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Abstract 

This paper describes a method of obtaining MOLS of order v = 2np for p a prime 

power. In particular, it gives 5,7 and 9 MOLS of orders 48,40 and 80 respectively. If 

x = Min(2p-1 ,2n-1 ,4n-2) , it is conjectured that x MOLS of order v are always-obtainable 

by this method. 

Australasian Journ::ll of ~ohmin::ltnrirc: 101 1QQLl \ n .... 17f.;;_1Qg:: 



1. Introduction 

A transversal design, TO(k,l,0 consists of a set X of kv pOints divided into k groups of 

size v plus a collection of k-element subsets of X called blocks so that: 

(0 Each block contains one point from each group 

(iO Any two points in different groups appear together in A. blocks 

The parameter 1 is usually omitted if it equals 1; the design is then just called a 

TD(k,0· 

Such a design is called «-resolvable (or just resolvable if « 1) if its blocks can be 

partitioned into classes so that each point appears in « blocks from each class. If 

« = 1, such a class is called a parallel class. The following result is well known: 

Theorem 1.1: 

A TO(k+1,l,0 exists if and only if a l-resolvable TO(k,l,0 exists. 

2. Constructions Using Difference Families 

There are many TO constructions using different families. The following theorem gives 

one such construction: 

Theorem 2.1 

Suppose G is an additive abelian group of size vand there exists a 1 v x k array A with 

entries from G so that for any A,i;. E {1...k}, each element of G occurs 1 times amongst 

the differences AY2 - Ai,h (i=1...l0· Then a resolvable TO(k,l,0 exists. 

Proof (outline): Here, and throughout this paper, rows in any difference array denote 

blocks. The v points in each group of the TO are written as elements of G and pOints 

in different groups are distinguished by the convention that the i' th element in any 

block comes from the i' th group of the TO. Let Bi = {Ai,1' Ai,2 ..... Ai,k} and let Bi + 9 
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denote the block obtained by adding 9 to all elements of Br It is readily confirmed that 

the blocks Bi + 9 (i=1 ... 1v, 9 E G) form a resolvable TD(k,l, 0 with parallel classes 

Ri = {Bi + g, 9 E G}. 

The array A in Theorem 2.1 is called a TD(k,1,0 difference array. Since being 

resolvable is a stronger condition than being «-resolvable, the conditions of Theorem 

2.1 guarantee existence of a TO(k+1,1,0 (by Theorem 1.1). 

3. GF(Z') as a Vector Space 

Throughout this paper the variable z represents a given primitive root of unity in 

GF(2). The elements of GF(2n) form the vector space of polynomials of degree less 

than n over GF(2); thus certain vector space terms such as ' linearly independent' can 

be defined in the normal way on the elements of GF(2). Also, two elements of GF(2), 
n-1 n-1 n-1 
~ aiz i and ~ biz i (ai,bi E Z(2) ) are called orthogonal if ~ aibi = 0 (mod 2). 
~o ~o ~o 

4. TD(h;2"' A Difference Arrays 

For all the new TO(k, 0 's in this paper, v is of the form 2np for, p an odd prime power 

and the group G is GF(p) x GF(2). In addition, calculation of the difference array A for 

these TDs is simplified due to existence of an automorphism group of order 2n-1 which 

permutes the rows of A; thus only lv/2n-1 = 2p rows of A need to be specified. 

From here on A * will denote the array consisting of these 2p generating rows. The 

following theorem is fundamental for determining the GF(p) components for the entries 

in A*: 
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Theorem 4.1 

Suppose p is an odd prime power. Then: 

(Q No TD(k,2,p) difference array exists for k> 2p. 

(i~ A TD(k,2,p) difference array exists for k = 2p. 

Proof: See Corollary 8.3.7 in [1] for (~. Our proof of (i~ is a slight variation of their 

Theorem 8.3.14. Let m be any non-square in G = GF(p). We show the required 

difference array can be taken as Q R where: 

Qx,y = xY 

Sx,y = xY + ((m-1)/4m)y 

ST 

Rx,y = (X_y)2 

Tx,y = m(x-yf (X,y E GF(p) ) 

It is easily confirmed that if U E { Q,R,S,T } and Y1'Y2 E GF(p) then UX'Y1 - UX'Y2 is linear 

in x and hence U is a TD(k,p) difference array over GF(p). It remains to show that for 

any Y1'Y2 E GF(p) each element of GF(p) appears twice amongst the differences 

RX'Y1 - Qx'Y2 and TX'Y1 - SX'Y2 (x E GF(p)) , A little calculation gives: 

RX'Y1 - Qx'Y2 = (x - Y1 - Y2/2)2 - y//4 - Y1'Y2 

Txy - SXY = m(x - Y1 - Y2/2m)2 - Y22/4 - Y1'Y2 ; 
, 1 ' 2 

since m is a non-square, this gives the required results. 

5. An Example 

Before going into the exact conditions required for our method to give a TO( k,2np), a 

small example is given - for v = 48, P = 3, n = 4, k = 6. Let z be a primitive element 

of GF(16) satisfying z!' = z + 1. As mentioned in the previous section, A* will denote 

the array consisting of the 2p generating rows of A. Also, T(J1 will represent the total 

of the GF(2n) entries in column Y of A*. For the current example, A* and Tare: 
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A*: (0,0) (0,0) (0,0) (0,0) (1,0) (1,0) 

(0,0) (1,0) (2,1) (1,z1+z) (0,z1+.z) (1,z3) 

(0,0) (2,0) (1,.z2+z) (1,z+1) (1,.z2+.z) (O,z+1) 

(0,0) (2,z3) (2,z1+.z2) (0,.z2) (2,z1+.z) (2,.z2+z) 

(0,0) (0,z3) (1,.z2+z+1) (2,z3) (0,.z2+.z) (2,.z2+1) 

(0,0) (1,z3) (o,z1+z) (2,0) (2,.z2) (O,z) 

T: a z1 .z2+z .z2+1 .z2 z1+z 

Also relevant to this design is the following 3x6 array Y: 

y 1 g ~ 1 § § 

Y(1,.0 a .z2 .z2+z z1+1 z1+.z2 

Y(2,.0 a z z1 z1+.z2 z1+z+1 

Y(3,.0 a .z2 z+1 z1+z+1 z .z2+ 1 

The rows of the required TO(6,48) difference array are now obtained as follows: 

If A *(x,.0 = (a,b) then define three automorphisms 'ri (i=1 ,2,3) by 'rj A *(x,.0 ) = 

'( a,b+ Y(i,.0 ). Applying the automorphism group generated by 'r1, 'r2 and 'r3 to all 6 

rows of A* gives 48 distinct rows; these form a suitable TO(6,48) difference array A. 

6. Obtaining the Array A * in General 

All TO( k,2np) difference arrays in this paper are obtained by a method similar to that 

used for the TO(6,48) in the previous section. First, a 2p x k array A* with entries from 

GF(p) x GF(2~ and a (n-1) x k array Y with entries from GF(2~ are given. For 

convenience two additional arrays B*, C* are defined as follows: if A*(x,.0 = (a,b) 

then B*(x,.0 = a and C*(x,.0 = b. Next, automorphisms 'ri (i=1 ... n-1) are defined as 

follows: if A*(x,.0 = (a,b) then 'rjx,.0 = ( a, b+Y(i,.0). Finally, let A be the array 

consisting of the 2np rows obtained by applying the automorphism group generated 
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by 7:i (i = L.n-i) to the rows of A*. A will be a TO(k,2np) over GF(p) x GF(2n) if 

conditions 6.1 - 6.3 below hold for any Y1,Y2 and any 9 E GF(p). 

6.1: Y(i,Y~ - Y(i,Y1) (i = L.n-i) are linearly independent. 

6.2: There are exactly two values of x in {1 ... 2p} such that B*(x,y~ - B*(X'Y1) = g. 

6.3: If X1,X2 are the two x values in 6.2 then exactly one of C*(Xi'Y~ - C*(Xi 'Y1) 

(i = 1,2) lies in V(Y1'Y~ where V(Y1'Y~ is the n-1 dimensional vector space over GF(2) 

spanned by (Yi'Y2 - Yi,y) (i = 1...n-i). 

If conditions 6.1 - 6.3 hold for any given Y1'Y2 and all 9 E GF(p) then columns Y1,Y2 of 

A*,B*,C* and Yare said to be perpendicular. 

Note that condition 6.2 holds for all Y1,Y2,g if and only if 8* is a TO(k,2,p) difference 

array. Also each of the n-1 dimensional vector spaces V(Y1'Y~ in 6.3 is most easily 

specified by giving the element H(Y1'Y~ of GF(2n) orthogonal to all its elements. For 

the TO(6,48) given earlier, the H(Y1'Y~ values for Y1 < Y2 are: 

Y2 2 3 4 5 6 

Y1 

Z3 z+i Z3+Z 2+Z Z2 Z3+ Z 2+1 

2 z2+1 Z2+Z z2+z+1 z 

3 z z2+z+1 

4 z3+i z3+ z +1 

5 z2+1 
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Four convenient assumptions that will be made are: 

6.4 Y(i,1) = 0 (i = 1 ... n-1) 

6.5 Y(1,2) = 1 

6.6 C*(x,1) = 0 (x = 1 ... 2p) 

6.7 C*(1,>1 = 0 (y = 1 ... 1<) 

From 6.3, exactly p of the values C*(x,y:J - C*(X'Y1) must be orthogonal to 

H(Y1,y:J for any Y1,Y2; since p is odd, this means that T(y:J - T(Y1) = 

~ (C*(x,y:J - C*(X'Y1)) is not orthogonal to H(Y1,y:J. If 6.4, 6.6 hold, this condition will 
x=1 

be met if T(2) is not orthogonal to H(1,2) and the entries in T,Y are obtained using the 

following formulae: 

6.8 TC0 = T(2). Y(1,J1 

Y(1,2) 

6.9 Y(x,J1 = Y(x,2). Y(1,J1 

Y(1,2) 

To use these formulae, the only entries in T,Y that need to be specified are T(2) plus 

the first row and second column of Y. Note that the entries in T,Y for the TO(6,48) in 

Section 5 satisfy 6.8 and 6.9. 

If 6.8 and 6.9 hold, we can also assume: 

6.10 C*(x,2) E {O,T(2)} for all x. 
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Proof: If 6.10 does not hold for any given x then there is an automorphism in the 

group generated by 1:; (i = i ... n - 1) which adds: 

YLLJ1. C*(x,2) to C*(x,J1 (y = 1 ... k) if C*(x,2) E V(1,2) or 

Y(1,2) 

Yl.:LJi. [C*(x,2) + T(2)] to C*(x,J1 (y = 1 ... k) if C*(x,2) ft V(1 ,2) 

Y(1,2) 

After applying this automorphism to row x of C* we obtain C*(x,1) = a and 

C*(x,2) = a (in the first case) or C*(x,2) = T(2) (in the second case). 

7. Obtaining C* and a Practical Upper Limit on k 

Section 3 gave a possible formula for B*; thus the major part of the work in finding 

these designs is obtaining a solution for C*. It is easy to show that if IX < k and B*, T 

and Y plus IX columns of C* are specified then finding the remaining columns of C* 

comes down to solving a set of linear equations mod 2. For 0 s: t s: n - 1, let: 

CC*(x,y.t) = coefficient of zt in C*(x,J1 

TT*(x,y,t) = coefficient of zt in T*(x,J1 

HH*(Y1'Y2.t) = coefficient of zt in H*(Y1'Y~ 

The equations required to determine the entries of C* are as follows: 

- To give the correct column totals T(J1: 

2p 

:E CC*(x,y,t) = TT(y,t) 
x=1 

- To ensure perpendicularity of columns Y1' Y2 in B*, C*, Y: 
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7.6 Whenever x1 , x2 satisfy 8*(x1'Y~ - B*(X1 'Y1) 8*(X2,Y~ - B*(X2 'Y1) then 

~ [ CC*(X2 'Y2,t} - CC*(X2'Y1,t) + CC*(X1'Y2,t) - CC*(X1'Y1,t) ] = 1 
t I HH*(Y1'Y2,t) 1 

Two obvious upper limits on k are (0 k :0; 2p (since by Theorem 3.1, a TD(k,2,p) 

difference array cannot exist for k > 2p) and (iO k :0; 2n (since the values Y1,y (y = 1...X) 

must all be distinct). From here on, we assume the entries in C*, Y and T satisfy 

conditions 6.4 - 6.10. Given this, we now show that provided tt ~ 2, the number of 

non-redundant variables equals the number of non-redundant linear equations to be 

solved if k = 4n - tt + 1. When tt = 2 this gives k = 4n - 1; thus in most practical 

cases, the maximum possible value of k is likely to be approximately min(2p,2n,4n-1). 

When tt ~ 2, 6.10 does not affect the number of non-redundant variables. In this case, 

the only redundant variables CC*(x,y,t} are for x = 1 (by 6.7). The non-redundant 

variables for which solutions have to be found are CC*(x,y,t) for 2 s; x s; 2p, 

a+1 :0; Y s; k and 0 :0; t :0; n-1. In other words, the number of non-redundant variables 

is (2p-1)(k-a)n ( (4n-2tt-1)n(2p-1) if k = 4n-tt-1). 

We now calculate the number of non-redundant linear equations. 

As mentioned earlier when 6.4 - 6.10 hold, T(y~ - T(Y1) does not lie in V(Y1'Y~' With this 

condition, any p - 1 of the p equations in 7.6 for given Y1,Y2 plus the equations in 7.5 

for Y = Y1,Y2 imply the p'th equation in 7.6 for Y1,Y2' Thus, for all Y1'Y2' the p'th equation 

in 7.6 can be considered redundant and there are: 

(p-1)(k-tt){ a+(k-1} )/2 non-redundant equations in 7.6 for all Y1,Y2 

n(k-a) equations in 7.5 for all y. 

Thus when k = 4n - tt + 1, the total number of non-redundant equations is 

{4n-2tt+1)[(p-i)2n + n] = (4n-2tt+1)n(2p-1), the total number of non-redundant 

variables as required. 
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8. Concluding Remarks 

A few computer runs showed that for some choices of ct, B*, Y and T the linear 

equations in 7.5 and 7.6 may have no solution even if the first ct columns of Y, B* and 

C* are perpendicular and satisfy conditions 6.4 - 6.10. However, the following two 

problems remain open: 

(Q If P is an odd prime power and k = Min(2p,2n,4n-1) then can a TO(k,2np) 

difference array always be obtained by the method described? 

(i~ Are there any values of p,n,k with k > 4n - 1 for which the method described 

can give a TO(k,2np) difference array? 

For p prime (not a prime power), either (Q n ::;; 5 p::;; 17 or (iQ n s 7 p s 7, 

P < Min(2n,4n-2) and k Min(2p,2n,4n-1) we tried to obtain by computer a TO(k,2np) 

difference array by the method described. Solutions were found for all possible values 

of n,p,k. Two of these difference arrays, namely TO(8,40) and TO(1 0,80) are given in 

Appendix A. . The larger ones will appear in the first author's thesis. The values of k 

and v = 2np for which we found a TO(k, \I) difference array (and hence also k - 1 MOLS 

of order \I) are given in Table 8.1. 

Table 8.1 

k 

6 

8 

10 

v 

24,48 

40,56 

80,160,640 

14 112,224,896 

k 

15 

19 

v 

176,208 

352,416,544 

Alternative constructions for 7 MOLS of order 56 and 5 MOLS of order 24 are known 

(see [2], [3]). However, for the other values of v,k in Table 8.1 , no set of k - 1 MOLS of 

order v appears to have been published, although C. Colbourn has informed us that 

C. Roberts has obtained 5 MOLS of order 48. 
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Appendix A 

Here suitable arrays A* and Yare given for TO(8,40) and TO(1 0,80) difference arrays. 

For convenience, the elements of GF(2~ (but not GF(p)) are given exponentially; i.e. 

if z is a root of the given irreducible polynomial for GF(2n), the element Zi is specified 

as i. Also, the zero element of GF(2n) is specified as Z. 

A TD(8,40) array: 

Irreducible polynomial for GF(2~: Z3 + z + 1. 

Y: Z ° 6 5 4 3 2 

Z 2 ° 6 5 4 3 

A*: (O,Z) (O,Z) (O,Z) (O,Z) (O,Z) (O,Z) (1,Z) (4,Z) 

(O,Z) (1,Z) (2,5) (3,4) (4,6) (1,2) (0,3) (1,3) 

(O,Z) (2,2) (4,5) (1,4) (3,Z) (4,6) (1,2) (0,0) 

(O,Z) (3,2) (1,2) (4,0) (2,3) (4,4) (4,5) (1,1) 

(O,Z) (4,2) (3,6) (2,5) (1,4) (1,0) (4,Z) (4,0) 

(O,Z) (2,Z) (3,4) (3,Z) (2,1) (0,6) (2,3) (3,1) 

(O,Z) (3,Z) (0,0) (1,0) (1,Z) (2,3) (0,0) (2,5) 

(O,Z) (4,Z) (2,1) (4,1) (0,4) (3,6) (2,2) (O,Z) 

(O,Z) (0,2) (4,1) (2,2) (4,0) (3,5) (3,0) (2,1) 

(O,Z) (1,2) (1,6) (0,3) (3,2) (2,5) (3,Z) (3,Z) 

A TO(1 0,80) array: 

Irreducible polynomial for GF(24): Z4 + z + 1. 

Y: Z ° 14 12 7 2 11 3 6 

Z 2 ° 13 8 3 12 4 7 

Z 2 3 14 9 4 13 5 8 
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A*: (O,l) (O,l) (O,l) (O,l) (O,l) (O,l) (1,l) (4,l) (4,Z) (1,Z) 

(O,l) (1 (2,8) (3,11) (4,8) (1,8) (0,6) (1,9) (4,6) (4,9) 

(O,l) (2,3) (4,6) (1,0) (3,14) (4,14) (1,1) (0,7) (1,2) (4,1) 

(O,l) (3,l) (1,3) (4,9) (2,14) (4,12) (4,4) (1,1) (O,Z) (1,0) 

(O,l) (4,3) (3,3) (2,0) (1,12) (1,1) (4,13) (4,8) (1,13) (0,4) 

(O,l) (2,l) (3,13) (3,7) (2,10) (0,1) (2,6) (3,5) (3,8) (2,5) 

(O,l) (3,3) (0,13) (1,8) (1,10) (2,8) (0,14) (2,14) (3,2) (3,l) 

(O,l) (4,l) (2,6) (4,10) (0,3) (3,12) (2,9) (0,0) (2,0) (3,5) 

(O,l) (0,3) (4,14) (2,10) (4,5) (3,6) (3,0) (2,l) (0,14) (2,l) 

(O,l) (1,3) (1,12) (0,11) (3,8) (2,1) (3,3) (3,0) (2,Z) (O,l) 
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