A criterion for some Hamiltonian graphs to be Hamilton-connected

A.S. Asratian
University of Twente
Department of Applied Mathematics
P.O. Box 217, 7500 AE Enschede
The Netherlands

Abstract. Let $\mathcal{M}=\left\{G / K_{n, n} \subseteq G \subseteq K_{n} \vee \overline{K_{n}}\right.$ for some $\left.n \geq 3\right\}$ where \checkmark is the join operation. The author and N.K. Khachatrian proved that a connected graph G of order at least 3 is Hamiltonian if

$$
d(u)+d(v) \geq|N(u) \cup N(v) \cup N(w)|
$$

for each triple of vertices u, v, w with $d(u, v)=2$ and $w \in N(u) \cap N(v)$ (where $N(x)$ is the neighborhood of x).

Here we prove that a graph G satisfying the above conditions is Hamilton-connected if and only if G is 3 -connected and $G \notin \mathcal{M}$.

1 Introduction

We use Bondy and Murty [4] for terminology and notation not defined here and consider finite simple graphs only.

For each vertex u of a graph G we denote by $N(u)$ the set of all vertices of G adjacent to u.

Let P be a path of G. We denote by \vec{P} the path P with a given orientation, and by \overleftarrow{P} the path P with the reverse orientation. If $u, v \in V(P)$, then $u \vec{P} v$ denotes the consecutive vertices of P from u to v in the direction specified by \vec{P}. The same vertices, in reverse order, are given by $v \overleftarrow{P} u$. We use u^{+}to denote the successor of u on \vec{P} and u^{-}to denote its predecessor.

A path with x and y as end-vertices is called an $x-y$ path. An $x-y$ path is called a Hamilton path if it contains all the vertices of G. A graph G is Hamilton-connected if every two vertices of G are connected by a Hamilton path.

Let A and B be two disjoint sets of vertices of a graph G. We denote by $e(A, B)$ the number of edges in G with one end in A and the other in B.

A graph G of order $p \geq 3$ is called pancyclic if G contains a cycle of length l for each l satisfying $3 \leq l \leq p$.

The author ${ }^{1}$ and N.K. Khachatrian proved in $[5]$ the following.
Theorem $1([5])$. Let G be a connected graph of order at least 3 where

$$
d(u)+d(v) \geq|N(u) \cup N(v) \cup N(w)|
$$

for each triple of vertices u, v, w with $d(u, v)=2$ and $w \in N(u) \cap N(v)$. Then G is Hamiltonian.

Clearly, Theorem 1 implies Ore's theorem [6]. A simpler proof of Theorem 1 was suggested in [2]. Other related results were obtained in [1] and [3].

Theorem $2([3])$. Let a graph G satisfy the conditions of Theorem 1. Then either G is pancyclic or $|V(G)|=2 n$ and $G=K_{n, n}$ for some $n \geq 3$.

Theorem $3([1])$. Let G be a connected graph of order at least 3 where

$$
d(u)+d(v) \geq|N(u) \cup N(v) \cup N(w)|+1
$$

for each triple of vertices u, v, w with $d(u, v)=2$ and $w \in N(u) \cap N(v)$. Then G is Hamilton-connected.

Denote by L_{0} the set of all graphs satisfying the conditions of Theorem 1 . Let

$$
\mathcal{M}=\left\{G / K_{n, n} \subseteq G \subseteq K_{n} \vee \bar{K}_{n} \text { for some } n \geq 3\right\}
$$

where V is the join operation.
We prove here the following theorem.
Theorem 4. A graph G from the set L_{0} is Hamilton-connected if and only if G is 3-connected and $G \notin \mathcal{M}$.

We use arguments similar to those in [2].

2 Results

Lemma $1([5])$. If $G \in L_{0}$ then

$$
|N(u) \cap N(v)| \geq|N(w) \backslash(N(u) \cup N(v))|
$$

for each triple of vertices u, v, w with $d(u, v)=2$ and $w \in N(u) \cap N(v)$.
Corollary 1. If $G \in L_{0}$ then $|N(u) \cap N(v)| \geq 2$ for each pair of vertices u, v with $d(u, v)=2$.

Proof. Let $w \in N(u) \cap N(v)$. Then $u, v \in N(w) \backslash(N(u) \cup N(v))$. Hence, by Lemma $1,|N(u) \cap N(v)| \geq|N(w) \backslash(N(u) \cup N(v))| \geq 2$.

Lemma 2. Let $G \in L_{0}$ and x, y be two distinct vertices of G. Furthermore, let P be an $x-y$ path and $v \in V(G) \backslash V(P), N(v) \cap V(P) \neq \emptyset$. If $v x \notin E(G)$ or $v y \notin E(G)$ then there exists an $x-y$ path longer than P.

Proof. Without loss of generality we suppose $v y \notin E(G)$. Let \vec{P} be the path P with orientation from x to y and let w_{1}, \cdots, w_{n} denote the vertices of $W=$ $N(v) \cap V(P)$ occurring on P in the order of their indices.

[^0]Case 1. $n=1$. Then $d\left(v, w_{1}^{+}\right)=2$ and, by Corollary 1 , there is a vertex $z \in$ $\left(N(v) \cap N\left(w_{1}^{+}\right)\right) \backslash V(P)$. The $x-y$ path $x \vec{P} w_{1} v z w_{1}^{+} \vec{P} y$ is longer than P.

Case 2. $n \geq 2$. Clearly, if v is adjacent to two consecutive vertices of P or $w_{i}^{+} w_{j}^{+} \in$ $E(G)$ for some pair $i, j, 1 \leq i<j \leq n$, then there is a longer $x-y$ path.

Now suppose:

a) v is not adjacent to two consecutive vertices of P,
b) $w_{i}^{+} w_{j}^{+} \notin E(G)$ for $1 \leq i<j \leq n$, that is: the set $W^{+}=\left\{w_{1}^{+}, \cdots, w_{n}^{+}\right\}$is independent.

Since $d\left(v, w_{i}^{+}\right)=2$ for each $i=1, \cdots, n$ then, by Lemma 1 , we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left|N(v) \cap N\left(w_{i}^{+}\right)\right| \geq \sum_{i=1}^{n}\left|N\left(w_{i}\right) \backslash\left(N(v) \cup N\left(w_{i}^{+}\right)\right)\right| \tag{1}
\end{equation*}
$$

If $N(v) \cap N\left(w_{i}^{+}\right) \subseteq V(P)$ for each $i=1, \cdots, n$ then

$$
\begin{equation*}
\sum_{i=1}^{n}\left|N(v) \cap N\left(w_{i}^{+}\right)\right| \leq e\left(W, W^{+}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n}\left|N\left(w_{i}\right) \backslash\left(N(v) \cup N\left(w_{i}^{+}\right)\right)\right| \geq e\left(W, W^{+}\right)+n \tag{3}
\end{equation*}
$$

because $v \in N\left(w_{i}\right) \backslash\left(N(v) \cup N\left(w_{i}^{+}\right)\right)$for each $i=1, \cdots, n$.
But (2) and (3) contradict (1). Hence $\left(N(v) \cap N\left(w_{i}^{+}\right)\right) \backslash V(P) \neq \emptyset$ for some i. Let

$$
z \in\left(N(v) \cap N\left(w_{i}^{+}\right)\right) \backslash V(P)
$$

Then the $x-y$ path $x \vec{P} w_{i} v z w_{i}^{+} \vec{P} y$ is longer than P.

Proof of Theorem 4.

Clearly, if a graph G is Hamilton-connected then G is 3 -connected and $G \notin \mathcal{M}$. Now suppose that G is a 3 -connected graph from the set L_{0}. Let x and y be two distinct vertices of G.

Consider a longest $x-y$ path \vec{P} with orientation from x to y. Suppose P is not a Hamilton path. Since G is 3 -connected, there exists a vertex v outside P such that

$$
(N(v) \cap V(P)) \backslash\{x, y\} \neq \emptyset
$$

Let w_{1}, \cdots, w_{n} denote the vertices of $W=N(v) \cap V(P)$ occurring on P in the order of their indices. Since P is a longest $x-y$ path then, by Lemma $2, w_{1}=x$ and $w_{n}=y$, that is $n \geq 3$. Moreover, $w_{i}^{+} \neq w_{i+1}$ for each $i=1, \cdots, n-1$. Set $W_{1}=\left\{w_{1}, \cdots, w_{n-1}\right\}$ and $W_{2}=\left\{w_{2}, \cdots, w_{n}\right\}$. Using similar arguments as in the proof of Lemma 2, we can show the following:
(4) the sets $W_{1}^{+}=\left\{w_{1}^{+}, \cdots, w_{n-1}^{+}\right\}$and $W_{2}^{-}=\left\{w_{2}^{-}, \cdots, w_{n}^{-}\right\}$are independent.
(5) $N(v) \cap N\left(w_{i}^{+}\right) \subseteq V(P)$ for each $i=1, \cdots, n-1$.
(6) $N(v) \cap N\left(w_{j}^{-}\right) \subseteq V(P)$ for each $j=2, \cdots, n$.
(7) $\sum_{i=1}^{n-1}\left|N(v) \cap N\left(w_{i}^{+}\right)\right| \geq \sum_{i=1}^{n-1}\left|N\left(w_{i}\right) \backslash\left(N(v) \cup N\left(w_{i}^{+}\right)\right)\right|$.
(8) $\sum_{j=2}^{n}\left|N(v) \cap N\left(w_{j}^{-}\right)\right| \geq \sum_{j=2}^{n}\left|N\left(w_{j}\right) \backslash\left(N(v) \cup N\left(w_{j}^{-}\right)\right)\right|$.

Furthermore, from (4) and (5) we have
(9) $\sum_{i=1}^{n-1}\left|N(v) \cap N\left(w_{i}^{+}\right)\right| \leq e\left(W_{1}^{+}, W_{1}\right)+n-1$.

Now let us prove that $w_{i}^{+}=w_{i+1}^{-}$for each $i=1, \cdots, n-1$. First, note that
(10) if $w_{i}^{+} \neq w_{i+1}^{-}$then $w_{i+1}^{-} w_{i+1}^{+} \in E(G), 1 \leq i \leq n-2$.

Assuming $w_{i_{0}}^{+} \neq w_{1+i_{0}}^{-}$and $w_{1+i_{0}}^{-} w_{1+i_{0}}^{+} \notin E(G)$ for some $i_{0}, 1 \leq i_{0} \leq n-2$, we obtain
(11) $\sum_{i=1}^{n-1}\left|N\left(w_{i}\right) \backslash\left(N(v) \cup N\left(w_{i}^{+}\right)\right)\right| \geq e\left(W_{1}^{+}, W_{1}\right)+n$
because $v, w_{1+i_{0}}^{-} \notin W_{1}^{+}, w_{1+i_{0}}^{-} \in N\left(w_{1+i_{0}}\right) \backslash\left(N(v) \cup N\left(w_{1+i_{0}}^{+}\right)\right)$and $v \in N\left(w_{i}\right) \backslash$ $\left(N(v) \cup N\left(w_{i}^{+}\right)\right)$for each $i=1, \cdots, n-1$.
But (9) and (11) contradict (7). So, (10) is proved.
Case 1. $w_{1}^{+} \neq w_{2}^{-}$.
Then, by (10), $w_{2}^{-} w_{2}^{+} \in E(G)$. Since, by (4), $w_{2}^{-} w_{3}^{-} \notin E(G)$ then $w_{2}^{+} \neq w_{3}^{-}$. Hence, by (10), $w_{3}^{-} w_{3}^{+} \in E(G)$.

Repetition of this argument shows that $w_{i}^{+} \neq w_{i+1}^{-}$and $w_{i}^{--} w_{i}^{+} \in E(G)$ for each $i=2, \cdots, n-1$.

Consider the set $D_{1}=N(v) \cap N\left(w_{1}^{+}\right)$. Since $d\left(v, w_{1}^{+}\right)=2$ then, by Corollary $1,\left|D_{1}\right| \geq 2$. If $w_{i} \in D_{1}$ for some $i, 2 \leq i \leq n-1$, then the $x-y$ path $w_{1} v w_{i} w_{1}^{+} \vec{P} w_{i}^{-} w_{i}^{+} \vec{P} w_{n}$ is longer than P. Hence $w_{i} \notin D_{1}$ for each $i=2, \cdots, n-1$. Since, by (5), $D_{1} \subseteq V(P)$ then $D_{1}=\left\{w_{1}, w_{n}\right\}$.

By similar reasoning we have for the set $D_{2}=N(v) \cap N\left(w_{2}^{+}\right): D_{2} \subseteq V(P)$, | $D_{2} \mid \geq 2$ and if $n \geq 4$, then $w_{i} \notin D_{2}$ for each $i=3, \cdots, n-1$.

Subcase 1.1. $w_{1} \in D_{2}$. It means $v, w_{1}^{+}, w_{2}^{+} \in N\left(w_{1}\right) \backslash\left(N(v) \cup N\left(w_{1}^{+}\right)\right)$. Since $d\left(v, w_{1}^{+}\right)=2$ then, using Lemma 1 , we have

$$
2=\left|N(v) \cap N\left(w_{1}^{+}\right)\right| \geq\left|N\left(w_{1}\right) \backslash\left(N(v) \cup N\left(w_{1}^{+}\right)\right)\right| \geq 3,
$$

a contradiction.
Subcase 1.2. $w_{1} \notin D_{2}$. Then $D_{2}=\left\{w_{2}, w_{n}\right\}$ and $v, w_{1}^{+}, w_{2}^{+} \in N\left(w_{n}\right) \backslash(N(v) \cup$ $\left.N\left(w_{2}^{+}\right)\right)$.

Using Lemma 1 we have

$$
2=\left|N(v) \cap N\left(w_{2}^{+}\right)\right| \geq\left|N\left(w_{n}\right) \backslash\left(N(v) \cup N\left(w_{2}^{+}\right)\right)\right| \geq 3,
$$

a contradiction.
Case 2. $w_{i}^{+}=w_{i+1}^{-}$for each $i, 1 \leq i \leq t-1<n-1$, but $w_{t}^{+} \neq w_{t+1}^{-}$.
Then, by (4) and (6), we have
(12) $\sum_{j=2}^{n}\left|N(v) \cap N\left(w_{j}^{-}\right)\right| \leq e\left(W_{2}^{-}, W_{2}\right)+n-1$.

If $w_{t}^{-} w_{t}^{+} \notin E(G)$ then
(13) $\sum_{j=2}^{n}\left|N\left(w_{j}\right) \backslash\left(N(v) \cup N\left(w_{j}^{-}\right)\right)\right| \geq e\left(W_{2}^{-}, W_{2}\right)+n$
because $w_{t}^{+} \in N\left(w_{t}\right) \backslash\left(N(v) \cup N\left(w_{t}^{-}\right)\right)$and
$v \in N\left(w_{j}\right) \backslash\left(N(v) \cup N\left(w_{j}^{-}\right)\right)$for each $j=2, \cdots, n$. But (12) and (13) contradict (8).

Hence $w_{t}^{-} w_{t}^{+} \in E(G)$. But then the $x-y$ path $w_{1} \vec{P} w_{t-1} v w_{t} w_{t}^{-} w_{t}^{+} \vec{P} w_{n}$ is longer than P, a contradiction.

So $w_{i}^{+}=w_{i+1}^{-}$for each $i=1, \cdots, n-1$. Clearly, the path $P_{i}=w_{1} \vec{P} w_{i} v w_{i+1} \vec{P} w_{n}$ is a longest $x-y$ path for each $i=1, \cdots, n-1$. Repeating the arguments above with P_{i} and w_{i}^{+}instead of P and v we obtain $w_{i}^{+} w_{j} \in E(G)$ for each pair $i, j, 1 \leq$ $i \leq n-1,1 \leq j \leq n$. Hence, by (5), $\left|N(v) \cap N\left(w_{i}^{+}\right)\right|=n$ for each $i=1, \cdots, n-1$. Since

$$
v, w_{1}^{+}, \cdots, w_{n-1}^{+} \in N(x) \backslash\left(N(v) \cup N\left(w_{1}^{+}\right)\right)
$$

then, using Lemma 1 , we obtain

$$
n=\left|N(v) \cap N\left(w_{1}^{+}\right)\right| \geq\left|N(x) \backslash\left(N(v) \cup N\left(w_{1}^{+}\right)\right)\right| \geq n .
$$

Therefore

$$
\begin{equation*}
N(x) \backslash\left(N(v) \cup N\left(w_{1}^{+}\right)\right)=\left\{v, w_{1}^{+}, \cdots, w_{n-1}^{+}\right\} . \tag{14}
\end{equation*}
$$

Let us prove that the set $V_{0}=V(G) \backslash(V(P) \cup\{v\})$ is empty. Suppose $V_{0} \neq \emptyset$. Since G is connected then there exists a vertex $z \in V_{0}$ with $N(z) \cap V(P) \neq \emptyset$. Then, by Lemma 2, z is adjacent to x. By (14), $z \notin N(x) \backslash\left(N(v) \cup N\left(w_{1}^{+}\right)\right)$. Furthermore, $z w_{1}^{+} \notin E(G)$ because P is a longest $x-y$ path. Hence $z v \in E(G)$. But then the $x-y$ path $x z v w_{2} \vec{P} w_{n}$ is longer than P, a contradiction. Therefore $V_{0}=\emptyset, V(G)=V(P) \cup\{v\}$ and $G \in \mathcal{M}$.

A graph G of order at least 3 is called an Ore graph if $d(u)+d(v) \geq|V(G)|$ for each pair of nonadjacent vertices u, v of G.

Corollary 2. An Ore graph G is Hamilton-connected if and only if G is 3connected and $G \notin \mathcal{M}$.

Finally note the following. If G is a graph satisfying the conditons of Theorem 3 then $G \notin \mathcal{M}$. Moreover, $|N(u) \cap N(v)| \geq 3$ for each pair of vertices u, v of G with $d(u, v)=2$. (It is possible to prove this using the same argument as in the proof of Corollary 1). We deduce that G is 3 -connected. Therefore Theorem 3 is a corollary of Theorem 4. From Theorem 3 we have the following.

Corollary 3. ([7]). A graph G of order at least 3 is Hamilton-connected if $d(u)+d(v) \geq|V(G)|+1$ for each pair of nonadjacent vertices u, v of G.

Acknowledgements

I thank H.J. Veldman and H.J. Broersma for their helpful comments. Also I thank all members of the discrete mathematics group of the Department of Applied Mathematics for their kind hospitality during my visit.

References

[1] A.S. Asratian, O.A. Ambartsumian and G.V. Sarkisian, Some local conditions for the hamiltonicity and pancyclicity of a graph (Russian), Doclady Academ. Nawk Armenian SSR, v. 91, No. 1, 1990, 19-22.
[2] A.S. Asratian, H.J. Broersma, J. van den Heuvel and H.J. Veldman, On graphs satisfying a local Ore-type condition. Preprint of Twente University,1993.
[3] A.S. Asratian and G.V. Sarkisian, On cyclic properties of some hamiltonian graphs (Russian), Discretnaja Mathematica, v. 3, No. 4, 1991, 91-104.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
[5] A.S. Hasratian and N.K. Khachatrian, Some localization theorems on hamiltonian circuits, J. of Combin. Theory B49, No. 2, 1990, 287-294.
[6] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly, 67, 1969, 55.
[7] O. Ore, Hamilton-connected graphs, J. Math. Pures Appl. (9) 42 (1963) 21-27.

[^0]: ${ }^{1}$ In [5] the last name of the present author was transcribed as Hasratian.

