PACKING A FOREST WITH A GRAPH

Hong Wang
Department of Mathematics
Massey University
Palmerston North, New Zealand

Let F be a forest of order n and G a graph of order n. Suppose that $\Delta(G)(\Delta(F)+1) \leq n$. Then, except for three pairs of graphs (G, F), there is a packing of G and F.

1 Introduction

We discuss only finite simple graphs and use standard terminology and notation from [1] except as indicated. For any graph G, we use $V(G)$ and $E(G)$ to denote the vertex set and the edge set of G, respectively. We denote the complement of G by G^{c}. Let G and H be two graphs of order n. We say that there is a packing of G and H if the complement G^{c} contains a subgraph isomorphic to H. In this case, we also say that G and H are packable. There are many papers concerning the packing of two graphs which have a small number of edges. For example, Sauer and Spencer [6] proved that if $|E(G)| \leq n-2$ and $|E(H)| \leq n-2$, then there is a packing of G and H. Bollobás and Eldridge [2] found all the forbidden pairs (G, H) of graphs with $\Delta(G)<n-1, \Delta(H)<n-1,|E(G)|+|E(H)| \leq 2 n-3$ for which there are no packings of G and H. Slater, Teo and Yap [7] proved that if $n \geq 5, G$ is a tree, H has $n-1$ edges and neither G nor H is a star, then there is a packing of G and H. Sauer and Spencer [6] also proved that if $2 \Delta(G) \Delta(H)<n$, then there is a packing of G and H. For more results, see [1, Chapter 8] and [9]. Bollobás and Eldridge [2] conjectured that if $(\Delta(G)+1)(\Delta(H)+1) \leq n+1$, then there is a packing of G and H. This conjecture is still open. Hajnal and Szemerédi [4] proved that if $n=s k(s \geq 3$ and $k \geq 1$) and G is the vertex-disjoint union of k copies of K_{s} and $\Delta(H) \leq k-1$, i.e., $(\Delta(G)+1)(\Delta(H)+1) \leq n$, then there is a packing of G and H. The result in the case $s=3$ was first obtained by Corrádi and Hajnal [3].

In this paper, we consider the case that one of G and H is a forest, i.e., a graph with no cycles. To state our result, we define $k G$ to be the vertex-disjoint union of k copies of G for any positive integer k and graph G. For even positive integer n, there is no packing of the two graphs in each of the following three pairs of graphs: $\left((n / 2) K_{2}, K_{1, n-1}\right),\left(K_{(n / 2)+1} \cup H,(n / 2) K_{2}\right)$ where H is any graph of order $n / 2-1$ and ' U ' means 'vertex-disjoint union', and ($K_{n / 2, n / 2},(n / 2) K_{2}$) with $n / 2$ odd. To see this, we observe that in each pair, the complement of the graph which is not $(n / 2) K_{2}$ does not have a perfect matching. We especially name these three pairs as three forbidden pairs of graphs. We prove the following.

Theorem Let F be a forest of order n and G a graph of order n. Suppose that $\Delta(G)(\Delta(F)+1) \leq n$. Then there is a packing of G and F unless the pair (G, F) is one of the three forbidden pairs of graphs.

For the proof of the theorem, we recall some terminology and notation.
Let G be a graph, U a subset of $V(G)$ and u a vertex of G. As usual, $N_{G}(u)$ is the set of neighbors of $u, d_{G}(u)$ is the degree of u in G and $N_{G}(U)$ is the union of all $N_{G}(u)$ for $u \in U$. We define $N_{G}(u, U)$ to be $N_{G}(u) \cap U$ and let $d_{G}(u, U)=\left|N_{G}(u, U)\right|$. If H is a subgraph of G, we define $d_{G}(u, H)$ to be $d_{G}(u, V(H))$. Then $d_{G}(u, G)$ is just the degree of u in G.

Let σ be a bijection on $V(G)$. We define a graph G_{σ} with $V\left(G_{\sigma}\right)=V(G)$ and $E\left(G_{\sigma}\right)=\{\sigma(u) \sigma(v) \mid u v \in E(G)\}$. Clearly, G_{σ} is isomorphic to G under σ. Let $x_{1}, x_{2}, \ldots, x_{k}$ be distinct vertices of G. Then $G_{\left(x_{1}, x_{2}, \ldots, x_{k}\right)}$ stands for G_{σ} where $\sigma\left(x_{i}\right)=$ $x_{i+1}(1 \leq i \leq k-1), \sigma\left(x_{k}\right)=x_{1}$ and $\sigma(x)=x$ for all $x \in V(G)-\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$.

2 Proof of the Theorem

Let F be a forest of order n and G a graph of order n such that $\Delta(G)(\Delta(F)+1) \leq n$. We use induction on $|E(F)|$ to prove the theorem. The theorem is trivial if $|E(F)|=0$. Assume that the theorem holds at $|E(F)|=m-1$. We shall prove the theorem for $|E(F)|=m$. We may assume that G and F are not packable and then prove that (G, F) is one of the pairs mentioned in the theorem.

We distinguish three cases: $\Delta(F)=1, \Delta(F)=2$ or $\Delta(F) \geq 3$.
Case 1. $\Delta(F)=1$.
In this case, $\Delta(G) \leq n / 2$ and $\delta\left(G^{c}\right) \geq n-1-n / 2=n / 2-1$. As F consists of independent edges and isolated vertices, G^{c} doesn't contain $\lceil(n-1) / 2\rceil$ independent edges. Let b be the edge independence number of G^{c} and $d=n-2 b$. Then $d \geq 2$ if n is even, and $d \geq 3$ if n is odd. By the well known standard proof of Tutte's Theorem [1, pp. 55-57], there exists a maximal subset $S_{0} \subseteq V\left(G^{c}\right)$ such that $o\left(G^{c}-S_{0}\right)=$ $\left|S_{0}\right|+d$, where $o\left(G^{c}-S_{0}\right)$ is the number of odd components of $G^{c}-S_{0}$. Furthermore, $o\left(G^{c}-S\right) \leq|S|+d$ for all subsets $S \subseteq V\left(G^{c}\right)$. If $G^{c}-S_{0}$ has an even component D, let $x \in V(D)$. Then $\left|S_{0} \cup\{x\}\right|+d \geq o\left(G^{c}-S_{0}-x\right) \geq o\left(G^{c}-S_{0}\right)+1=\left|S_{0} \cup\{x\}\right|+d$, contradicting the maximality of S_{0}. Hence $G^{c}-S_{0}$ contains no even components. Let $D_{1}, D_{2}, \ldots, D_{k+d}$ be a list of all odd components of $G^{c}-S_{0}$, where $k=\left|S_{0}\right|$. We may assume that $\left|V\left(D_{1}\right)\right| \leq\left|V\left(D_{2}\right)\right| \leq \cdots \leq\left|V\left(D_{k+d}\right)\right|$. Let $x \in V\left(D_{1}\right)$. Then

$$
\begin{align*}
n / 2-1 & \leq d_{G^{c}}(x) \leq\left|S_{0}\right|+\left|V\left(D_{1}\right)\right|-1 \tag{1}\\
& \leq \frac{1}{2}\left(\left|S_{0}\right|+\left|V\left(D_{1}\right)\right|+\left|V\left(D_{2}\right)\right|+\cdots+\left|V\left(D_{k+d}\right)\right|\right)-1 \tag{2}\\
& =n / 2-1 . \tag{3}
\end{align*}
$$

Hence equality holds in (1), (2) and (3). This implies that $d=2$ and n is even. Moreover, if $S_{0}=\emptyset$, then $\left|V\left(D_{1}\right)\right|=\left|V\left(D_{2}\right)\right|=n / 2, n / 2$ is odd and G^{c} is $2 K_{n / 2}$.

Hence F is $(n / 2) K_{2}$ and G is $K_{n / 2, n / 2}$. If $S_{0} \neq \emptyset$, then $k=n / 2-1,\left|V\left(D_{1}\right)\right|=$ $\left|V\left(D_{i}\right)\right|=1(1 \leq i \leq n / 2+1)$. Furthermore, $V\left(G^{c}\right)-S_{0}$ is an independent set of vertices of G^{c} and $y z \in E\left(G^{c}\right)$ for all $y \in S_{0}$ and all $z \in V\left(G^{c}\right)-S_{0}$. Hence F is $(n / 2) K_{2}$ and G is $K_{(n / 2)+1} \cup H$ where H is a graph of order $n / 2-1$.
Case 2. $\Delta(F)=2$.
In this case, $\Delta(G) \leq n / 3$ and $\delta\left(G^{c}\right) \geq n-1-n / 3 \geq(n-1) / 2$. From this, we can easily deduce that G^{c} is connected. Let $P=x_{1} x_{2} \ldots x_{k}$ be a longest path of G^{c}. Then $k \geq 3$. Moreover, $d_{G^{c}}\left(x_{1}, P\right)+d_{G^{c}}\left(x_{k}, P\right)=d_{G^{c}}\left(x_{1}\right)+d_{G^{c}}\left(x_{k}\right) \geq n-1$. If $k \leq n-1$, then by the well-known Ore's condition [5], G^{c} contains a cycle C with $V(C)=V(P)$. This implies that G^{c} contains a longer path than P as G^{c} is connected. Hence $k=n$ and therefore P contains F as F consists of vertex-disjoint paths.
Case 3. $\Delta(F) \geq 3$.
Let $x_{0} y_{0}$ be an edge of F with $d_{F}\left(x_{0}\right)=1$. By the induction hypothesis, we may assume that $F-x_{0} y_{0}$ is a subgraph of G^{c}. Then $x_{0} y_{0}$ is an edge of G. Let

$$
\begin{align*}
& C=N_{G}\left(x_{0}\right) \cap N_{G}\left(y_{0}\right) \tag{4}\\
& A=N_{G}\left(x_{0}\right)-C \cup\left\{y_{0}\right\} \tag{5}\\
& B=N_{G}\left(y_{0}\right)-C \cup\left\{x_{0}\right\} \tag{6}\\
& Y_{0}=N_{F}\left(y_{0}\right)-\left\{x_{0}\right\} \tag{7}\\
& V_{1}=V(G)-A \cup B \cup C \cup Y_{0} \cup\left\{x_{0}, y_{0}\right\} . \tag{8}
\end{align*}
$$

As there is no packing of G and F, we have the following four claims.
Claim 1. For every $u \in A \cup V_{1}$, there exists $v \in N_{G}\left(x_{0}\right)$ such that $u v$ is an edge of F, i.e., $u v \in E(F)$.

Suppose, for a contradiction, that there exists $u_{0} \in A \cup V_{1}$ such that $u_{0} v \notin E(F)$ for all $v \in N_{G}\left(x_{0}\right)$. Then $u_{0} y_{0} \notin E(G)$ and $x_{0} w \notin E(G)$ for all $w \in N_{F}\left(u_{0}\right)$. Therefore $F_{\left(u_{0}, x_{0}\right)}$ is a subgraph of G^{c}, a contradiction. This proves the claim.

By Claim 1, we have that

$$
\begin{align*}
\left|V_{1}\right| & \leq|A|(\Delta(F)-1)+|C| \Delta(F) . \tag{9}\\
n & =\left|\left\{x_{0}, y_{0}\right\}\right|+|A|+|B|+|C|+\left|Y_{0}\right|+\left|V_{1}\right| \tag{10}\\
& \leq 2+|A|+|B|+|C|+\Delta(F)-1+|A|(\Delta(F)-1)+|C| \Delta(F) \tag{11}\\
& =1+(|A|+|C|+1) \Delta(F)+|B|+|C| \tag{12}\\
& \leq 1+\Delta(G) \Delta(F)+\Delta(G)-1 \tag{13}\\
& =\Delta(G)(\Delta(F)+1) \leq n . \tag{14}
\end{align*}
$$

Hence equality holds in (9) through (14). This implies the following.

$$
\begin{align*}
& d_{G}\left(x_{0}\right)=d_{G}\left(y_{0}\right)=\Delta(G) ; \tag{15}\\
& d_{F}\left(y_{0}\right)=\Delta(F)=d_{F}(u) \text { for all } u \in A \cup C ; \tag{16}\\
& d_{F}\left(u, V_{1}\right)=\Delta(F)-1 \text { for all } u \in A ; \tag{17}\\
& d_{F}\left(u, V_{1}\right)=\Delta(F) \text { for all } u \in C ; \tag{18}
\end{align*}
$$

$$
\begin{align*}
& N_{F}\left(u, V_{1}\right) \cap N_{F}\left(v, V_{1}\right)=\emptyset \text { for all } u, v \in A \cup C \text { with } u \neq v ; \tag{19}\\
& N_{F}\left(u, V_{1}\right) \cap Y_{0}=\emptyset \text { for all } u \in A \cup C . \tag{20}
\end{align*}
$$

Claim 2. $|A|=|B|=0$.
From (15), we see that $|A|=|B|$. Suppose, for a contradiction, that $A \neq \emptyset$. Choose an arbitrary vertex $u \in N_{F}(A) \cap V_{1}$. By (19), $N_{F}(u, C)=\emptyset$. Suppose that $N_{F}(u, B)=\emptyset$. Then it is clear that $N_{G}\left(y_{0}, N_{F}(u)\right)=\emptyset$. It is also clear that $N_{G}\left(x_{0}, Y_{0}\right)=\emptyset$ and $u x_{0} \notin E(G)$. This implies that $F_{\left(x_{0}, u, y_{0}\right)}$ has no edges in common with G, a contradiction. Hence, for all $u \in N_{F}(A) \cap V_{1}$, there exists $v \in B$ such that $u v \in E(F)$. Since $\Delta(F) \geq 3$ and by (17), $d_{F}\left(y, V_{1}\right) \geq 2$ for all $y \in A$. This implies that $|B| \geq 1+|A|$ as F doesn't contain cycles, a contradiction. This proves the claim.

Claim 2 says that $N_{G}\left(x_{0}\right)-\left\{y_{0}\right\}=N_{G}\left(y_{0}\right)-\left\{x_{0}\right\}$. Let $C=\left\{y_{1}, y_{2}, \ldots, y_{k-1}\right\}$, where $k=\Delta(G)$. If $k=1$, then F is $K_{1, n-1}$ and therefore n must be even and G must be $(n / 2) K_{2}$ for otherwise G and F are packable. So we may assume that $k \geq 2$ in the following.

For every $y_{i} \in C$, it is easy to see that $F_{\left(x_{0}, y_{i}\right)}-y_{0} y_{i}$ is a subgraph of G^{c} and the degree of y_{i} in $F_{\left(x_{0}, y_{i}\right)}$ is one. Hence by the similarity, we may assume that $N_{G}\left(y_{0}\right)-\left\{y_{i}\right\}=N_{G}\left(y_{i}\right)-\left\{y_{0}\right\}$. This implies that the subgraph G_{1} of G induced by $N_{G}\left(y_{0}\right) \cup\left\{y_{0}\right\}$ is K_{k+1}. Obviously, G_{1} is a component of G. Let $Y_{i}=N_{F}\left(y_{i}\right)$ for $1 \leq i \leq k-1$. Set $t=\Delta(F)$. Then by (17) and (18), $\left|Y_{0}\right|=t-1$ and $\left|Y_{i}\right|=t$ for $1 \leq i \leq k-1$. Note that Y_{i} is an independent set of vertices of F for all $i \in\{0,1, \ldots k-1\}$ since F contains no cycles.

Claim 3. For all $i \in\{0,1, \ldots, k-1\}, d_{G}\left(z, Y_{i}\right) \geq 2$ for all $z \in Y_{i}$.
Suppose, for a contradiction, that there exist $i \in\{0,1, \ldots, k-1\}$ and a vertex $z_{i} \in Y_{i}$ such that $d_{G}\left(z_{i}, Y_{i}\right) \leq 1$. Choose a vertex $w_{i} \in Y_{i}$ such that $w_{i} \neq z_{i}$ and if $d_{G}\left(z_{i}, Y_{i}\right)=1$ then $w_{i} z_{i} \in E(G)$.

We assume first that $i \neq 0$. Without loss of generality, say $i=1$. It is clear that $N_{G}\left(y_{1}, N_{F}\left(z_{1}\right)\right)=\emptyset$ and $N_{G}\left(z_{1}, N_{F}\left(y_{1}\right)\right) \subseteq\left\{w_{1}\right\}$. Hence $F^{\prime}=F_{\left(y_{1}, z_{1}\right)}$ has at most two edges $x_{0} y_{0}$ and $w_{1} z_{1}$ in common with G. Obviously, $w_{1} y_{1} \notin E\left(F^{\prime}\right)$ as $w_{1} z_{1} \notin E(F)$. As above, it is easy to see that $N_{G}\left(x_{0}, N_{F^{\prime}}\left(w_{1}\right)\right)=\emptyset$. Hence $F_{\left(x_{0}, w_{1}\right)}^{\prime}$ has no edges in common with G, a contradiction.

Next, we assume that $i=0$. As in the above, it is easy to see that $F^{1}=F_{\left(y_{0}, z_{0}\right)}$ has at most one edge $w_{0} z_{0}$ in common with G. As G and F are not packable, $w_{0} z_{0}$ must be an edge of G. As before, since $w_{0} y_{0} \notin E\left(F^{1}\right)$, we have that $N_{G}\left(x_{0}, N_{F^{1}}\left(w_{0}\right)\right)=\emptyset$. Then $w_{0} z_{0}$ is still the only common edge of $F^{2}=F_{\left(w_{0}, x_{0}\right)}^{1}$ and G. But the degree of w_{0} in F^{2} is one. By the argument of Claim 1 and Claim 2, we may assume that G has a component G_{2} which is K_{k+1} and contains $w_{0} z_{0}$. As Claim 3 is true for all $i, 1 \leq i \leq k-1$ and $\Delta(G)=k$, we see that there exists $i \in\{1,2, \ldots, k-1\}$ such that $Y_{i} \cap V\left(G_{2}\right)=\emptyset$. This implies that $F_{\left(w_{0}, y_{i}\right)}^{2}$ has no edges in common with G, a contradiction. This proves the claim.

Since F doesn't contain cycles, we see that there is at most one edge of F between Y_{i} and Y_{j} for any $i, j \in\{0,1, \ldots, k-1\}$ with $i \neq j$. Construct a graph H such that $V(H)=\left\{Y_{0}, Y_{1}, \ldots, Y_{k-1}\right\}$ and $Y_{i} Y_{j} \in E(H)$ if and only if there is an edge of F between Y_{i} and Y_{j}. Then H is a forest as F is a forest. Hence there exist
$i, j \in\{0,1, \ldots, k-1\}$ with $i \neq j$ such that $d_{H}\left(Y_{i}\right) \leq 1$ and $d_{H}\left(Y_{j}\right) \leq 1$. We may assume without loss of generality that $d_{H}\left(Y_{k-1}\right) \leq 1$. If $d_{H}\left(Y_{k-1}\right)=1$, let Y_{p} denote the neighbor of Y_{k-1} in H and $z_{1} z_{2}$ denote the edge of F with $z_{1} \in Y_{k-1}$ and $z_{2} \in Y_{p}$. Let

$$
\begin{equation*}
I=\left\{i \mid 0 \leq i \leq k-2 \text { and } d_{G}\left(u, Y_{i}\right)=0 \text { for some } u \in Y_{k-1}\right\} \tag{21}
\end{equation*}
$$

Set $S=\cup_{i \in I} Y_{i}$. Clearly, $|S| \geq|I| t-1$.
Claim 4. There exist $i \in I$ and a vertex $v \in Y_{i}$ such that $d_{G}\left(v, Y_{k-1}\right)=0$. Furthermore, if $Y_{i}=Y_{p}$, then $v \neq z_{2}$.

Suppose, for a contradiction, that for each $i \in I, d_{G}\left(v, Y_{k-1}\right) \geq 1$ for all $v \in$ $Y_{i}-\left\{z_{2}\right\}$. Then $\sum_{u \in Y_{k-1}} d_{G}\left(u, Y_{k-1} \cup S\right) \geq 2\left|Y_{k-1}\right|+|S|-1=(|I|+2) t-2$. Since $t \geq 3$, we have that $\lceil((|I|+2) t-2) / t\rceil=|I|+2$. Hence there exists $u \in Y_{k-1}$ such that $d_{G}\left(u, Y_{k-1} \cup S\right) \geq|I|+2$. On the other hand, $d_{G}\left(u, Y_{j}\right) \geq 1$ for all $j \in\{0,1, \ldots, k-2\}-I$. Therefore $d_{G}\left(u, \cup_{i=0}^{k-1} Y_{i}\right) \geq k+1$, a contradiction as $\Delta(G)=k$. This proves the claim.

By Claim 4, let $i_{0} \in I$ and $u_{i_{0}} \in Y_{i_{0}}$ be such that $d_{G}\left(u_{i_{0}}, Y_{k-1}\right)=0$. Furthermore, if $i_{0}=p$, then $u_{i_{0}} \neq z_{2}$. Let $u_{k-1} \in Y_{k-1}$ be such that $d_{G}\left(u_{k-1}, Y_{i_{0}}\right)=0$. Note that $u_{i_{0}} u_{k-1}$ is not an edge of F by the choice of Y_{k-1} and $u_{i_{0}}$. We conclude our proof of the theorem as follows.

First, we assume that $i_{0}=0$. Then it is easy to see that $N_{G}\left(u_{k-1}, N_{F}\left(y_{0}\right)\right)=\emptyset$, $N_{G}\left(y_{k-1}, N_{F}\left(u_{k-1}\right)\right)=\emptyset, N_{G}\left(u_{0}, N_{F}\left(y_{k-1}\right)\right)=\emptyset$ and $N_{G}\left(y_{0}, N_{F}\left(u_{0}\right)\right)=\emptyset$. Hence $F_{\left(y_{0}, u_{k-1}, y_{k-1}, u_{0}\right)}$ has no edges in common with G unless $y_{0} y_{k-1}$ is an edge of $F_{\left(y_{0}, u_{k-1}, y_{k-1}, u_{0}\right)}$. But in that case, $u_{0} u_{k-1}$ must be an edge of F, contradicting the choice of u_{0}.

Next, we assume that $i_{0} \neq 0$. Then as in the above, it is easy to see that $F^{1}=$ $F_{\left(y_{i_{0}}, u_{k-1}, y_{k-1}, u_{i_{0}}\right)}$ has only the edge $x_{0} y_{0}$ in common with G. Since $t \geq 3$ and by the choice of Y_{k-1}, we can choose a vertex $v_{k-1} \in Y_{k-1}-\left\{u_{k-1}\right\}$ such that $d_{F}\left(v_{k-1}\right)=1$. Obviously, both $u_{i_{0}} x_{0}$ and $v_{k-1} y_{0}$ are not edges of G. Hence $F_{\left(v_{k-1}, x_{0}\right)}^{1}$ has no edges in common with G.

In summary, we have proved the theorem.

3 References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).
[2] B. Bollobás and S. Eldridge, Packings of graphs and application to computational complexity, J. Combinatorial Theory (B), 25(1978), 105-124.
[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar., 14(1963), 423-439.
[4] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdös, in "Combinatorial Theory and its Application", Vol. II (P. Erdös, A. Renyi and V. Sós, eds), Colloq. Math. Soc. J. Bolyai 4, North-Holland, Amsterdam, 1970, pp. 601-623.
[5] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly, 67(1960), 55.
[6] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combinatorial Theory (B), 25(1978), 295-302.
[7] P. Slater, S. Teo and H. Yap, Packing a tree with a graph of the same size, Graph Theory, 9(1985), 213-216.
[8] H. Wang and N. Sauer, Packing three copies of a tree into a complete graph, European Journal of Combinatorics, 14(1993), 137-142.
[9] H.P. Yap, Packing of graphs-a survey, Discrete Mathematics, 72 (1988), 395-404.

