On the asymptotic existence of complex Williamson Hadamard matrices

H. Kharaghani
Department of Mathematics \& Computer Science
University of Lethbridge
Lethbridge, Alberta, T1K 3M4
Canada

Abstract

It is shown that for each odd integer q, there is a complex WilliamsonHadamard matrix of order $2^{2^{n(q)+1}} \cdot 2^{n(q)+1} \cdot q$.

In a recent paper Craigen, Holzmann and Kharaghani [1] showed that for every odd integer q, there is an integer $N(q)$ which does not exceed twice the number of nonzero digits in the binary expansion of q, such that the existence of an Orthogonal Design (OD) of order $2^{N(q)-1}$ implies the existence of a Complex Orthogonal Design (COD) of the same number of variables and of order $2^{N(q)} q$. Although ODs of order 2^{m} for small values of m are known, not much is known when m is 7 or more. We first give a method of constructing some crucial ODs of order 2^{m}, for $m \geq 7$. Then we use these ODs and present a simple method of extending a classical method of Williamson [3] to any class of 2^{m} circulant ± 1-matrices, leading to an asymptotic existence theorem for complex Williamson matrices.

A (Complex) Orthogonal Design of order n and type $\left(s_{1}, s_{2}, \ldots, s_{k}\right), s_{i}$ positive integers, denoted (C) $\mathrm{OD}\left(n ; s_{1}, s_{2}, \ldots, s_{k}\right)$, is a matrix X of order n, with entries in $\left\{0, \varepsilon x_{1}, \varepsilon x_{2}, \ldots, \varepsilon x_{k}\right\}, \quad \varepsilon \in\{ \pm 1\} \quad(\varepsilon \in\{ \pm 1, \pm i\})$, satisfying $X X^{*}=\sum_{i=1}^{k}\left(s_{i} x_{i}^{2}\right) I_{n}$. A (complex) Hadamard matrix is a special (C)OD with $x_{i}=1$, for all i and no zero entries. A set $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ of $(0, \pm 1, \pm i)$-matrices of order n is called m supplementary of weight w if $\sum_{i=1}^{m} A_{i} A_{i}^{*}=w I_{n}$. An m-supplementary set of circulant matrices of weight $n m$ is called a set of m-complex Williamson matrices if $A_{i}=$ A_{i}^{*} for all i. A pair of matrices X, Y is called amicable (antiamicable) if $X Y^{*}=$ $Y X^{*}\left(X Y^{*}=-Y X^{*}\right)$. For integer $n=2^{c} q, q$ odd, write $c=4 a+b, \quad 0 \leq$ $b<4$. $\rho(n)=8 a+2^{b}$ is called the Radon number of n. It is easy to see that $\rho\left(2^{2^{n+1}-1} q\right)=2^{n+2}$, for any odd integer q.

Our main reference is [2] and we refer the reader to this reference for terminology not defined here.

We begin with a well known result.
Theorem 1 For every positive integer n, there is an $\operatorname{OD}(n ; 1,1, \ldots, 1)$ in $\rho(n)$ variables. Equivalently, there are $\rho(n)(0, \pm 1)$-matrices, $\quad P_{1}, P_{2}, \ldots, P_{\rho(n)}$, of order n such that:
(i) $P_{i} * P_{j}=0, \quad i \neq j$
(ii) $P_{i} P_{i}^{t}=I$
(iii) $P_{i} P_{j}^{t}=-P_{j} P_{i}^{t}, \quad i \neq j$.

Proof. See page 2 of [2].
Following Craigen, $(0, \pm 1)$-matrices satisfying (ii) above are called signed permutations. For matrices A_{1}, A_{2}, let $L_{2}\left(A_{1}, A_{2}\right)=\left(\begin{array}{cc}A_{1} & A_{2} \\ A_{2} & A_{1}\end{array}\right)$. Inductively, for $k>1$ and matrices $A_{1}, A_{2}, \ldots, A_{2^{k}}$, let

$$
L_{2^{k}}\left(A_{1}, A_{2}, \ldots, A_{2^{k}}\right)=L_{2}\left(L_{2^{k-1}}\left(A_{1}, A_{2}, \ldots, A_{2^{k-1}}\right), L_{2^{k-1}}\left(A_{2^{k-1}+1}, \ldots, A_{2^{k}}\right)\right)
$$

For example,

$$
L_{2^{2}}\left(A_{1}, A_{2}, A_{3}, A_{2^{2}}\right)=L_{2}\left(L_{2}\left(A_{1}, A_{2}\right), L_{2}\left(A_{3}, A_{2^{2}}\right)\right)=\left(\begin{array}{cccc}
A_{1} & A_{2} & A_{3} & A_{4} \\
A_{2} & A_{1} & A_{4} & A_{3} \\
A_{3} & A_{4} & A_{1} & A_{2} \\
A_{4} & A_{3} & A_{2} & A_{1}
\end{array}\right)
$$

We call such a matrix an $L_{2^{k}}$-matrix constructed from 2^{k} matrices $A_{1}, A_{2}, \ldots, A_{2^{k}}$. Obviously, different ordering of A_{i} 's give different $L_{2^{k}}$-matrices.

Lemma 2 Let $\left\{P_{1}, P_{2}, \ldots, P_{2^{k}}\right\}, \quad k$ a positive integer, be a set of mutually antiamicable signed permutations of order n. Let H be an Hadamard matrix of order n. Then any $L_{2^{k}-m a t r i x ~ c o n s t r u c t e d ~ f r o m ~} 2^{k}$ matrices $x_{1} P_{1} H, x_{2} P_{2} H, \ldots, x_{2^{k}} P_{2^{k}} H$, is an $\mathrm{OD}\left(2^{k} n ; n, n, \ldots, n\right)$ in 2^{k}-variables.

Proof. We use induction on k. For $k=1$, note that $\left(x_{i} P_{i} H\right)\left(x_{i} P_{i} H\right)^{t}=n x_{i}^{2} I_{n}$, so $x_{i} P_{i} H$ is an $\mathrm{OD}(n ; n)$ for all i. P_{1}, P_{2} are antiamicable, so are $x_{1} P_{1} H, x_{2} P_{2} H$. Hence $L_{2}\left(x_{1} P_{1} H, x_{2} P_{2} H\right)$ is an $\mathrm{OD}(2 n ; n, n)$.

Assume that $X=L_{2^{\iota}}\left(x_{1} P_{1} H, x_{2} P_{2} H, \ldots, x_{2^{\iota}} P_{2^{\iota}} H\right)$ and $Y=L_{2^{\iota}}\left(x_{2^{\ell}+1} P_{2^{\ell}+1} H, \ldots\right.$, $\left.x_{2^{\ell+1}} P_{2^{\ell+1}} H\right)$ are $\mathrm{OD}\left(2^{\ell} n ; n, n, \ldots, n\right)$. It follows now from the assumption on the P_{i} 's that X and Y are antiamicable ODs. So $L_{2^{t+1}}\left(x_{1} P_{1} H, \ldots, x_{2^{l+1}} P_{2^{t+1}} H\right)$ is an $\mathrm{OD}\left(2^{\ell+1} n ; n, n, \ldots, n\right)$ in $2^{\ell+1}$-variables.

Theorem 3 Let the P_{i} 's and H be as in Lemma 2. Assume further that $P_{2 i}$ * $P_{2 i-1}=0, \quad i=1,2, \ldots, 2^{k-1}$. Then any $L_{2^{k}-m a t r i x ~ c o n s t r u c t e d ~ f r o m ~} 2^{k-1}$ matrices $\left\{A_{i}=\frac{1}{2} a_{2 i}\left(P_{2 i}+P_{2 i-1}\right) H+\frac{1}{2} a_{2 i-1}\left(P_{2 i}-P_{2 i-1}\right) H\right\}_{i=1}^{2^{k-1}}$ is an $\mathrm{OD}\left(2^{k-1} n ; \frac{n}{2}, \frac{n}{2}, \ldots, \frac{n}{2}\right)$ in 2^{k}-variables.

Proof. Note that the set $\left\{P_{2 i}+P_{2 i-1}, P_{2 i}-P_{2 i-1}\right\}_{i=1}^{2^{k-1}}$ is a mutually antiamicable set of $(0, \pm 1)$-matrices and $\left(\frac{a}{2}\left(P_{2 i}+P_{2 i-1}\right) H+\frac{b}{2}\left(P_{2 i}-P_{2 i-1}\right) H\right)\left(\frac{a}{2}\left(P_{2 i}+P_{2 i-1}\right) H+\frac{b}{2}\left(P_{2 i}-\right.\right.$ $\left.\left.P_{2 i-1}\right) H\right)^{t}=\frac{1}{2}\left(a^{2}+b^{2}\right) n I_{n}, \quad i=1,2, \ldots, 2^{k-1}$. The rest follows from Lemma 2.

Theorem 4 For each positive integer n, there is an $\operatorname{OD}\left(2^{2^{n+1}-1} \cdot 2^{n+1} ; a, a, \ldots, a\right)$ in 2^{n+2}-variables, which is an $L_{2^{n+1}-m a t r i x ~ c o n s t r u c t e d ~ f r o m ~} 2^{n+1}$ antiamicable matrices.

Proof. Apply Theorem 3 to any Hadamard matrix of order $2^{2^{n+1}-1}$ and signed permutation matrices of order $2^{2^{n+1}-1}$ obtained from Theorem 1 .

Remarks. (i) While Theorem 4 does not give ODs of new order for $n=1$, all ODs obtained have special structures. All the ODs, for $n>1$, obtained from Theorem 3 are new.
(ii) The existence of $\mathrm{OD}(2 ; 1,1), \mathrm{OD}(4 ; 1,1,1,1)$ and $\mathrm{OD}(8 ; 1,1,1,1,1,1,1,1)$ leads one to the following conjecture.

Conjecture All full (no zero entries) $\mathrm{OD}\left(2^{2^{n+1}-1} ; a, a, \ldots, a\right)$ in 2^{n+2}-variables exist, $n \geq 1$.

The conjecture is only known for $n=1$. It is easy to see that any OD of the above type will not be constructible from antiamicable ODs as in Theorem 4.

Next we show a method to "replace" every ± 1-circulant matrix with two Hermitian $(\pm 1, \pm i)$-circulant ones. Let A be a normal ± 1-matrix. Let $B=\frac{1}{2}\left(A+A^{t}\right), C=$ $\frac{i}{2}\left(A-A^{t}\right)$. Then B, C are disjoint Hermitian $(0, \pm 1, \pm i)$-matrices of the same order as A. Furthermore, $B B^{*}+C C^{*}=A A^{t}, B C=C B$. Let $B_{1}=B+C, C_{1}=B-C$, then B_{1}, C_{1} are commuting ($\pm 1, \pm i$)-matrices and $B_{1} B_{1}^{*}+C_{1} C_{1}^{*}=2 A A^{t}$.
Noting that every circulant matrix is normal, we have the following.

Lemma 5 Given m-supplementary circulant ± 1-matrices of order n, there are $2 m$ supplementary circulant $(\pm 1, \pm i)$-Hermitian matrices of order n.

Proof. Let $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ be a supplementary set of circulant ± 1-matrices of order n. Let B_{i}, C_{i} be the matrices corresponding to A_{i} as above for each $1 \leq i \leq m$. The lemma is now immediate.
$(0, \pm 1)$-matrices with zero non-periodic autocorrelations are called complementary matrices. There are plenty of such matrices, see [2] for details. Complementary matrices are special cases of supplementary matrices. The most elementary method of constructing complementary matrices is to use Golay sequences of length 2^{n}. In order to show the asymptotic existence of complex Williamson matrices we need the following simple lemma.

Lemma 6 Let q be an odd integer. Let $n(q)$ be the smallest integer such that the number of nonzero terms in the binary expansion of q does not exceed $2^{n(q)}$. Then

$$
q=\sum_{i=1}^{2^{n(q)}} 2^{\alpha_{i}}, \quad \alpha_{i} \geq 0
$$

Proof. Let $q=1+\sum_{i=1}^{k} 2^{\beta_{i}}, \quad 0<\beta_{1}<\beta_{2}<\ldots<\beta_{k}$. Then by the choice of $n(q)$ $2^{n(q)-1}<k+1 \leq 2^{n(q)}$. Let $j=2^{n(q)}-k-1$, and write $2^{\beta_{k}}=2^{\beta_{k}-1}+2^{\beta_{k}-2}+\ldots+$ $2^{\beta_{k}-j}+2^{\beta_{k}-j}$. Then $q=1+2^{\beta_{1}}+2^{\beta_{2}}+\ldots+2^{\beta_{k-1}}+\ldots+2^{\beta_{k}-1}+\ldots+2^{\beta_{k}-j}=\mathrm{a}$ sum of $2^{\text {n(q) }}$ terms.

For ± 1-sequences A, B, C, \ldots, as usual, let $A B C \ldots$ denote the longer sequence A followed by B, C and so on. Let \bar{A} be the negative of all elements of A.

Lemma 7 For odd integer q, let $n(q)$ be as in Lemma 5. Then there is a $2^{n(q)+1}$ complementary sequence of ± 1-circulant matrices of order q, constructed from Golay sequences of length $2^{k}, \quad k \geq 0$.

Proof. Let $q=\sum_{i=1}^{2^{n(q)}} 2^{\alpha_{i}}, \quad \alpha_{1}=0, \alpha_{i}>0$. Let A_{k}, B_{k} be a Golay sequence of length $2^{\alpha_{k}}$, taking $A_{1}=(1), B_{1}=(1)$. Let e be the $2^{n(q)}$-dimensional column vector of ones, H an Hadamard matrix of order $2^{n(q)}$ and $A=\left(A_{1}, A_{2}, \ldots, A_{2^{n(q)}}\right), \quad B=$ $\left(B_{1}, B_{2}, \ldots, B_{2^{n(q)}}\right)$ the $2^{n(q)}$-dimensional row vectors. Consider the matrices $(e A) * H$ and $(e B) * H$, where $*$ is the Hadamard product. Consider a circulant ± 1-matrix whose first row is one row from either of $(e A) * H$ or $(e B) * H$. There are $2^{n^{(q)+1}}$ such matrices of order q. This gives the desired matrices.

Lemma 8 Let q be an odd integer. Then there is a set of $2^{n(q)+2}$-complex Williamson matrices of order q.

Proof. By Lemma 7, there is a $2^{n(q)+1}$-complementary sequence of ± 1-circulant matrices of order q. By applying Lemma 5 , we thus get $2^{n(q)+2}$-supplementary $(\pm 1, \pm i)$ circulant Hermitian matrices of order q.

Theorem 9 Let q be an odd integer. Then there is a complex Williamson-Hadamard matrix of order $2^{2^{n(q)+1}} \cdot 2^{n(q)+1} \cdot q$.

Proof. By Theorem 4, there is an $\operatorname{OD}\left(2^{2^{n(q)+1}-1} \cdot 2^{n(q)+1} ; a, \ldots, a\right)$ in $2^{n(q)+2}$-variables. Replace the variables by the Williamson matrices obtained in Lemma 8, to get the desired Hadamard matrix.

Let $q=11$, and write $+=1,-=-1$. Note $11=1+2+2^{3}=1+2+2^{2}+2^{2}$, so $n(11)=2$. Now,

$$
\begin{gathered}
A_{1}=(+), \quad B_{1}=(+) \\
A_{2}=(++), \\
B_{3}=(+-) \\
A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right), \quad B=\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \\
H=\left(\begin{array}{lll}
+ & + & + \\
+-) & B_{3}=B_{4}=(++-+) \\
+ & - & - \\
+ & + & + \\
+ & + & -
\end{array}\right)
\end{gathered}
$$

$$
(e A) * H=\left(\begin{array}{cccc}
A_{1} & A_{2} & A_{3} & A_{4} \\
A_{1} & \bar{A}_{2} & \bar{A}_{3} & A_{4} \\
A_{1} & \bar{A}_{2} & A_{3} & \bar{A}_{4} \\
A_{1} & A_{2} & \bar{A}_{3} & \bar{A}_{4}
\end{array}\right), \quad(e B) * H=\left(\begin{array}{cccc}
B_{1} & B_{2} & B_{3} & B_{4} \\
B_{1} & \bar{B}_{2} & \bar{B}_{3} & B_{4} \\
B_{1} & \bar{B}_{2} & B_{3} & \bar{B}_{4} \\
B_{1} & B_{2} & \bar{B}_{3} & \bar{B}_{4}
\end{array}\right)
$$

$$
A_{1} A_{2} A_{3} A_{4}=(+++++-+++-)=a_{1}
$$

$$
A_{1} \bar{A}_{2} \bar{A}_{3} A_{4}=(+----++++-)=a_{2}
$$

$$
A_{1} \bar{A}_{2} A_{3} \bar{A}_{4}=(+--+++-\cdots+)=a_{3}
$$

$$
A_{1} A_{2} \bar{A}_{3} \bar{A}_{4}=(+++-\cdots+-\cdots-+)=a_{4}
$$

$$
B_{1} B_{2} B_{3} B_{4}=(++-++-++++)=a_{5}
$$

$$
B_{1} \bar{B}_{2} \bar{B}_{3} B_{4}=(+-+--+-++-+)=a_{6}
$$

$$
B_{1} \bar{B}_{2} B_{3} \bar{B}_{4}=(+-+++-+--+-)=a_{7}
$$

$$
B_{1} B_{2} \bar{B}_{3} \bar{B}_{4}=(++---+---+-)=a_{8}
$$

From each of the a_{i} we get two Hermitian circulant matrices, but we show only the first two.

$$
\frac{1}{2}\left(a_{1}+a_{1}^{t}\right)=(+0+++00+++0), \quad \frac{1}{2}\left(a_{1}-a_{1}^{t}\right)=(0+000+-000-)
$$

So, $(+i+++i \bar{i}+++\bar{i})$ and $(+\bar{i}+++\bar{i} i+++i)$ are the two $(\pm 1, \pm i)$-Hermitian matrices corresponding to a_{1}.

Continuing this process we get $16(\pm 1, \pm i)$-circulant Hermitian matrices. Replacing the variables in $\operatorname{OD}\left(2^{10} ; 2^{6}, \ldots, 2^{6}\right)$ in 2^{4}-variables by these Hermitian matrices, we
get a complex Williamson matrix of order $2^{10} \cdot 11$. If the conjecture in this paper was correct, then we would have had a complex Williamson matrix of order $2^{7} \cdot 11$.

The following result shows a great advantage of the construction method used in this paper.

Theorem 10 Let p, q be odd integers with $n(p)=n(q)$. If $2^{2^{n(p)+1}-1} \cdot p$ is the order of an Hadamard matrix, then there is a complex Williamson Hadamard matrix of order $2^{2^{n(p)+1}-1} \cdot 2^{n(p)+1} \cdot p q$.

Proof. Apply Theorem 3 to the Hadamard matrix of order $2^{2^{n(p)+1}-1} \cdot p$ and the signed permutation matrices of order $2^{2^{n(p)+1}-1} \cdot p$ obtained from Theorem 1 , to get an $\mathrm{OD}\left(2^{2^{n(p)+1}-1} \cdot 2^{n(p)+1} \cdot p ; a, a, \ldots, a\right)$ in $2^{n(p)+2}$-variables. Now, replace the variables by the complex Williamson matrices of Lemma 8.

Acknowledgements. This work is supported by an NSERC grant. The author wishes to thank Rob Craigen for useful discussions.

References

[1] R. Craigen, W. H. Holzmann and H. Kharaghani, On the asymptotic existence of complex Hadamard matrices, in preparation.
[2] A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York, 1979.
[3] J. Williamson, Hadamard's determinant theorem and sum of four squares, Duke. Math. J. 11 (1944), 65-81.

