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Abstract

By using the (generalized) Goethals—Seidel array, we construct Hadamard
matrices of skew type of order 4n for n = 81,103,151,169, and 463.
Hadamard matrices of skew type for these orders are constructed here for
the first time. Consequently the list of odd integers n < 300 for which no
Hadamard matrix of skew type of order 4n is presently known is reduced
to 45 numbers (see the comments after the statement of Theorem 1).

1 Introduction

Let G be a finite abelian group of order n. For § C G and a € G let v(S,a) be
the number of ordered pairs (z,y) € S x S such that  — y = a. We say that
subsets 51,..., Sk C G are supplementary difference sets (abbreviated as $DS ) with
parameters (n;ny, ..., ng; A) if [Si| = n; for all 7 and

iu(.‘};,a} =1}, VeeG\{0}.

=1

We are especially interested in supplementary difference sets Sy, 53, S5, Sy whose
parameters (n;ni,nz,na, n4; A) satisfy the condition

n+A=mn;+ny +ns+ng. (1)

Such SDS’s give rise to Hadamard matrices M of order 4n.

In order to explain the construction of M we need some more notations (see also
[7, Theorem 7.2] or [8]). Given any subset S C G, let Ag be the matrix of order n
whose rows and columns are indexed by elements of ¢ and whose (z,y)-entry is —1
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ify—z €5, and +1 otherwise. For the sake of simplicity let us write A; for Ag,. If
S1,..., 54 are (n;ny,...,n4; A)-SDS such that (1) holds, then it is easy to check that

4
3 AAT = dnl, (2)

1=1

where the superscript T' denotes the transposition of matrices. Let J be the matrix
of order n all of whose entries are 1. By pre-multiplying and post-multiplying (2) by
J we obtain

z_:(n —2n;)? = 4n. (3)

In practice, (3) is used to find, for a given n, the possible parameters n;.

Let R be the matrix of order n whose (z,y)-entry is 1 if z +y = 0, and 0
otherwise. Thus R = (6, _,), where é,, = 1 if z = y and 0 otherwise. It is easy to
see that R* = I,, and RT = R. Then the desired Hadamard matrix M is given by
the following formula :

Ay AsR AR A4R
~A,R A, -ATR AIR .
AR ATR A, —ATR |- (4)
~AsR -ATR AIR A,

This construction was discovered by Goethals and Seidel in the case when G is cyclic
(see [6]). For the generalization to arbitrary finite abelian groups see [8]. We shall
refer to the array (4) as the (generalized) GS-array.

The GS-array is also a very powerful tool for constructing Hadamard matrices
of skew type. Let us say that a subset S C G is of skew type if SN (—S) = 0 and
SU(=8) =G\ {0}. Clearly such S exists iff n is odd.

Now assume that n is odd, that 51,53, 53,5, C G are SDS whose parameters
satisfy (1), and that S, is of skew type. Then the Hadamard matrix M given by
(4) is of skew type. This follows from the observation that each of the matrices A;R
and ATR (i = 2,3,4) is symmetric, while A; — I,, is skew symmetric. In order to
verify the former assertion, let A = (a.,) be any matrix satisfying aui, 41z = Goy
for all z,y,2 € G. (All the matrices Ag, S C G, satisfy this condition.) Then the
(@, z)-entry of AR is

Z aw,yay,—z = OQg,—z = Og42,0,
yeG

which is obviously symmetric in ¢ and 2. Similarly, RA is symmetric, i.e., RA =
ATR.

We have used this method successfully to construct Hadamard matrices of skew
type of order 4n for prime n = 37, 43, 67, 113, 127, 157, 163, 181, and 241, see [1]
and [2], and for composite n = 39, 49, 65, 93, 121, 129, 133, 217, 219, and 267 in
[3]. In all these cases G was a cyclic group of order n. When n is big, say n > 35,
the search for required SDS’s is beyond the power of the machines available to us.
Consequently, in practically all cases we had to restrict the search for the S;’s to
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some special class of subsets. For a brief description of our method of computation
see our recent article [5].

We use this opportunity to correct three misprints in {3]. The number 16 should
be deleted from Jy of case (h) on p. 52. The quadruple Jy, J3,J3, J4 just above the
quadruple ({) on p. 57 should carry the label (k). The integer 24 in the bottom line
of p. 57 should be replaced by 25.

2 Some new supplementary difference sets

We state our main result.

Theorem 1. There exists Hadamard matrices of skew type of order 4n for
n = 81, 103, 151, 169 and 463.

For the list of Hadamard matrices of skew type of order 4n, n < 1000, see [7].
By taking into account all known facts, the above theorem implies that the list of
odd integers n < 300, for which no Hadamard matrix of skew type of order 4n is
presently known, is now reduced to the following list of 45 integers :

n= 47,59,69,89,97,101,107,109,119,145,149,153,167,177,179,191,
193, 201, 205, 209, 213, 223, 225, 229, 233, 235, 239, 245, 247, 249, 251,
253, 257, 259, 261, 265, 269, 275, 277, 283, 285, 287, 289, 295, 299.

As explained in Section 1, Theorem 1 is a consequence of the following existence

result for supplementary difference sets.

Theorem 2. An elementary abelian group G of order n = 81, 103, 151, 169 or
463 contains supplementary difference sets Sy, Sa, Sz, Ss, with Sy of skew type, and
with parameters (n;ny,ny, n3,na; A) given in Table 1 below.

Table 1

n ny nNg N3 Ny A
81 | 40 35 35 45 | T4
103 51 51 57 60 | 116
151 75 65 80 80 | 149
169 | 84 77 77T 77 | 146
463 | 231 231 231 210 | 440

We shall now give explicit construction of the required SDS’s. The five cases will
be treated separately. In each case, G will be the additive group of a Galois field F'
of order n = p*, H will be a subgroup of F*, the order of H will be odd, and so the
index [F* : H] will be even, say 2s. We enumerate the 2s cosets o;, 0 < 7 < 2s, of
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H so that apg = H and a1 = —ay; for 0 <1 < s. It suffices to list only the even
cosets a,;. Bach S; (2 =1,2,3,4) will be of the form

S.‘ = U [67]
for some index set J; C {0,1,...,2s — 1}. Instead of listing the sets S; we shall only
list their index sets J;. Unless stated otherwise, the set §; will be always of skew
type. This is easy to verify by checking that for each 7, 0 < 7 < s, exactly one of the
integers 2¢ and 2: + 1 belongs to Jj.

Case n = 81 : We construct the Galois field F' of order 81 = 3* by adjoining to
Z3 a root z of the polynomial t* — ¢* — 1 (which is irreducible and primitive over
Z3). Thus F = Z3[z] where z* = 1 4+ 2% The group F* = (z) is cyclic of order 80.
Let H = (z'®) be its subgroup of order 5. We enumerate the 16 cosets of H in F*
as follows : ay; = =" H and appq = —o*H for 0 <1 < 8.

We have found seven non-equivalent SDS’s 53,5, S3, S4, with S; of skew type,
having parameters (81; 40, 35, 35, 45; 74), but we shall only list two of them :

(a) Ji={1,2,4,6,8,10,12,14}, J, ={1,2,3,4,10,11,13},
Js = {4,5,6,8,12,13,14},  J, = {2,4,5,6,7,11,12,13,15};

() Ju ={0,2,5,7,8,11,13,14}, J, ={0,2,4,6,13,14,15},
Js = {5,6,7,8,11,12,15},  J, = {0,1,4,6,8,12,13,14, 15}.

For both SDS’s the sum of squares (3) is 11% + 112 + 9% + 12,
In the remaining cases we shall only list the essential information.

Casen =103 : F' = Zy03, H = {1,46,56}, s = 17. Even cosets :

ag=H, a;=2H, as=3H, as=4H, ag=5H, o =6H,
Q1 = 7H, Qg = SH, Q1 = IOH) Ol1g = 12H, Qag = 14H, Qigg = 15H,
Qg = 17H, Qs = 19H, Cgg — 21H, Qi3 = 23H, Qzy = 3OH

(103; 51, 51, 57, 60; 116)-SDS :

(c) Jy={1,3,4,6,8,11,12,14,17,18,20,22, 25, 27, 28, 30, 32},
Jx = {2,9,10,12,13,14, 15, 16, 20, 21, 22, 23, 24, 26, 28, 29, 30},
Js = {0,1,2,3,4,11,12,13,16,17, 19, 20, 21, 24, 25, 26, 28, 30, 31},
Js = {0,1,2,3,4,5,6,13,15,18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 31}.

Sum of squares : 172 + 112 4 12 + 12,

Casen =151 : F = Zy5, H = {1,8,19,59,64}, s = 15. Even cosets :

QO:H, a2:2H, a4:3H) a6:4H, as—_—.5H,
Q19 = GH, Olyg = QH, Q14 = IOH, Qig = IIH, Gi1g == 12H,
Qang — 15H, Olgy — 22H7 Qggq = 27H, Olgg = 29H, Qlgg = 30H
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(151; 65, 75, 80, 80; 149)-SDS :

(d) J,={0,3,5,6,8,11,13,14, 16,19, 21, 23,25, 27, 28},
Jr = {2,3,6,13,16,17, 20,23, 25, 26, 27, 28, 20},
Js={0,1,2,3,4,6,7,8,9,10, 11,12, 23,24, 27, 28},
Jo={1,4,5,10,11,12,13, 14,16, 18,19, 22, 25, 26, 27, 28}.

(151: 80, 80, 80, 85; 174)-SDS :

(e) Ji=1{0,1,2,4,56,7,8,13,14,16,18,19,20,26,29},
Jo = {2,3,4,8,10,11,14, 15,16, 18,19, 22, 25, 27, 28, 29},
Js = {2,7,8,9,11,12,15,19,21, 23, 24, 25,26, 27, 28, 29},
Jo ={0,2,3,5,6,7,8,9,11,16,17,18, 20,22, 23, 25, 27}.

(151; 70, 70, 75, 85; 149)-SDS -

(f) Ji ={0,8,10,11,12,14,16,20, 21,22, 23,27, 28, 29},
J, = {2,9,10,13,14,15, 16,18, 24, 25,26, 27, 28, 29},
Js = {0,3,4,5,10,11,12,13, 14,18, 19, 20, 21, 23, 24},
Js ={0,1,2,4,5,6,7,12,15,16,17,18,19, 23, 24, 27, 29}.

In the cases (e) and (f) the sets S; are not of skew type. The sums of squares for
(d), (e), (f) are 212+ 9%+ 9% + 1% 192+ 9% + 924 9% 19% 4+ 1124112 4 12, respectively.

Casen = 169 : F = Zy3[z], 2* = 4z — 6, F* = (z), H = (z*), |H| = 7, and
s =12. All cosets : ay; = *H and agiy1 = —z*H for 0 < 1 < 12.
(169; 84, 77, 77, 77, 146)-SDS’s :

(9) Ji={0,2,57,9,10,12,15,16,18,21,22},
Jr ={0,1,2,7,8,9,13,14,18, 20, 23},
Js = {1,4,6,7,9,14, 16,17, 20,21, 23},
Ja = {3,5,6,9,10,12,13,14,15,17,20};

() Ji ={1,3,4,6,8,10,13, 15, 16, 19,21, 22},
Jo=1{1,2,3,4,5,6,8,10,11,17, 18},
Js = {1,2,5,8,9,12, 14, 15, 16, 18, 19},
Jo = {2,3,4,5,6,7,8,9, 17,18, 23}.
In both cases the sum of squares is 152 4+ 152 + 15% + 12.

Case n =463 : F = Zse3, H = (251), |H| = 21, and s = 11. Even cosets :

aO:H, (12:2H, a4:4H, a5:5H, ag:7H, am::8H,
a12=10H, alqzlgH, (115:25H, a13:29H, a20:49H.

(463; 231, 231, 231, 210; 440)-SDS :

(i) Jy={0,2,4,7,9,10,13,15, 16, 18,20},
Jp = {0,4,5,7,8,14,15,16,17,19, 21},
Js = {0,4,5,7,9,12,14,15,18,19, 21},
Js = {0,6,7,8,9,12,13,14,16,21}.
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Sum of squares : 43% 4 1% + 1% + 12. Note that S; is the set of squares of F*, and so
it is the well known (463, 231, 115) cyclic difference set. Hence the sets S;, S3, Sy are
(463; 231, 231, 210; 325)-SDS. We mention that 10 non-equivalent SDS’s with the
parameters (463; 231, 231, 231, 210; 440) were constructed in [4] but none of them
contained a set of skew type.
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