smallest defining sets of the 3 -designs, it is sufficient to consider all 2^{s} sets of s blocks arising from the representatives of the isomorphism classes of smallest defining sets of the $2-(9,4,3)$ designs. Clearly, it is more efficient to use the restriction which has the fewest isomorphism classes of smallest defining sets.

Hence the representatives of the isomorphism classes of smallest defining sets (augmented by the appropriate extra element) of 2-(9,4,3) designs $M_{1}, M_{4}, M_{7}, M_{9}$ and M_{11} were used as the original sets in searching for smallest defining sets of the 3$(10,5,3)$ designs $N_{2}, N_{3}, N_{4}, N_{6}$ and N_{7} respectively. Now, let S be a smallest defining set of the $2-(9,4,3)$ design M_{i}, whose extension by complementation is N_{j}. Let C be a set of blocks formed from the set $S(x)$ by replacing some blocks by their complements. Then $C \cup \tilde{C}=S(x) \cup \widetilde{S(x)}$. But $S(x) \cup \widetilde{S(x)}$ cannot be contained in any other self-complementary $3-(10,5,3)$ design because it contains $S(x)$, whose restriction on x is a defining set of M_{i}, which extends by complementation uniquely. If either N_{1} or N_{5} contains a subset of blocks isomorphic to C, then C cannot be a defining set of N_{j}; if neither N_{1} nor N_{5} contains such a subset, then C must be a smallest defining set of N_{j}.

The algorithm used for finding all smallest defining sets of a self-complementary 3 - $(10,5,3)$ design is, therefore, as follows.

STEP A. For the restriction which has the fewest isomorphism classes of smallest defining sets, take one representative of each isomorphism class.

STEP B. If S is a smallest defining set (of size q) of the restriction, form all 2^{q} sets of q blocks containing exactly one of each complementary pair of blocks in $S(x) \cup \widetilde{S(x)}$.

STEP C. Obtain the nauty signature of each such q-set of blocks; also obtain the nauty signatures of each non-isomorphic q-subset of blocks of N_{1} and N_{5}.

STEP D. Compare the lists of signatures. If a set, C, of blocks in the selfcomplementary design, for which $C \cup \tilde{C}=S(x) \cup \widetilde{S(x)}$, has a signature which does not occur in the relevant signature lists of N_{1} or N_{5}, then C has no isomorph in either of those designs, so is a smallest defining set of the self-complementary design.

STEP E. If C 's signature occurs in the signature lists of either N_{1} or N_{5}, an isomorphism check is done. If C has an isomorph in either N_{1} or N_{5}, it is not a defining set; otherwise it is a smallest defining set.

The numbers of smallest defining sets of the self-complementary 3 - $(10,5,3)$ designs, as found by the above algorithm, are given in Table 19. The smallest defining sets of N_{6} comprise six blocks, since it is the only extension of M_{8}, whose smallest defining sets have six blocks. The smallest defining sets of the other four self-complementary 3$(10,5,3)$ designs comprise eight blocks, as do those of their restrictions. A comparison of the numbers of smallest defining sets of the $2-(9,4,3)$ designs, as given in Tables 13 and 14 , with the numbers of smallest defining sets of their self-complementary extensions, as given in Table 19, shows that STEP E eliminated a small proportion (less than 1%) of potential defining sets in each of the cases N_{2}, N_{3}, N_{4} and N_{7}, but almost 40% of such sets in the case of N_{6}.

The cases of N_{2} and N_{6} merit further comment. It is clear that, if S is a defining set of M_{1}, then $S(1)$ is not a defining set of N_{2}, since M_{1} has three extensions. Also, since Breach [3] showed that \widetilde{N}_{1} is isomorphic to $N_{1}, \widetilde{S(1)}$ cannot be a defining set of N_{2}. The application of STEP E shows that for each representative, S, of an isomorphism class of smallest defining sets of M_{1}, all of the remaining 254 sets S^{\prime}, such that $S^{\prime} \cup \widetilde{S^{\prime}}=S(1) \cup \widetilde{S(1)}$, are defining sets of N_{2}, since none of them occurs in any isomorph of N_{1} or N_{5}.

Similarly, if S is a defining set of M_{9}, then $S(9)$ is not a defining set of N_{6}, since M_{9} has two extensions; neither is $\widetilde{S(9)}$ a defining set of N_{6} since $\widetilde{S(9)} \subseteq \widetilde{N}_{5}=$ $G \cup \tilde{G} \cup \tilde{H} \cup \tilde{F}$, which, as was mentioned earlier, is isomorphic to N_{5}. Further, each of the smallest defining sets of M_{9}, augmented by the element 9 , can be partitioned into a subset of G and a subset of H. Any set S^{\prime} for which $S^{\prime} \cup \widetilde{S^{\prime}}=S(9) \cup \widetilde{S(9)}$, where S is a defining set of M_{9} and for which $S^{\prime} \subset G \cup \tilde{G} \cup H$ or $S^{\prime} \subset G \cup \tilde{G} \cup \tilde{H}$ cannot be a defining set of N_{6} since both complete to more than one design. The application of STEP E shows that any such S^{\prime} which intersects both H and \tilde{H} is a defining set of N_{6}.

Design (D)	$\left\|d_{s}(D)\right\|$	Number of $d_{s}(D)$
N_{2}	8	832104
N_{3}	8	837616
N_{4}	8	824744
N_{6}	6	3136
N_{7}	8	820156

Table 19: Size and number of smallest defining sets of the self-complementary $3-(10,5,3)$ designs

The smallest defining sets of N_{1} and N_{5} were found by means of an adaptation of the algorithm described in Section 3. Since the completion of feasible sets to all possible $3-(10,5,3)$ designs is very time consuming whether done by hand or by computer, the following step, which uses Lemma 5, was substituted.

STEP 5: Given a feasible set of l blocks, the nauty signature of that set is determined. A list of signatures of all l-subsets of blocks for each other 3 - $(10,5,3)$ design is determined. If the signature of a feasible l-set does not occur in the list of l-subset signatures for any other $3-(10,5,3)$ design, then there is no subset of blocks isomorphic to this feasible set in any of the other designs. Hence, by Lemma 5, the feasible set is a smallest defining set. If signatures match, an isomorphism check is carried out; verification of the existence of an isomorph in another 3-($10,5,3$) design discounts the feasible set as a defining set.

This adaptation of Greenhill's algorithm was used by Gray and Street [9] in determining the smallest defining sets of the $2-(15,7,3)$ designs.

Taking $N_{1}=M_{1}(1) \cup A$, it is easy to see that A is a trade, since $M_{1}(1) \cup B$ is also a $3-(10,5,3)$ design. Breach [3] showed that $M_{1}(1)$ is also a trade. Using only these two trades, the algorithm applied to finding smallest defining sets of N_{1} yields 99 non-isomorphic 5 -sets of blocks as feasible sets. But STEP 5 shows that each of these 5 -sets is isomorphic to a 5 -set of blocks in N_{7}; hence there are no defining sets of just five blocks for N_{1}. The algorithm then yields 1643 non-isomorphic 6 -sets of blocks of N_{1} as feasible sets. All except 344 of these are isomorphic to 6 -sets of blocks occuring in at least one other 3 - $(10,5,3)$ design. Hence, by Lemma 5, there are 344 non-isomorphic smallest defining sets of six blocks for N_{1}; the information in Table 20 shows that the total number of smallest defining sets of N_{1} is 243600 .

$\left\|G_{S}\right\|$	example of $d_{s}\left(N_{1}\right)$					n_{i}	\boldsymbol{n}_{c}	
3	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{1 6}$	$\mathbf{3 1}$	$\mathbf{3 3}$	240	1
2	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{1 0}$	$\mathbf{2 7}$	$\mathbf{3 6}$	360	10
1	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{9}$	$\mathbf{3 4}$	720	333

Table 20: Some smallest defining sets of N_{1}

Table 9 shows that N_{5} and N_{6} intersect in 28 blocks; the remaining eight blocks of N_{5}, which are the eight Type II blocks containing the element 0 , therefore constitute a trade of volume eight. Since the automorphism group of N_{5} was shown by Breach [3] to be transitive, any set of eight blocks of Type II with a single common element must also constitute a trade in N_{5}.

Given these ten trades, there are 26 feasible sets of five blocks in N_{5}; each set has, however, an isomorph in N_{1}, so none is a defining set. There are 851 feasible sets of

SIX blocks; each of these sets contains a subset of three blocks, one of which intersects the other two in exactly one element and is hence a Type II block. Since none of the self-complementary designs contains any Type II blocks, it is sufficient to check for the occurrence of isomorphs of the feasible sets in design N_{1}. This check reveals that there are, up to isomorphism, 638 smallest defining sets of six blocks and altogether 200640 smallest defining sets for design N_{5}; these results are summarized in Table 21.

$\left\|G_{S}\right\|$	example of $d_{s}\left(N_{5}\right)$					n_{i}	n_{c}	
2	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1 4}$	$\mathbf{2 5}$	$\mathbf{3 1}$	160	22
1	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1 3}$	$\mathbf{1 7}$	$\mathbf{2 5}$	320	616

Table 21: Some smallest defining sets of N_{5}

As with the 2-(9,4,3) designs, the sizes of the smallest defining sets of the $3-(10,5,3)$ designs cannot be seen to bear any direct relation to the orders of the automorphism groups of the designs. Designs N_{2}, N_{3}, N_{4} and N_{7} all have smaller automorphism groups but larger smallest defining sets than either N_{1} or N_{5}; on the other hand, N_{2} has a larger automorphism group and larger smallest defining sets than N_{6}.

The results of this section are summarized in the following Theorem.
Theorem 2 The $3-(10,5,3)$ designs N_{2}, N_{3}, N_{4} and N_{7} have smallest defining sets of eight blocks each, while the remaining $3-(10,5,3)$ designs, N_{1}, N_{5} and N_{6} have smallest defining sets of six blocks.

Finally, a case is noted in which the strict inequality of Corollary 9.1 holds. The $3-(10,5,3)$ design, N_{1}, was shown by Breach [3] to have exactly one extension, to the unique 4-(11,6,3) design. So, by Lemma 9 , since there are defining sets of six blocks for N_{1}, there are also defining sets of six blocks for the 4-(11,6,3) design.

But Greenhill $[10]$ showed that the unique $4-(11,5,1)$ design has a smallest defining set of 5 blocks. Hence, by Lemma 4, the complementary design, which is the 4-($11,6,3$) design, also has a smallest defining set of five blocks.

Acknowledgements Thanks are due to my supervisor, Professor Anne Penfold Street, for many valuable suggestions and comments which facilitated the production of this paper. Helpful discussions were also held with Dr Martin Sharry, Cathy Delaney and Catherine Greenhill. My research has been supported by a Postgraduate Research Scholarship from The University of Queensland.

References

[1] W.O.Alltop, An infinite class of 5-designs, Journal of Combinatorial Theory Series A 12 (1972), 390-395.
[2] D.R.Breach, The 2- $(9,4,3)$ and $3-(10,5,3)$ Designs, Research Report CORR 7711 (1977), Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ont., Canada.
[3] D.R.Breach, The 2- $(9,4,3)$ and 3-($10,5,3$) designs, Journal of Combinatorial Theory, Series A 27 (1979), 50-73.
[4] Cathy Delaney, User Manual - Complete, Department of Mathematics, The University of Queensland, 1993.
[5] Cathy Delaney, Instructions for semi-automatic execution of Catherine Greenhill's algorithm for finding smallest defining sets, Department of Mathematics, The University of Queensland, 1993.
[6] P.Gibbons, Computing techniques for the construction and analysis of block designs, Department of Computer Science, University of Toronto, Technical Report 92/76, 1976.
[7] Ken Gray, On the minimum number of blocks defining a design, Bulletin of the Australian Mathematics Society 41 (1990), 97-112.
[8] Ken Gray, Defining sets of single-transposition-free designs, Utilitas Mathematica 38 (1990), 97-103.
[9] Ken Gray and Anne Penfold Street, Smallest defining sets of the five nonisomorphic $2-(15,7,3)$ designs, Bulletin of the Institute of Combinatorics and its Applications 9 (1993), 96-102.
[10] Catherine S. Greenhill, An algorithm for finding smallest defining sets of t designs, M.Sc. Thesis, The University of Queensland, 1993.
[11] Catherine S. Greenhill, An algorithm for finding smallest defining sets of t designs, Journal of Combinatorial Mathematics and Combinatorial Computing 14 (1993), 39-60.
[12] Catherine S. Greenhill and Anne Penfold Street, Smallest defining sets of some small t-designs and relations to the Petersen graph, submitted.
[13] H.L. Hwang, On the structure of (v, k, t) trades, Journal of Statistical Planning and Inference 13 (1986), 171-191.
[14] B.D. McKay, nauty User's Guide (Version 1.5), Australian National University Computer Science Technical Report TR-CS-90-02, 1990.
[15] M.J.Sharry, private communication (1992).
[16] R.G. Stanton, R.C.Mullin and J.A.Bate, Isomorphism classes of a set of prime BIBD parameters, Ars Combinatoria 2 (1976), 251-264.
[17] J.H.van Lint, H.C.A. van Tilborg and J.R.Wiekma, Block designs with $v=10$, $k=5, \lambda=4$, Journal of Combinatorial Theory Series A 23 (1977), 105-115.

