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Abstract. Let M = {G/K,, C G C K, V K, for some n > 3} where
V is the join operation. The author and N.K. Khachatrian proved that a
connected graph G of order at least 3 is Hamiltonian if

d(u) + d(v) > [N(u) U N(v) U N(w)|

for each triple of vertices u,v,w with d(u,v) = 2 and w € N(u) N N(v)
(where N(x) is the neighborhood of z).

Here we prove that a graph G satisfying the above conditions is
Hamilton-connected if and only if G is 3-connected and G ¢ M.

1 Introduction

We use Bondy and Murty [4] for terminology and notation not defined here and
consider finite simple graphs only.

For each vertex u of a graph G we denote by N(u) the set of all vertices of @
adjacent to u.

Let P be a path of G. We denote by P the path P with a given orientation, and
by ‘P the path P with the reverse orientation. If u,v € V(P), then qu denotes
the consecutive vertices of P from u to v i in the direction specified by P. The same
vertices, in reverse order, are given by v Pu. We use ut to denote the successor of
won P a.nd u” to denote its predecessor.

A path with z and y as end-vertices is called an z—y path. An z—y path is called
a Hamilton path if it contains all the vertices of G. A graph @ is Hamilton-connected
if every two vertices of G are connected by a Hamilton path.

Let A and B be two disjoint sets of vertices of a graph G. We denote by e(4, B)
the number of edges in G with one end in 4 and the other in B.

A graph G of order p > 3 is called pancyclic if G contains a cycle of length [ for
each [ satisfying 3 <[ < p.
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The author® and N.K. Khachatrian proved in |5] the following.
Theorem 1([5]). Let G be a connected graph of order at least 3 where

d(u) +d(v) >| N(u) U N(v) U N(w) |

for each triple of vertices u,v,w with d{u,v) = 2 and w € N(u) N N(v). Then G is
Hamiltonian.

Clearly, Theorem 1 implies Ore’s theorem [6]. A simpler proof of Theorem 1 was
suggested in [2]. Other related results were obtained in [1] and [3].

Theorem 2([3]). Let a graph G satisfy the conditions of Theorem 1. Then either
@ is pancyclic or | V(@) |= 2n and G = K,,,, for some n > 3.

Theorem 3([1]). Let G be a connected graph of order at least 3 where

d(u)+ d(v) >| N(u) U N(v) U N(w) | +1

for each triple of vertices u, v, w with d(u,v) = 2 and w € N(u) N N(v). Then G is
Hamilton-connected.

Denote by Ly the set of all graphs satisfying the conditions of Theorem 1. Let

M={G/Kn, CGC K,V K, for somen > 3}

where V is the join operation.
We prove here the following theorem.

Theorem 4. A graph G from the set Lo is Hamilton-connected if and only if G
is 3-connected and G ¢ M.

We use arguments similar to those in [2].

2 Results
Lemma 1([5]). If G € Ly then
| N(w) N N(v) [2] N(w) \ (N(u) U N(v)) |

for each triple of vertices u, v, w with d(u,v) = 2 and w € N(u) N N(v).

Corollary 1. If G € Lo then | N(u) N N(v) |> 2 for each pair of vertices u,v
with d(u,v) = 2.

Proof. Let w € N(u) N N(v). Then u,v € N(w) \ (N(u) U N(v)). Hence, by
Lemma 1, | N(u) N N(v) [>] N(w) \ (N(u) U N(v)) |> 2.

Lemma 2. Let G € Ly and z,y be two distinct vertices of G. Furthermore,
let P be an z — y path and v € V(G)\ V(P),Nw)NV(P) # 0. If vz ¢ E(G) or
vy ¢ E(G) then there exists an ¢ — y path longer than P.

Proof. Without loss of generality we suppose vy ¢ E(G). Let P be the path
P with orientation from z to y and let wq,- - ,w, denote the vertices of W =
N(v) N V(P) occurring on P in the order of their indices.

n [5] the last name of the present author was transcribed as Hasratian.
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Case 1. n = 1. Then d(v,w{) = 2 and, by Corollary 1, there is a vertex z €
(N(v) 0 N(wf))\ V(P). The z — y path z Pw;vzw; Py is longer than P.

Case 2. n > 2. Clearly, if v is adjacent to two consecutive vertices of P or w} wj' €
E(Q@) for some pair ,7,1 <4 < j < n, then there is a longer z — y path.

Now suppose:

a) v is not adjacent to two consecutive vertices of P,

b) wfw} ¢ E(G) for 1 <1 < j < n, that is: the set W+ = {wf,--- ,wl}is
independent.

Since d(v,w}) = 2 for each i = 1,--- ,n then, by Lemma 1, we have

kd n

(1) 2 INE)NN@) (23| N(w) \ (N(v) U N(wf)) |

=1 =1
If N(v)N N(w}) C V(P) foreachi=1,--- ,n then

(2) 3| N@)nNw) < e(W, W)

and
®3) 2_; | N(wi) \ (N(@)UN(w]")) |> e(W, W) +n
because v € N(w;) \ (N(v) U N(w})) foreachi =1,--- ,n.
But (2) and (3) contradict (1). Hence (N(v) N N(wj)) \ V(P) # 0 for some 1.
Let
z € (N(v)N N(wh))\ V(P).

Then the z — y path ::",ls’uu'zJZ'azl7L ﬁy is longer than P. 0

Proof of Theorem 4.
Clearly, if a graph G is Hamilton-connected then G is 3-connected and G ¢ M. Now

suppose that G is a 3-connected graph from the set Ly. Let = and y be two distinct
vertices of (.

Consider a longest z — y path P with orientation from z to y. Suppose P is not
a Hamilton path. Since G is 3-connected, there exists a vertex v outside P such that

(N@) O V(P)\{z,y} # 0.

Let wy, -+, w, denote the vertices of W = N(v) N V(P) occurring on P in the
order of their indices. Since P is a longest z — y path then, by Lemma 2, w, = z
and w, = y, that is n > 3. Moreover, wj # w;y; for each 7 = 1,--- ,n — 1. Set
Wi = {w1, - ,Wn_1} and W, = {w,, - ,w,}. Using similar arguments as in the
proof of Lemma 2, we can show the following:
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(4) the sets Wit = {wf, -+ ,w}t_;} and W; = {w;,--- ,w,} are independent.

(5) Nw)n N(w})C V(P)foreachi=1,--- ,n—1

(7

)
)
(6) N(v)N N(w;) C V(P)foreachj=2,---,n
) T2 | N(w) N N(wi) [2 £2 | N(w:) \ (N(v) U N(w])) |.
)

(8) Xima | N(v) N N(wy) |2 3, | N(wy) \ (N(v) U N(w;)) |

Furthermore, from (4) and (5) we have

(9) S21 | N(v) N N(w)) |< e(WiH, Wh) +n — 1.

Now let us prove that w} = wj}, for each i =1, ,n — 1. First, note that

10) if wf # w5, then wiwh, € B(G),1 <1 <n—2.
+ +1Wir

Assuming w], # wi,, and wi,wi, € E(G) for some 15,1 <ip <n — 2, we
obtain

(11) T2 [ N(w:) \ (N(v) U N(w))) |2 e(Wi, Wi) +n

because v, Wiy, & Wi wiy € N(wigs,) \ (N(v) U N(wi,,)) and v € N(w;) \
(N(v)UN(w;)) foreachi=1,--- ,n—1.

But (9) and (11) contradict (7). So, (10) is proved.

Case 1. wi # w;.
Then, by (10), wy; wi € E(G). Since, by (4), wywi ¢ E(G) then wi # w;. Hence,
by (10), wywi € E(G).

Repetition of this argument shows that w} # wj,; and w;w € E(G) for each
1=2,---,n—1

Consider the set Dy = N(v) N N(wf). Since d(v,wi) = 2 then, by Corol-
lary 1, | Dy |> 2. If w; € Dy for some 1,2 < 7 < n — 1, then the z — y path
wlvwiwf"ﬁw[wfﬁwn is longer than P. Hence w; ¢ D, for each 2 = 2,--- ,n — L.
Since, by (5), Dy C V(P) then Dy = {wy,wn}.

By similar reasoning we have for the set D, = N(v) N N(wf) : D, C V(P),|
Dy |> 2 and if n > 4, then w; ¢ D, foreach2=3,--- ,n— 1.

Subcase 1.1. w; € D,. It means v,wf,w§ € N(w;)\ (N(v) U N(w{)). Since
d(v,w]) = 2 then, using Lemma 1, we have

2= N(v) N N(wi) [2] N(wn) \ (N(v) U N(wi)) >3,

a contradiction.
Subcase 1.2. w; ¢ D,. Then D, = {wy,w,} and v,wf ,wi € N(w,)\ (N(v) U
N(wy)).

Using Lemma 1 we have

2 =| N(v) N N(w3) [2] N(wa) \ (N(v) U N(w;)) |23,
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a contradiction.
Case 2. w} = w;,, for each 7,1 <1<t —1<n—1, but wl # wy,.
Then, by (4) and (6), we have

(12) 55y | N(o)0 N(w}) |< (W5, W) +m— 1.
If wy wi € E(G) then

(13) E5a | N(wj) \ (N(v) U N(w7)) [= e(W;, Wa) +n
because w;i € N(w;) \ (N(v) U N(w;)) and

v € N(w;)\ (N(v)U N(wj)) for each j = 2,--- ,n. But (12) and (13) contra-
dict (8).

Hence w; w;} € E(G). But then the z — y path wllgwt_lthw{wfﬁwn is longer
than P, a contradiction.

So wi = wi, foreach 2 =1,--- ,n — 1. Clearly, the path P, = wlﬁwivwiﬂﬁwn
is a longest = — y path for each z = 1,--+ ,n — 1. Repeating the arguments above
with P; and w] instead of P and v we obtain w}w; € E(G) for each pair 7,5,1 <
i<n-—1,1 <j <n. Hence, by (5), | N(v)N N(w}) |=n for eachs=1,--- ,n—1.
Since

v,wl, -, wiy € N(2) \ (N(v)U N(w)))

then, using Lemma 1, we obtain
n = N(v) N N(w}) [2] N@)\ (Vo) U N(w)) 2 n.
Therefore
(14) N(z)\ (N(v)U N(wf)) = {v,wf, -+ ,wi}.

Let us prove that the set Vo = V(@) \ (V(P) U {v}) is empty. Suppose Vi # 0.
Since G is connected then there exists a vertex z € Vo with N(z) N V(P) # 0.
Then, by Lemma 2, z is adjacent to z. By (14), z ¢ N(z) \ (N(v) U N(w{)).
Furthermore, zwi ¢ E(G) because P is a longest ¢ —y path. Hence zv € E(Q).
But then the z — y path zzvw, Pw, is longer than P, a contradiction.Therefore

Vo=0,V(G)=V(P)U{v}and G € M. O

A graph G of order at least 3 is called an Ore graph if d(u) + d{v) >| V(G) | for

each pair of nonadjacent vertices u,v of G.

Corollary 2. An Ore graph G is Hamilton-connected if and only if G is 3-
connected and G ¢ M.

Finally note the following. If G is a graph satisfying the conditons of Theorem 3
then G ¢ M. Moreover, | N(u) N N(v) |> 3 for each pair of vertices u,v of G with
d(u,v) = 2. (It is possible to prove this using the same argument as in the proof of
Corollary 1). We deduce that G is 3-connected. Therefore Theorem 3 is a corollary
of Theorem 4. From Theorem 3 we have the following.
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Corollary 3. ([7]). A graph G of order at least 3 is Hamilton-connected if
d(u) 4+ d(v) >| V(@) | +1 for each pair of nonadjacent vertices u,v of G.
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