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ABSTRACT. The Wiener index W( G) of a connected graph G is the 

sum of the distances between all pairs of vertices of G. We determine 
the expected value of W(Tn) for trees Tn from certain families. 

1. Introduction 

The Wiener index W( G) of a connected graph G is the sum of the 

distances d( u, v) between all pairs of vertices u and v of G. This index 

seems to have been introduced in [22] where it was shown that certain physical 

properties of various paraffin species are correlated with the Wiener index of the 

tree determined by the carbon atoms of the corresponding molecules. Canfield, 
Robinson, and Rouvray [1] described a recursive procedure for determining the 

Wiener index of a tree and gave an extensive list of papers involving chemical 

applications of the index; see also [18] for an expository account of work in this 

area. More recently, McKay, and also Merris (see e.g. [10], [11], or [14]), have 
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snown tnat tne VV lener maex w ~:J. n) 01 a tree :J. n nas a SImple expresslOn 

in terms of the positive eigenvalues· of a matrix associated with Tn. Additional 

material involving distances in trees may be found in [12], [13], and [23]. We remark 

that Plesnik [15] has given a general survey of results on sums of distances in graphs 

and digraphs. 

If Tn is any tree with n vertices, then 

with equality holding if and only if Tn is a star or a path, respectively [2]. Our 

object here is to consider the expected value of W(Tn) over all trees Tn in 

certain families of trees. In §2 we describe the families we shall be considering -

the simply generated families of trees. Our main results are in §3 where we show 

that under certain assumptions the expected value of W(Tn) is asymptotic to 
Qn5 / 2 as n ---+ 00 for the families we are considering, where the value of the 
constant Q depends on the particular family involved. In §4 we illustrate these 

results in some special cases where explicit formulas can be obtained. 

2. Simply Generated Families 

We recall that ordered trees are rooted trees with an ordering specified for 

the branches incident with each vertex as one proceeds away from the root (see [6; 

p. 306)). Let F denote a family of weighted ordered trees in which the tree Tn 
has weight c(Tn). Such a family is said to be simply generated (see, e.g. [9], [3], 

or [20]) if there exists a sequence of non-negative constants Co (= 1), Cl, C2, ••• 

such that 

(2.1) 

for all trees Tn in F, where Nj(Tn) denotes the number of vertices of out

degree i m Tn. Let Yn denote the number of trees Tn in such a family 

:F where (here and elsewhere) the weights are taken into account; that is 

(2.2) 

where the sum is over all ordered trees Tn with n vertices. It is not difficult 

to see (cf. [9], [3], or [20)) that the generating function Y = E Ynxn of such a 

simply generated family satisfies the relation 

(2.3) Y = xq?(y) 
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where «p(t) 1 + c".tk. Three familiar examples of simply generated families 

are the ordinary ordered trees for which <fI(t) (1 - t)-l, the rooted labelled 

trees for which <fI(t) = et, and the binary trees for which «p(t) = 1 + t 2. We 

remark, for later use, that the relation Y = x<fl(Y) implies that 

(2.4) xY' = Y (1 - x<fl/(y))-l 

and that 

(2.5) x2yII (xY' /y). {x<fl"(Y) . (xy')2 + 2(xY' - Y)}. 

We shall assume henceforth that F is some particular simply generated 

family of trees whose generating function satisfies relation (2.3). And when deriv

ing results of a asymptotic nature, we shall assume the conditions of the 

following result hold (see [9; p. 999], [3; p. 203], or [20; p. 32]). 

Lemma L Suppose «p(t) = 1 + L~ cktk i.s an analytic function of t for 

It I < R:::; 00, and let Y(x) = L~ Ynxn denote the unique solution of Y(x) = 
x<p(Y(x)) in the neighbourhood of x = O. If 

(i) Ck 2:: 0 for k 2:: 1, 
(ii) gcd{k: Ck > O} = 1, and 

(iii) r«p'(r) = <p(r) forsome r, where O<r<R, then 

as n ~ 00, where p = r/«p(r) and a = (<p(r)/27r<fl"(r))1/2. 

We shall also need the following asymptotic result; we omit the straightforward 

proof which involves approximating a sum by an integral. 

= = = 
Lemma 2. Let P(x) = LPnxn, Q(x) = Lqnxn, and P(x)Q(x) = Lrnxn , 

o 0 0 
and suppose there exist constants p, q, p > 0 and c\(, f3 > -1 such that 

as n ~ 00. Then 
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as n -+ 00, where R(a + 1, (:J + ~) = f01 tQ'(l - t)f3dt is the beta function. 

3. Main Results 

For any rooted tree Tn let D(Tn) denote the sum of the distances d(r, u) 

between the root-vertex r of Tn and the remaining n - 1 verticesof Tn; 
and, as before, let W(Tn) denote the sum of the distances d( u, v) between 

the n(n - 1)/2 pairs of distinct vertices u and v of Tn. (If n = 1 then 

D(Tn) = W(Tn) = 0, by definition.) Let 

where the sums are over all n-vertex trees Tn that belong to a particular simply 

generated family F and where c(Tn) denotes the weight function defined in 

(2.1). We now derive relations for the generating functions 

(We remark that the general relation for D(x) was derived in [9] and used to 

investigate the asymptotic behaviour of dn ; but it will be convenient to rederive 

the relation here by a somewhat different approach.) 

Theorem. Let F(x) = xY'(x)/Y(x) -1. Then 

(3.1) D(x) = xy'F 

and 

(3.2) 

Proof. If we remove the root r of a non-trivial tree Tn In F, along with 

all edges incident with r, we obtain a collection of disjoint rooted subtrees, or 

branches, T(l), ... ,T(k) whose roots were originally joined to r. It follows 

readily from the relevant definitions that 

k 

D(Tn) = 2:: D(T(i)) + n - 1. 
1 
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It is not difficult to see, bearing in mind the definition of simply generated families of 

trees, that this recursive relation for D(Tn) implies that the generating function 

D( x) satisfies the relation 

00 

(3.3) 
D(x) = x LCkkyk

-
1 (x). D(x) +xY'(x) - Y(x) 

1 

= x1?'(Y)· D(x) + xY'(x) - Y(x). 

Conclusion (3.1) now follows upon solving for D(x) and appealing to (2.4) and 

the definition of F. 

We now consider the generating function W( x). We assume, as before, that 

the non-trivial tree Tn is formed by joining the root-vertex r to the roots of 

the branches T(l), ... , T(k). Now 

where 'E1, ~2, and 'E3 denote the sum of the distances d( u, v) between pairs 

of vertices u and v such that 1) one of the vertices u or v is the root

vertex r; 2) u and v belong to the Jame branch T(i) of Tn, where 

1 :::; i :::; k; and 3) u and v belong to different branches T(i) and T(i), 

where 1:::; i, j :s; k, respectively. It is not difficult to see that 

k 

~1 + 'E2 = D(Tn) + L W(T(i»). 

To obtain an expression for 'E3 
the roots of the distinct branches T( i) 

v, then 

1 

we observe that if ri and 'rj denote 

and T(i) containing vertices u and 

From this it follows readily that the contribution to 'E3 of all vertices in the i-th 
branch T( i) is equal to 

{D(T(i») + IT(i)I}· L IT(DI, 
j;f.i 
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where IT(h) I denotes the number of vertices in the branch T(h). Consequently, 

(3.4) 

W(Tn) = ljl + L:2 + L:3 

k 

= D(Tn) + L W(T(i)) + 2.: {D(T(i») + IT(i)l} ·IT(j)l, 
1 ii:-i 

w here the last sum is over the k( k - 1) ordered pairs of distinct integers i and 

J such that 1:S i, j :S k. (We remark that this expression for W(Tn) is 

equivalent to an expression given in [1; eq. (22)].) 

It is not difficult to see that relation (3.4) implies that the generating function 

W (x) satisfies the relation 

(3.5) W(x) = D(x) + x1>'(Y). W(x) + x<I>"(Y). {D(x) + xY'}· xY'. 

Now D(x) + xY' = (xY')Z /Y, by (3.1); and (2.5), (3.1), and the relation xY' = 

Y F + Y imply that 

(3.6) x<I>"(Y) . (xy')3 /Y x2ylf - 2D = xY F' - D. 

Taking (2.4) into consideration, relation (3.2) now follows from (3.5) and (3.6). 

We now determine the asymptotic behaviour of dn and Wn over the Yn 
trees Tn in Y. We remind the reader that we are assuming the conditions 

of Lemma 1 hold so that Yn"""" ap-nn-3
/ 2 where p = 7/1>(7) and a = 

(1)(T)j27r<I>1f(7)) 1/2. In what follows we let Cn{g(x)} denote the coefficient of 

xn in the power series expansion of g(x). 

Corollary. Lei K = 7raT- l i then 

and 

(3.8) 

as n -+ 00. 

Proof. We recall (see [8; p. 164]) that 
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It was shown in [9; p. 1005] that this, relation (3.1), and the case a = f3 = -1/2 
of Lemma 2 imply that 

as n -+ 00. Furthermore, when we apply the case a = -1/2 and f3 = +1/2 
of Lemma 2 to relation (3.2) we find that 

C {Y' F/} 1 -1 2 -n 1 K 5/2 
Wn = n X • X rv "27l"T a p n f"V"2 n Yn 

as n -+ 00. This completes the proof of relations (3.7) and (3.8). 

We remark that it can be shown, using (3.1) and (3.2), that 

w = lxD' + lx2yll -2
1 FD - D 

2 2 

from which the conclusion Wn rv ~ ndn rv ~ K n 5
/ 2

Yn can also be readily deduced 

by showing that ~ xD' is the dominant term on the right-hand side. The relation 

Wn I"V ~ ndn implies that the average distance between the root-vertex of a tree 

Tn and the remaining n - 1 vertices of Tn is asymptotically equal to the 

average distance between all the n( n - 1)/2 pairs of vertices of Tn, where the 

averages are taken over all appropriate pairs of vertices in all the Yn trees Tn 

III F. 

4. Special Cases 

We now illustrate the preceding results for some particular families of trees. 

Let :F denote the family of ordinary ordered trees whose generating function Y 
satisfies the relation Y = x(1 - y)-l. Then (see, e.g., [4; p. 112] or [20; p. 30]) 

and Y' = (1 - 2y)-1 = (1 - 4x )-1/2, so 

(4.1) F = xY' /Y - 1 = (1 - Y)/(1 - 2Y) - 1 = ~{(1 - 2y)-1 -I} = HY' - 1). 

In this case relation (3.1) implies that 

D = xY'F = t xY'(Y' - 1) 

= t x{(l - 4x)-1 - (1 - 4x )-1/2}. 
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Consequently, 

dn =22n - 3 _t (2n 2), 
n-1 

a result given earlier in [21] and [9]. Furthermore, it follows from (3.2) and (4.1) 

that 

Therefore 

(4.2) Wn = (n 1)4n
-

2 

and 

/ _ ( _ 1)4n-2/ (2n - 2) ! f- 5/2 Wn Yn - n n n _ 1 rv 4 V7f n 

as n -+ 00. 

It is possible to give a more direct combinatorial proof of formula (4.2). First, 

select a of rooted ordered trees Ta and Tb where a + b = n; choose a 

pair of vertices u and v, one from each of the trees and Tb; and then 

join the roots of Ta and Tb by an edge e. This can be done in aYa' bYb 

ways, for given values of a and b. The tree Tn thus formed can be regarded 

as an unrooted tree embedded in the plane (with two designated vertices u and 

v separated by the designated edge e). Now choose one of the edges 'rS of 

Tn and then choose one of the two vertices joined by this edge - 'r, say; this 

can be done in 2(n - 1) ways. If we regard 'r as the root-vertex of Tn and 

edge rs as the "first" or "left-most" edge incident with 'r, then this has the 

effect of inducing an ordering upon the edges incident with each vertex encountered 

in proceeding away from the root and, hence, of converting Tn into rooted 

ordered tree (with two designated vertices u and v separated by a designated 

edge e). If we count the total number of ways of carrying out this construction, 

bearing in mind the symmetry between the two subtrees Ta and Tb, then it 

is not difficult to see that each rooted ordered tree Tn is counted separately for 

each edge e separating each pair of vertices u and v in Tn; that is, each 
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such tree Tn is counted W(Tn) times. Therefore, 

(4.3) 

n-l 

w n =2(n l)·tI:aYa·(n-a)Yn-a 
1 

(n - 1) . Cn {(xy')2} 

= (n -1) ·Cn{x2(1 4x)-2} = (n -1)· 4n- 2, 

as required. We remark that the basic observation on which the foregoing argument 

relies, namely, that W(Tn) equals the sum, over all edges e of the tree Tn, 

of the number of pairs of vertices separated bye, appears in [22; p. 17, par. 4]. 

We turn from simply generated trees for a moment to point out that formula 

(4.2) for the sum L: W(Tn) over all ordered trees gives rise to a corresponding 

formula for a closely related family of trees. Labelled plane trees may be defined as 

the equivalence classes of trees with labelled vertices embedded in the plane under 

orientation-preserving homeomorphisms of the plane to itself. Let Ln denote the 

number of these trees with n vertices, and let Yn still denote the number of 

rooted ordered trees Tn. We can convert any labelled plane tree with n 2:: 2 

vertices into a rooted ordered tree Tn with labelled vertices in 2( n - 1) ways 

by, as before, selecting an incident vertex and edge - r and rs, say - to serve 

as the root-vertex and as the "first" or "left-most" edge incident with the root. On 

the other hand, the number of ways of assigning the labels 1,2, ... , n to the 

vertices of a rooted ordered tree Tn is clearly n! (see [6; p. 586, exer. 23]). 

Consequently 

2(n - l)Ln = n! Yn, 

and 

Ln = 2( n n~ 1) . (2: -=-12) ~ 
= (2n - 3)n-2 

for n 2:: 2. This correspondence between labelled plane trees and ordered trees 

preserves distances between vertices; so it follows from (4.2) that the sum L: W(Tn) 

over the Ln labelled plane trees with n vertices equals 

I 
2(nn~ 1) . (n - 1)4n- 2 or n!· 22n- 5 

for n 2:: 2. 
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Now let 

function Y 

( 4.4) 

:F denote the family of rooted labelled trees whose generating 

satisfies the relation Y xeY . Then (see [4; p. 174] or (6; p. 392]) 

00 n 

Y = '\:"""'" nn-l =-
~ n! 

1 

and xY' = Y(1 - y)-l, so 

(4.5) F = xY'/Y -1 = (1 - y)-l -1 Y(I- y)-l = xY'. 

In this case relation (3.1) implies that 

( 4.6) D = xy'F = (xy')2, 

a result given earlier in [17] and [9; p. 1006]. Consequently, 

(4.7) 

in view of (4.4) and (4.6). Riordan and Sloane [17; p. 281] pointed out that 

by the Cauchy formula [16; p. 21] associated with Abel's generalization of the 

binomial theorem. Knuth [6; p. 117] has investigated the asymptotic behaviour 

of this last sum and shown that the dominant term is (1rn/2)1/2. (Another way 

to reach this conclusion is to rewrite the sum as 

n-2 

n!· (e/nr . I: e-nni fj! 
o 

and then appeal to Stirling's formula and the normal approximation to the Poisson 

distribution; cf. [5; p. 515] or [19; p. 619].) Hence 

(4.8) 
n 

dn/Yn = n I: (n)k/nk rv..,;;;2 n 3
/

2 

2 

as n -t 00, a result appearing in [17J and [9]. 
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It follows from (3.2), (4.5), and (4.6) that 

w = x2 y' F' = x(xY')· (xY')' 1. x ~ (xY'? = -2
1 xD'. 

2 dx 

Therefore, 

and 

(4.9) 

n-1 ( ) 1 I-n n k 
Wn/Yn = "2 n· n' k k (n 

1 
n 

= t n2 
• J:)nh/nk rv .;:;rs n5

/
2 

2 

as n -+ 00, by (4.7) and (4.8). 

We remark that the relation Wn t ndn is obvious for the family of rooted 

labelled trees. Also, the argument used to establish formula (4.3) can be adapted 

to provide a direct combinatorial derivation of the first for wn/Yn in 
(4.9). The main difference is that we must allow for the fact that the vertices are 

labelled now; and, instead of the factor 2( n 1) we now have simply the factor 

n to account for the number of ways of selecting the root-vertex. 

Finally, let :F denote the family of rooted binary trees whose generating 

function Y satisfies the relation Y = x(1 + y2). Then (see [20; p. 29] or [6; 

p. 389]) 

and xY' /Y = (1 - 2xy)-1 = (1 - 4x2)-1/2, so 

( 4.10) 
F = xY' /Y - 1 = (1 - 2xy)-1 - 1 

= 2xY . (1 - 2xy)-1 = 2x 2 y'. 

In this case relation (3.1) implies that 

(4.11 ) 
D = xY'F = 2x(xY'? 

= (2x)-1 . {I + (1 - 4x2)-1 - 2(1 _ 4x2)-1/2}, 
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so 

d - 22n - 1 _ (2n) 
2n-l - n' 

a result given earlier in [7; p. 590], in effect, and in [9; p. 1009]. Furthermore, it 
follows from (3.2), (4.10), and (4.11) that 

Therefore, 

d ·22n-l (2n) 
W2n-l = n 2n-l = n - n n 

and 

as n -+ 00. 
Notice that the relation W2n-1 nd2n - 1 is equivalent to the relation 

W2n-1 = 2nC2n _ 2 {(xy')2}, in view of (4.11). It is possible to give a combina-

torial proof of this last relation a modification of the argument used earlier to 

derive relation (4.3). This time, however, the rooting process involves inserting a 

new vertex in one of the edges; and we must take into account the effect this has 

on the distances between vertices separated by this new vertex. The details are not 

particularly complicated, but we shall not include them here. 

We remark in closing that the constant K that appears in the corollary 

may assume any positive value for suitable families Y. For example, when Y 
x(1 + f3Y + t,2y2), where (3 and r are positive constants, we find that 

K = (!7r(1 + (3/,)) 1/2; this takes on all values in the interval ( J 7r /2,(0) as (3 
varies throughout the inverval (0,00). When Y = x(1 - (3Y)-i we find that 

K = (7rf /2(1 + ,))1/2 and this takes on all values in the interval (0,..;:;T2) as 

r varies throughout the interval (0,00). Finally, when Y = xeY we find that 

K = ..;:;T2. 
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