PACKING A FOREST WITH A GRAPH

Hong Wang

Department of Mathematics Massey University Palmerston North, New Zealand

Let F be a forest of order n and G a graph of order n. Suppose that $\Delta(G)(\Delta(F)+1) \leq n$. Then, except for three pairs of graphs (G, F), there is a packing of G and F.

1 Introduction

We discuss only finite simple graphs and use standard terminology and notation from [1] except as indicated. For any graph G, we use V(G) and E(G) to denote the vertex set and the edge set of G, respectively. We denote the complement of G by G^{c} . Let G and H be two graphs of order n. We say that there is a packing of G and H if the complement G^c contains a subgraph isomorphic to H. In this case, we also say that G and H are packable. There are many papers concerning the packing of two graphs which have a small number of edges. For example, Sauer and Spencer [6] proved that if $|E(G)| \leq n-2$ and $|E(H)| \leq n-2$, then there is a packing of G and H. Bollobás and Eldridge [2] found all the forbidden pairs (G, H) of graphs with $\Delta(G) < n-1$, $\Delta(H) < n-1$, $|E(G)| + |E(H)| \le 2n-3$ for which there are no packings of G and H. Slater, Teo and Yap [7] proved that if $n \ge 5$, G is a tree, H has n-1 edges and neither G nor H is a star, then there is a packing of G and H. Sauer and Spencer [6] also proved that if $2\Delta(G)\Delta(H) < n$, then there is a packing of G and H. For more results, see [1, Chapter 8] and [9]. Bollobás and Eldridge [2] conjectured that if $(\Delta(G)+1)(\Delta(H)+1) \leq n+1$, then there is a packing of G and H. This conjecture is still open. Hajnal and Szemerédi [4] proved that if n = sk(s > 3)and $k \geq 1$) and G is the vertex-disjoint union of k copies of K_s and $\Delta(H) \leq k-1$, i.e., $(\Delta(G) + 1)(\Delta(H) + 1) \leq n$, then there is a packing of G and H. The result in the case s = 3 was first obtained by Corrádi and Hajnal [3].

In this paper, we consider the case that one of G and H is a forest, i.e., a graph with no cycles. To state our result, we define kG to be the vertex-disjoint union of k copies of G for any positive integer k and graph G. For even positive integer n, there is no packing of the two graphs in each of the following three pairs of graphs: $((n/2)K_2, K_{1,n-1}), (K_{(n/2)+1} \cup H, (n/2)K_2)$ where H is any graph of order n/2 - 1 and 'U' means 'vertex-disjoint union', and $(K_{n/2,n/2}, (n/2)K_2)$ with n/2 odd. To see this, we observe that in each pair, the complement of the graph which is not $(n/2)K_2$ does not have a perfect matching. We especially name these three pairs as three forbidden pairs of graphs. We prove the following.

Australasian Journal of Combinatorics 10(1994), pp.205-210

Theorem Let F be a forest of order n and G a graph of order n. Suppose that $\Delta(G)(\Delta(F)+1) \leq n$. Then there is a packing of G and F unless the pair (G,F) is one of the three forbidden pairs of graphs.

For the proof of the theorem, we recall some terminology and notation.

Let G be a graph, U a subset of V(G) and u a vertex of G. As usual, $N_G(u)$ is the set of neighbors of u, $d_G(u)$ is the degree of u in G and $N_G(U)$ is the union of all $N_G(u)$ for $u \in U$. We define $N_G(u, U)$ to be $N_G(u) \cap U$ and let $d_G(u, U) = |N_G(u, U)|$. If H is a subgraph of G, we define $d_G(u, H)$ to be $d_G(u, V(H))$. Then $d_G(u, G)$ is just the degree of u in G.

Let σ be a bijection on V(G). We define a graph G_{σ} with $V(G_{\sigma}) = V(G)$ and $E(G_{\sigma}) = \{\sigma(u)\sigma(v)|uv \in E(G)\}$. Clearly, G_{σ} is isomorphic to G under σ . Let x_1, x_2, \ldots, x_k be distinct vertices of G. Then $G_{(x_1, x_2, \ldots, x_k)}$ stands for G_{σ} where $\sigma(x_i) = x_{i+1}(1 \le i \le k-1), \sigma(x_k) = x_1$ and $\sigma(x) = x$ for all $x \in V(G) - \{x_1, x_2, \ldots, x_k\}$.

2 Proof of the Theorem

Let F be a forest of order n and G a graph of order n such that $\Delta(G)(\Delta(F)+1) \leq n$. We use induction on |E(F)| to prove the theorem. The theorem is trivial if |E(F)| = 0. Assume that the theorem holds at |E(F)| = m - 1. We shall prove the theorem for |E(F)| = m. We may assume that G and F are not packable and then prove that (G, F) is one of the pairs mentioned in the theorem.

We distinguish three cases: $\Delta(F) = 1$, $\Delta(F) = 2$ or $\Delta(F) \ge 3$.

Case 1. $\Delta(F) = 1$.

In this case, $\Delta(G) \leq n/2$ and $\delta(G^c) \geq n-1-n/2 = n/2-1$. As F consists of independent edges and isolated vertices, G^c doesn't contain $\lceil (n-1)/2 \rceil$ independent edges. Let b be the edge independence number of G^c and d = n-2b. Then $d \geq 2$ if n is even, and $d \geq 3$ if n is odd. By the well known standard proof of Tutte's Theorem [1, pp. 55–57], there exists a maximal subset $S_0 \subseteq V(G^c)$ such that $o(G^c - S_0) = |S_0| + d$, where $o(G^c - S_0)$ is the number of odd components of $G^c - S_0$. Furthermore, $o(G^c - S) \leq |S| + d$ for all subsets $S \subseteq V(G^c)$. If $G^c - S_0$ has an even component D, let $x \in V(D)$. Then $|S_0 \cup \{x\}| + d \geq o(G^c - S_0 - x) \geq o(G^c - S_0) + 1 = |S_0 \cup \{x\}| + d$, contradicting the maximality of S_0 . Hence $G^c - S_0$ contains no even components. Let $D_1, D_2, \ldots, D_{k+d}$ be a list of all odd components of $G^c - S_0$, where $k = |S_0|$. We may assume that $|V(D_1)| \leq |V(D_2)| \leq \cdots \leq |V(D_{k+d})|$. Let $x \in V(D_1)$. Then

$$n/2 - 1 \leq d_{G^c}(x) \leq |S_0| + |V(D_1)| - 1$$
 (1)

$$\leq \frac{1}{2}(|S_0| + |V(D_1)| + |V(D_2)| + \dots + |V(D_{k+d})|) - 1$$
(2)

$$= n/2 - 1.$$
 (3)

Hence equality holds in (1), (2) and (3). This implies that d = 2 and n is even. Moreover, if $S_0 = \emptyset$, then $|V(D_1)| = |V(D_2)| = n/2$, n/2 is odd and G^c is $2K_{n/2}$. Hence F is $(n/2)K_2$ and G is $K_{n/2,n/2}$. If $S_0 \neq \emptyset$, then k = n/2 - 1, $|V(D_1)| = |V(D_i)| = 1(1 \le i \le n/2 + 1)$. Furthermore, $V(G^c) - S_0$ is an independent set of vertices of G^c and $yz \in E(G^c)$ for all $y \in S_0$ and all $z \in V(G^c) - S_0$. Hence F is $(n/2)K_2$ and G is $K_{(n/2)+1} \cup H$ where H is a graph of order n/2 - 1.

Case 2. $\Delta(F) = 2$.

In this case, $\Delta(G) \leq n/3$ and $\delta(G^c) \geq n-1-n/3 \geq (n-1)/2$. From this, we can easily deduce that G^c is connected. Let $P = x_1 x_2 \dots x_k$ be a longest path of G^c . Then $k \geq 3$. Moreover, $d_{G^c}(x_1, P) + d_{G^c}(x_k, P) = d_{G^c}(x_1) + d_{G^c}(x_k) \geq n-1$. If $k \leq n-1$, then by the well-known Ore's condition [5], G^c contains a cycle C with V(C) = V(P). This implies that G^c contains a longer path than P as G^c is connected. Hence k = nand therefore P contains F as F consists of vertex-disjoint paths.

Case 3. $\Delta(F) \geq 3$.

Let x_0y_0 be an edge of F with $d_F(x_0) = 1$. By the induction hypothesis, we may assume that $F - x_0y_0$ is a subgraph of G^c . Then x_0y_0 is an edge of G. Let

$$C = N_G(x_0) \cap N_G(y_0) \tag{4}$$

$$A = N_G(x_0) - C \cup \{y_0\}$$
(5)

$$B = N_G(y_0) - C \cup \{x_0\}$$
(6)

$$Y_0 = N_F(y_0) - \{x_0\} \tag{7}$$

$$V_1 = V(G) - A \cup B \cup C \cup Y_0 \cup \{x_0, y_0\}.$$
(8)

As there is no packing of G and F, we have the following four claims.

Claim 1. For every $u \in A \cup V_1$, there exists $v \in N_G(x_0)$ such that uv is an edge of F, i.e., $uv \in E(F)$.

Suppose, for a contradiction, that there exists $u_0 \in A \cup V_1$ such that $u_0 v \notin E(F)$ for all $v \in N_G(x_0)$. Then $u_0 y_0 \notin E(G)$ and $x_0 w \notin E(G)$ for all $w \in N_F(u_0)$. Therefore $F_{(u_0,x_0)}$ is a subgraph of G^c , a contradiction. This proves the claim.

By Claim 1, we have that

$$|V_1| \leq |A|(\Delta(F) - 1) + |C|\Delta(F).$$
 (9)

$$n = |\{x_0, y_0\}| + |A| + |B| + |C| + |Y_0| + |V_1|$$
(10)

$$\leq 2 + |A| + |B| + |C| + \Delta(F) - 1 + |A|(\Delta(F) - 1) + |C|\Delta(F)$$
(11)

$$= 1 + (|A| + |C| + 1)\Delta(F) + |B| + |C|$$
(12)

$$\leq 1 + \Delta(G)\Delta(F) + \Delta(G) - 1 \tag{13}$$

$$= \Delta(G)(\Delta(F) + 1) \le n.$$
(14)

Hence equality holds in (9) through (14). This implies the following.

$$d_G(x_0) = d_G(y_0) = \Delta(G); \tag{15}$$

$$d_F(y_0) = \Delta(F) = d_F(u) \text{ for all } u \in A \cup C;$$
(16)

$$d_F(u, V_1) = \Delta(F) - 1 \text{ for all } u \in A;$$
(17)

$$d_F(u, V_1) = \Delta(F) \text{ for all } u \in C; \tag{18}$$

$$N_F(u, V_1) \cap N_F(v, V_1) = \emptyset \text{ for all } u, v \in A \cup C \text{ with } u \neq v;$$
(19)
$$N_F(u, V_1) \cap Y_0 = \emptyset \text{ for all } u \in A \cup C.$$
(20)

Claim 2. |A| = |B| = 0.

From (15), we see that |A| = |B|. Suppose, for a contradiction, that $A \neq \emptyset$. Choose an arbitrary vertex $u \in N_F(A) \cap V_1$. By (19), $N_F(u, C) = \emptyset$. Suppose that $N_F(u, B) = \emptyset$. Then it is clear that $N_G(y_0, N_F(u)) = \emptyset$. It is also clear that $N_G(x_0, Y_0) = \emptyset$ and $ux_0 \notin E(G)$. This implies that $F_{(x_0, u, y_0)}$ has no edges in common with G, a contradiction. Hence, for all $u \in N_F(A) \cap V_1$, there exists $v \in B$ such that $uv \in E(F)$. Since $\Delta(F) \geq 3$ and by (17), $d_F(y, V_1) \geq 2$ for all $y \in A$. This implies that $|B| \geq 1 + |A|$ as F doesn't contain cycles, a contradiction. This proves the claim.

Claim 2 says that $N_G(x_0) - \{y_0\} = N_G(y_0) - \{x_0\}$. Let $C = \{y_1, y_2, \ldots, y_{k-1}\}$, where $k = \Delta(G)$. If k = 1, then F is $K_{1,n-1}$ and therefore n must be even and Gmust be $(n/2)K_2$ for otherwise G and F are packable. So we may assume that $k \ge 2$ in the following.

For every $y_i \in C$, it is easy to see that $F_{(x_0,y_i)} - y_0y_i$ is a subgraph of G^c and the degree of y_i in $F_{(x_0,y_i)}$ is one. Hence by the similarity, we may assume that $N_G(y_0) - \{y_i\} = N_G(y_i) - \{y_0\}$. This implies that the subgraph G_1 of G induced by $N_G(y_0) \cup \{y_0\}$ is K_{k+1} . Obviously, G_1 is a component of G. Let $Y_i = N_F(y_i)$ for $1 \leq i \leq k-1$. Set $t = \Delta(F)$. Then by (17) and (18), $|Y_0| = t-1$ and $|Y_i| = t$ for $1 \leq i \leq k-1$. Note that Y_i is an independent set of vertices of F for all $i \in \{0, 1, \ldots k-1\}$ since F contains no cycles.

Claim 3. For all $i \in \{0, 1, ..., k-1\}$, $d_G(z, Y_i) \ge 2$ for all $z \in Y_i$.

Suppose, for a contradiction, that there exist $i \in \{0, 1, \ldots, k-1\}$ and a vertex $z_i \in Y_i$ such that $d_G(z_i, Y_i) \leq 1$. Choose a vertex $w_i \in Y_i$ such that $w_i \neq z_i$ and if $d_G(z_i, Y_i) = 1$ then $w_i z_i \in E(G)$.

We assume first that $i \neq 0$. Without loss of generality, say i = 1. It is clear that $N_G(y_1, N_F(z_1)) = \emptyset$ and $N_G(z_1, N_F(y_1)) \subseteq \{w_1\}$. Hence $F' = F_{(y_1, z_1)}$ has at most two edges x_0y_0 and w_1z_1 in common with G. Obviously, $w_1y_1 \notin E(F')$ as $w_1z_1 \notin E(F)$. As above, it is easy to see that $N_G(x_0, N_{F'}(w_1)) = \emptyset$. Hence $F'_{(x_0, w_1)}$ has no edges in common with G, a contradiction.

Next, we assume that i = 0. As in the above, it is easy to see that $F^1 = F_{(y_0,z_0)}$ has at most one edge w_0z_0 in common with G. As G and F are not packable, w_0z_0 must be an edge of G. As before, since $w_0y_0 \notin E(F^1)$, we have that $N_G(x_0, N_{F^1}(w_0)) = \emptyset$. Then w_0z_0 is still the only common edge of $F^2 = F^1_{(w_0,x_0)}$ and G. But the degree of w_0 in F^2 is one. By the argument of Claim 1 and Claim 2, we may assume that G has a component G_2 which is K_{k+1} and contains w_0z_0 . As Claim 3 is true for all $i, 1 \leq i \leq k-1$ and $\Delta(G) = k$, we see that there exists $i \in \{1, 2, \ldots, k-1\}$ such that $Y_i \cap V(G_2) = \emptyset$. This implies that $F^2_{(w_0,y_i)}$ has no edges in common with G, a contradiction. This proves the claim.

Since F doesn't contain cycles, we see that there is at most one edge of F between Y_i and Y_j for any $i, j \in \{0, 1, \ldots, k-1\}$ with $i \neq j$. Construct a graph H such that $V(H) = \{Y_0, Y_1, \ldots, Y_{k-1}\}$ and $Y_i Y_j \in E(H)$ if and only if there is an edge of F between Y_i and Y_j . Then H is a forest as F is a forest. Hence there exist

 $i, j \in \{0, 1, \ldots, k-1\}$ with $i \neq j$ such that $d_H(Y_i) \leq 1$ and $d_H(Y_j) \leq 1$. We may assume without loss of generality that $d_H(Y_{k-1}) \leq 1$. If $d_H(Y_{k-1}) = 1$, let Y_p denote the neighbor of Y_{k-1} in H and z_1z_2 denote the edge of F with $z_1 \in Y_{k-1}$ and $z_2 \in Y_p$. Let

$$I = \{i | 0 \le i \le k - 2 \text{ and } d_G(u, Y_i) = 0 \text{ for some } u \in Y_{k-1}\}.$$
(21)

Set $S = \bigcup_{i \in I} Y_i$. Clearly, $|S| \ge |I|t - 1$.

Claim 4. There exist $i \in I$ and a vertex $v \in Y_i$ such that $d_G(v, Y_{k-1}) = 0$. Furthermore, if $Y_i = Y_p$, then $v \neq z_2$.

Suppose, for a contradiction, that for each $i \in I$, $d_G(v, Y_{k-1}) \geq 1$ for all $v \in Y_i - \{z_2\}$. Then $\sum_{u \in Y_{k-1}} d_G(u, Y_{k-1} \cup S) \geq 2|Y_{k-1}| + |S| - 1 = (|I| + 2)t - 2$. Since $t \geq 3$, we have that $\lceil ((|I| + 2)t - 2)/t \rceil = |I| + 2$. Hence there exists $u \in Y_{k-1}$ such that $d_G(u, Y_{k-1} \cup S) \geq |I| + 2$. On the other hand, $d_G(u, Y_j) \geq 1$ for all $j \in \{0, 1, \ldots, k-2\} - I$. Therefore $d_G(u, \bigcup_{i=0}^{k-1} Y_i) \geq k+1$, a contradiction as $\Delta(G) = k$. This proves the claim.

By Claim 4, let $i_0 \in I$ and $u_{i_0} \in Y_{i_0}$ be such that $d_G(u_{i_0}, Y_{k-1}) = 0$. Furthermore, if $i_0 = p$, then $u_{i_0} \neq z_2$. Let $u_{k-1} \in Y_{k-1}$ be such that $d_G(u_{k-1}, Y_{i_0}) = 0$. Note that $u_{i_0}u_{k-1}$ is not an edge of F by the choice of Y_{k-1} and u_{i_0} . We conclude our proof of the theorem as follows.

First, we assume that $i_0 = 0$. Then it is easy to see that $N_G(u_{k-1}, N_F(y_0)) = \emptyset$, $N_G(y_{k-1}, N_F(u_{k-1})) = \emptyset$, $N_G(u_0, N_F(y_{k-1})) = \emptyset$ and $N_G(y_0, N_F(u_0)) = \emptyset$. Hence $F_{(y_0, u_{k-1}, y_{k-1}, u_0)}$ has no edges in common with G unless y_0y_{k-1} is an edge of $F_{(y_0, u_{k-1}, y_{k-1}, u_0)}$. But in that case, u_0u_{k-1} must be an edge of F, contradicting the choice of u_0 .

Next, we assume that $i_0 \neq 0$. Then as in the above, it is easy to see that $F^1 = F_{(y_{i_0}, u_{k-1}, y_{k-1}, u_{i_0})}$ has only the edge x_0y_0 in common with G. Since $t \geq 3$ and by the choice of Y_{k-1} , we can choose a vertex $v_{k-1} \in Y_{k-1} - \{u_{k-1}\}$ such that $d_F(v_{k-1}) = 1$. Obviously, both $u_{i_0}x_0$ and $v_{k-1}y_0$ are not edges of G. Hence $F^1_{(v_{k-1}, x_0)}$ has no edges in common with G.

In summary, we have proved the theorem.

3 References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).

[2] B. Bollobás and S. Eldridge, Packings of graphs and application to computational complexity, J. Combinatorial Theory (B), 25(1978), 105–124.

[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar., 14(1963), 423–439.

[4] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdös, in "Combinatorial Theory and its Application", Vol. II (P. Erdös, A. Renyi and V. Sós, eds), Colloq. Math. Soc. J. Bolyai 4, North-Holland, Amsterdam, 1970, pp. 601—623.

[5] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly, 67(1960), 55.

[6] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combinatorial Theory (B), 25(1978), 295-302.

[7] P. Slater, S. Teo and H. Yap, Packing a tree with a graph of the same size, Graph Theory, 9(1985), 213–216.

[8] H. Wang and N. Sauer, Packing three copies of a tree into a complete graph, European Journal of Combinatorics, 14(1993), 137-142.

[9] H.P. Yap, Packing of graphs—a survey, Discrete Mathematics, 72 (1988), 395-404.

(Received 28/2/94)