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Abstract. Let M = {G / Kn,n ~ G ~ Kn V for some n 2:: 3} where 
V is the join operation. The author and N.K. Khachatrian proved that a 
connected graph G of order at least 3 is Hamiltonian if 

d(u) + d(v) 2:: IN(u) U N(v) U N(w)1 

for each triple of vertices U,V,w with d(u,v) = 2 and w E N(u) n N(v) 
(where N( x) is the neighborhood of x). 

Here we prove that a graph G satisfying the above conditions is 
Hamilton-connected if and only if G is 3-connected and G r:J. M. 

1 Introduction 

We use Bondy and Murty [4J for terminology and notation not defined here and 
consider finite simple graphs only. 

For each vertex u of a graph G we denote by N( u) the set of all vertices of G 
adjacent to u. 

Let P be a path of G. We denote by P the path P with a given orientation, and 
~ -by P the path P with the reverse orientation. If u, v E V(P), then uPv denotes 

the consecutive vertices of P from u to v in the direction specified by P. The same 
~ 

vertices, in reverse order, are given by v P u. We use u+ to denote the successor of 
u on P and u- to denote its predecessor. 

A path with x and y as end-vertices is called an x-y path. An x-y path is called 
a Hamilton path if it contains all the vertices of G. A graph G is Hamilton-connected 
if every two vertices of G are connected by a Hamilton path. 

Let A and B be two disjoint sets of vertices of a graph G. We denote by e(A, B) 
the number of edges in G with one end in A and the other in B. 

A graph G of order p 2:: 3 is called pancyclic if G contains a cycle of length 1 for 
each 1 satisfying 3 ::; I ::; p. 
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The authorl and N .K. Khachatrian proved in [5] the following. 
Theorem 1([5]). Let G be a connected graph of order at least 3 where 

d(u) + d(v) I N(u) U N(v) U N(w) I 

for each triple of vertices u,v,w with d(u,v) = 2 and w E N(u) n N(v). Then Gis 
Hamiltonian. 

Clearly, Theorem 1 implies Ore's theorem [6]. A simpler proof of Theorem 1 was 
suggested in Other related results were obtained in [1] and [3]. 

Theorem 2([3]). Let a graph G satisfy the conditions of Theorem 1. Then either 
G is pancyclic or I V( G) 2n and G Kn,n for some n 2: 3. 

Theorem 3([1]). Let G be a connected graph of order at least 3 where 

d( u) + d( v) N ( u) U N ( v) U N ( w) 1 + 1 

for each triple of vertices u,v,w with d(u,v) = 2 and w E N(u) n N(v). Then Gis 
Hamilton-connected. 

Denote by La the set of all graphs satisfying the conditions of Theorem 1. Let 

M = {G / Kn,n ~ G ~ Kn V for some n 2: 3} 

where V is the join operation. 
We prove here the following theorem. 
Theorem 4. A graph G from the set La is Hamilton-connected if and only if G 

is 3-connected and G tf. M. 
We use arguments similar to those in [2]. 

2 Results 

Lemma 1([5]). If G E La then 

1 N(u) n N(v) 12:1 N(w) \ (N(u) U N(v)) 1 

for each triple of vertices u,v,w with d(u,v) = 2 and w E N(u) n N(v). 
Coronary 1. If G E La then 1 N( u) n N( v) 12: 2 for each pair of vertices u, v 

with d( u, v) = 2. 
Proof. Let w E N(u) n N(v). Then u,v E N(w) \ (N(u) U N(v)). Hence, by 

Lemma 1, 1 N(u) n N(v) 12:1 N(w) \ (N(u) U N(v)) 12: 2. 
Lemma 2. Let G E La and x, y be two distinct vertices of G. Furthermore, 

let P be an x y path and v E V(G) \ V(P), N(v) n V(P) :f:. 0. If vx tf. E(G) or 
vy tf. E( G) then there exists an x - y path longer than P. 

Proof. Without loss of generality we suppose vy tf. E( G). Let P be the path 
P with orientation from x to y and let WI,'" ,Wn denote the vertices of W 
N(v) n V(P) occurring on P in the order of their indices. 

1 In [5] the last name of the present author was transcribed as Hasratian. 
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Case 1. n 1. Then d( v, wt) 2 and, by Corollary 1, there is a vertex z E 

(N(v) n N(wt)) \ V(P). The x - y path XPWlvzWt Py is longer than P. 

Case 2. n ~ 2. Clearly, if v is adjacent to two consecutive vertices of P or wtwj E 

E( G) for some pair i, i, 1 :::; i < j :::; n, then there is a longer x - y path. 

Now suppose: 

a) v is not adjacent to two consecutive vertices of P, 

b) wtwj rf. E(G) for 1 ::; i < j ::; n, that is: the set W+ 
independent. 

Since d( v, wt) = 2 for each iI, .. ,n then, by Lemma 1, we have 

n n 

(1) L I N(v) n N(wt) I~ L I N(wi) \ (N(v) U N(wt)) I . 
i=1 ;'=1 

If N(v) n N(wt) ~ V(P) for each i = 1"" ,n then 

n 

(2) L 1 N(v) n N(wt) I::; e(W, W+) 
i=1 

and 
n 

(3) L I N(w;.) \ (N(v) U N(wt)) e(W, W+) +n 

because v E N(wi) \ (N(v) U N(wt)) for each i = 1"" ,n. 
But (2) and (3) contradict (1). Hence (N(v) n N(wt)) \ V(P) -I- 0 for some i. 

Let 
z E (N(v) n N(wt)) \ V(P). 

Then the x - y path XPWivzwt Py is longer than P. o 

Proof of Theorem 4. 
Clearly, if a graph G is Hamilton-connected then G is 3-connected and G rf. M. Now 
suppose that G is a 3-connected graph from the set Lo. Let x and y be two distinct 
vertices of G. 

Consider a longest x - y path P with orientation from x to y. Suppose P is not 
a Hamilton path. Since G is 3-connected, there exists a vertex v outside P such that 

(N(v) n V(P)) \ {x,y} -I- 0. 

Let WI,'" ,wn denote the vertices of W = N(v) n V(P) occurring on P in the 
order of their indices. Since P is a longest x - y path then, by Lemma 2, WI = x 

and Wn = y, that is n ~ 3. Moreover, wt -I- Wi+l for each i = 1"" ,n - 1. Set 
WI = {WI,'" ,Wn -l} and W2 = {W2,'" ,wn }. Using similar arguments as in the 
proof of Lemma 2, we can show the following: 
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(4) the sets W/ {wi,·' W;t-l} and W2- {wz ,", w;J are independent. 

(5) N(v) n N(wt) ~ V(P) for each i 1"" ,n 1. 

(6) N(v) n N(wj) ~ V(P) for each j = 2"" ,n. 

(7) 1 N(v) n N(wt) 1 N(Wi) \ (N(v) U N(wt)) I. 

(8) 1 N(v) n N(wj) 1 N(wj) \ (N(v) U N(wj)) I. 

Furthermore, from (4) and (5) we have 

(9) 1 N(v) n N(wt) e(W/, WI) + n-l. 

Now let us prove that wt = Wi+l for each i = 1"" ,n - 1. First, note that 

Assuming 
obtain 

(11) I N(w,) \ (N(v) U N(wt)) e(W1+, Wd + n 

because v, w1+io W/, w1+io E N( WI+io) \ (N( v) U N( Wi+io)) and v E N( Wi) \ 
(N(v) U N(wt)) for each i = 1"" ,n 1. 

But (9) and (11) contradict (7). So, (10) is proved. 

Case 1. wi f wz· 
Then, by (10), wzwt E E(G). Since, by (4), WZw3 tf. E(G) then wt f w3. Hence, 
by (10), W3Wt E E(G). 

Repetition of this argument shows that wt f wi+! and wiwt E E(G) for each 
i = 2"" ,n - 1. 

Consider the set Dl = N(v) n N(wi). Since d(v,wt) = 2 then, by Corol­
lary 1, 1 DI 12: 2. If Wi E Dl for some i,2 ::; i ::; n - 1, then the x - y path 
WIVWiWi Pwiwt PWn is longer than P. Hence Wi rf- Dl for each i = 2"" ,n 1. 
Since, by (5), DI ~ V(P) then Dl = {WI,Wn }. 

By similar reasoning we have for the set D2 = N(v) n N(wt) : D2 ~ V(P),I 
D2 12: 2 and if n 2: 4, then Wi tf. D2 for each i = 3, ... ,n - l. 

Subcase 1.1. WI E D2 • It means v,wi,wt E N(WI) \ (N(v)UN(wi)). Since 
d( v, wi) = 2 then, using Lemma 1, we have 

2 =1 N(v) n N(wi) 12:1 N(WI) \ (N(v) U N(wi)) 12: 3, 

a contradiction. 
Subcase 1.2. WI tf. D2. Then D2 = {W2,Wn } and v,wi,wt E N(wn ) \ (N(v) U 

N(wt))· 
Using Lemma 1 we have 

2 =1 N(v) n N(wt) 12:1 N(wn ) \ (N(v) U N(wt)) 12: 3, 
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a contradiction. 
Case 2. Wi+l for each i, 1 ~ i ~ t - 1 < n - 1, but wi -# Wi+l' 

Then, by (4) and (6), we have 

(12) 2:j=2 I N(v) n N(w;) e(W2-, W2) + n - L 

If W t wi t/. E( G) then 

(13) 2:j=2 I N(wj) \ (N(v) U N(w;)) I~ e(W2-, W2) + n 

because wi E N(wt) \ (N(v) U N(wt )) and 

v E N(wj) \ (N(v) U N(w;)) for each j = 2,··· ,n. But (12) and (13) contra­
dict (8). 

Hence wtwi E E(G). But then the x y path WIPWt-lVWtwtwi PWn is longer 
than P, a contradiction. 

So wt wi+! for each i = 1, ... ,n - 1. Clearly, the path Pi WIPWiVWi+lPWn 
is a longest x y path for each iI, ... ,n 1. Repeating the arguments above 
with Pi. and wt instead of P and v we obtain wtWj E E(G) for each pair i,j, 1 ~ 
i ~ n 1,1::; j ::; n. Hence, by (5),1 N(v) n N(wt) n for each i = 1,··· ,n-1. 
Since 

v,wt,··· ,W~_l E N(x)\(N(v)UN(wt)) 

then, using Lemma 1, we obtain 

n =1 N(v) n N(wt) I~I N(x) \ (N(v) U N(wt)) I~ n. 

Therefore 

(14) N(x) \ (N(v) U N(wt)) = {v,wt,··· ,W~_l}' 

Let us prove that the set Vo = V( G) \ (V(P) U {v}) is empty. Suppose Va # 0. 
Since G is connected then there exists a vertex z E Va with N(z) n Yep) # 0. 
Then, by Lemma 2, z is adjacent to x. By (14), z t/. N(x) \ (N(v) U N(wt)). 
Furthermore, zwt t/. E( G) because P is a longest x - y path. Hence zv E E( G). 
But then the x y path XZVW2PWn is longer than P, a contradiction. Therefore 
Va = 0, V(G) yep) U {v} and GEM. 0 

A graph G of order at least 3 is called an Ore graph if d( u) + d( v) ~ I V( G) I for 
each pair of nonadjacent vertices u, v of G. 

Corollary 2. An Ore graph G is Hamilton-connected if and only if G is 3-
connected and G t/. M. 

Finally note the following. If G is a graph satisfying the conditons of Theorem 3 
then G rJ M. Moreover, IN(u) n N(v) I~ 3 for each pair of vertices u,V of G with 
d( u, v) 2. (It is possible to prove this using the same argument as in the proof of 
Corollary 1). We deduce that G is 3-connected. Therefore Theorem 3 is a corollary 
of Theorem 4. From Theorem 3 we have the following. 
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Corollary 3. ([7]). A graph G of order at least 3 is Hamilton-connected if 
d( u) + d( v) 2: I V( G) I + 1 for each pair of nonadjacent vertices u, v of G. 
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