## Edge-Neighbor-Integrity of Trees

Margaret B. Cozzens\* † & Shu-Shih Y. Wu

Department of Mathematics Northeastern University Boston, MA 02115, USA

Abstract. The edge-neighbor-integrity of a graph G, ENI(G), is defined to be  $ENI(G) = \min_{S \subseteq E(G)} \{|S| + \omega(G/S)\}$ , where S is any edge subversion strategy of G, and  $\omega(G/S)$  is the maximum order of the components of G/S. In this paper, we find the minimum and maximum edge-neighbor-integrity among all trees with any fixed order, and also show that for any integer *l* between the extreme values there is a tree with the edge-neighbor-integrity *l*.

## I. Introduction

In 1987 Barefoot, Entringer, and Swart introduced the integrity of a graph to measure the "vulnerability" of the graph. [1,2] In 1994 [4] we developed a graph parameter, called "vertex-neighbor-integrity", incorporating the concept of the integrity [1,2] and the idea of the vertex-neighbor-connectivity [5]. Here we consider the edge- analogue of vertex-neighbor-integrity, incorporating the concept of the integrity and the idea of the edge-neighbor-connectivity [3].

Let G = (V,E) be a graph. An edge e = [u,v] in G is said to be subverted when the incident vertices, u, v, of the edge e are deleted from G. A set of edges  $S = \{e_1, e_2, ..., e_m\}$  is called an *edge subversion strategy* of G if each of the edges in S has been subverted from G. Let G/S be the survival-subgraph left when S has been an edge subversion strategy of G. The *edge-neighbor-integrity* of a graph G, ENI(G), is defined to be

$$\operatorname{ENI}(\operatorname{G}) = \min_{\operatorname{S}\subseteq \operatorname{E}(\operatorname{G})} \{ |\operatorname{S}| + \omega(\operatorname{G}/\operatorname{S}) \},$$

where S is any edge subversion strategy of G, and  $\omega(G/S)$  is the maximum order of the components of G/S.

**Example:**  $K_{n,m}$ , where n > 1 and m > 1, is a complete bipartite graph with a bipartition (X,Y), where |X| = n and |Y| = m.

Australasian Journal of Combinatorics 10(1994), pp.163-174

<sup>\*</sup> Currently at the National Science Foundation

<sup>&</sup>lt;sup>†</sup> The work is supported by ONR

$$ext{ENI}( ext{K}_{n,m}) = \min_{ ext{S} \subseteq ext{E}( ext{K}_{n,m})} \{ | ext{S}| + \omega( ext{K}_{n,m}/ ext{S}) \}$$

 $= |\mathbf{S}^*| + \omega(\mathbf{K}_{n,m}/\mathbf{S}^*), \quad \text{where } \mathbf{S}^* \text{ is a set of matching}$ saturating each vertex of X if  $|\mathbf{X}| \le |\mathbf{Y}|$  (or Y if  $|\mathbf{Y}| \le |\mathbf{X}|$ ),

$$= egin{cases} n+1, & ext{if } n < m; \ m+1, & ext{if } m < n; \ m ext{ or } n, & ext{if } m = n. \end{cases}$$

In this paper, we find the minimum and maximum edge-neighbor-integrity among all trees with any fixed order, and also show that for any integer l between the extreme values there is a tree whose edge-neighbor-integrity is l.  $\lceil x \rceil$  is the smallest integer greater than or equal to x.  $\lfloor x \rfloor$  is the greatest integer less than or equal to x.

## II. The Minimum and Maximum Edge-Neighbor-Integrity of Trees

For any connected graph G of order at least 3, the edge-neighbor-integrity, ENI(G)  $\geq 2$ , since there is no edge e in G such that  $G/\{e\} = \emptyset$ . Trees are connected graphs, and therefore ENI(T)  $\geq 2$ , for any tree T of order at least 3. If we can find a tree of order at least 3 whose edge-neighbor-integrity is 2, then the minimum edge-neighbor-integrity among all trees is 2.

**Lemma 1:** Let G be a connected graph of order at least 3. If ENI(G) = 2, then the diameter of G is  $\leq 3$ .

**Proof:** Assume that the diameter of G is  $\geq 4$ , then G contains a path P<sub>5</sub>. Hence for any edge e in G,  $\omega(G/\{e\}) \geq 2$ , and for any two edges  $e_1$  and  $e_2$  in G,  $\omega(G/\{e_1, e_2\}) \geq 1$ . Therefore ENI(G)  $\geq 3$ , a contradiction. Hence the diameter of G is  $\leq 3$ . QED.

Let  $K_{1,n}$  be a complete bipartite graph with a vertex bipartition (X,Y), where |X| = 1 and |Y| = n. We also call  $K_{1,n}$  a star with n+1 vertices. Let  $DS(n_1, n_2)$  be a double star with  $\{n_1, n_2\}$  end-vertices, where  $n_1 \ge 0$  and  $n_2 \ge 0$ , and a common edge [u, v], as shown in Figure 1. Note that if either  $n_1$  or  $n_2$  is 0, then the double star  $DS(n_1, n_2)$  is a star.



Figure 1

Then we have the following theorem.

**Theorem 2:** Let T be a tree of order  $n \ge 3$ . Then ENI(T) = 2 if and only if T is either a star  $K_{1,n-1}$  or a double star  $DS(n_1, n_2)$ , where  $n_1 \ge 1$ ,  $n_2 \ge 1$ , and  $n_1 + n_2 = n - 2$ .

**Proof:** If T is a tree of order at least 3 and ENI(T) = 2, then by Lemma 1, the diameter of T is either 2 or 3. If the diameter of T is 2, then T is a star  $K_{1,n-1}$ . If the diameter of T is 3, then T is a double star  $DS(n_1, n_2)$ , where  $n_1 \ge 1$ ,  $n_2 \ge 1$ , and  $n_1 + n_2 = n - 2$ .

Conversely, let T be either a star  $K_{1,n-1}$  with the order  $n \ge 3$  or a double star  $DS(n_1, n_2)$ , where  $n_1 \ge 1$ ,  $n_2 \ge 1$ , and the order  $n = n_1 + n_2 + 2 \ge 4$ . Then the subversion of any one edge e from  $K_{1,n-1}$  produces n-2 isolated vertices. Hence

$$\mathrm{ENI}(\mathrm{K}_{1,n-1}) = \min_{\mathrm{S} \subseteq \mathrm{E}(\mathrm{G})} \left\{ |\mathrm{S}| + \omega(\mathrm{G}/\mathrm{S}) \right\}$$

$$= |\{e\}| + \omega(G/\{e\}) = 1 + 1 = 2.$$

The subversion of the common edge e from  $DS(n_1, n_2)$  produces  $n_1 + n_2$  isolated vertices; the subversion of any another edge from  $DS(n_1, n_2)$  produces a subgraph with the maximum order of the components  $\geq 2$ . Hence

$$\begin{aligned} \mathrm{ENI}(\mathrm{DS}(n_1, n_2)) &= \min_{\mathbf{S} \subseteq \mathrm{E}(\mathbf{G})} \{ |\mathbf{S}| + \omega(\mathbf{G}/\mathbf{S}) \} \\ &= |\{e\}| + \omega(\mathbf{G}/\{e\}) = 1 + 1 = 2. \end{aligned}$$

$$\begin{aligned} & \text{QED.} \end{aligned}$$

Since  $DS(0, n-2) (=K_{1,n-1})$ , DS(1, n-3), DS(2, n-4), ..., and  $DS(\lfloor n/2 \rfloor - 1, n - \lfloor n/2 \rfloor - 1)$  are all of the trees with the order n, where  $n \ge 3$ , and the edge-neighbor-integrity is 2, there are  $\lfloor n/2 \rfloor$  non-isomorphic trees of order n with the minimum edge-neighbor-integrity.

Next, we find the maximum edge-neighbor-integrity among all trees of order  $n \ge 1$ .

**Lemma 3:** For positive integers, n and m, if n is fixed, then the function  $g(m) = m + \lceil n/m \rceil$  has the minimum value  $\lceil 2\sqrt{n} \rceil$  at  $m = \lceil \sqrt{n} \rceil$ . [2]

**Theorem 4:** Let  $P_n$  be a path of order  $n \ge 1$ . Then

$$\operatorname{ENI}(\mathbf{P}_n) = \lfloor 2\sqrt{n+2} \rfloor - 3.$$

**Proof:** Let  $V(P_n) = \{v_1, v_2, v_3, ..., v_n\}$  and S be any subset of  $E(P_n)$ . The subversion of an edge  $e = [v_i, v_{i+1}]$  from  $P_n$  is the removal of the vertices  $v_i$  and  $v_{i+1}$  from  $P_n$ , so

$$\omega(\mathrm{P}_{oldsymbol{n}}/\mathrm{S}) \geq \Bigl\lceil rac{(n-2|\mathrm{S}|)}{(|\mathrm{S}|+1)} \Bigr
ceil.$$

Let  $|\mathbf{S}| = m$ .

$$\operatorname{ENI}(\mathbf{P}_{n}) = \min_{\substack{\mathbf{S} \subseteq \mathbf{E}(\mathbf{P}_{n})}} \{ |\mathbf{S}| + \omega(\mathbf{P}_{n}/\mathbf{S}) \}$$

$$\geq \min_{\substack{m \ge 0}} \left\{ m + \left\lceil \frac{n-2m}{m+1} \right\rceil \right\}$$
(1)
$$= -3 + \min_{\substack{m \ge 0}} \left\{ m + 1 + \left\lceil \frac{n+2}{m+1} \right\rceil \right\}$$

$$= -3 + \left\lceil 2\sqrt{n+2} \right\rceil.$$
(By Lemma 3.)

Setting  $|S| = m = \lceil \sqrt{n+2} \rceil - 1$  gives the minimum value of  $\{m + \lceil (n-2m)/(m+1) \rceil\}$ and the equality of (1) holds by taking S to be a set of m edges with equal distance in  $P_n$ .  $m = \lceil \sqrt{n+2} \rceil - 1$  and  $n-2m \ge 0$  if and only if  $n \ge 2$  and  $n \ne 3$ . Therefore, if  $n \ge 2$  and  $n \ne 3$ , then the set S is taken to be a set of  $\lceil \sqrt{n+2} \rceil - 1$  edges with equal distance in  $P_n$ . If n = 1, then  $\text{ENI}(P_n) = 1$  and  $\lceil 2\sqrt{n+2} \rceil - 3 = 1$ . If n = 3, then  $\text{ENI}(P_n) = 2$  and  $\lceil 2\sqrt{n+2} \rceil - 3 = 2$ . Hence we obtain the result. QED.

To show that a path  $P_n$  has the maximum edge-neighbor-integrity among all trees of order n, we first show the following theorem.

**Theorem 5:** If T is a tree of order n and  $0 \le m \le n-1$ , then there is a subset S  $\subseteq E(T)$  such that |S| = m and  $\omega(T/S) \le \lceil (n-2m)/(m+1) \rceil$ .

**Proof:** Assume that the result is not true for some n, and let T be a tree of order n with largest diameter, say d, satisfying

$$\omega(\mathbf{T}/\mathbf{S}) > \left\lceil \frac{(n-2|\mathbf{S}|)}{(|\mathbf{S}|+1)} \right\rceil,$$

for any subset  $S \subseteq E(T)$ . From the proof of Theorem 4, we know that  $T \not\cong P_n$ , i.e.,  $d \leq n-2$ . Let  $P=(v_1, v_2, ..., v_{d+1})$  be a longest path in T. Then there is a vertex v in the path P such that the degree of v is greater than 2; let the least index of such vertices be k. Then 1 < k < d+1. Now construct the tree T' which is T  $-[v_k, v_{k+1}] + [v_1, v_{k+1}]$  (as shown in Figure 2).



Figure 2

Since the order of T' is n and diameter d' > d, by the assumption on T, there is an edge-subset  $S' \subseteq E(T')$  such that |S'| = m and

$$\omega(\mathbf{T'/S'}) \leq \left\lceil \frac{(n-2m)}{(m+1)} \right\rceil.$$

Obviously,  $T/\{e\} \cong T'/\{e\}$  if the edge e is incident with  $v_{k+1}$  in T' and  $e \neq [v_1, v_{k+1}]$ , and  $T/\{f\} \subseteq T'/\{f\}$  if the edge f is incident with  $v_k$  in T'. It follows that  $e, f \notin S'$ , for all edges e incident with  $v_{k+1}$  in T' and  $e \neq [v_1, v_{k+1}]$ , and for all edges f incident with  $v_k$  in T', since otherwise taking S = S' gives  $\omega(T/S) \leq \omega(T'/S') \leq [(n-2m)/(m+1)]$ , a contradiction.

Next, we show that  $[v_1, v_{k+1}] \notin S'$ .

Assume that  $[v_1, v_{k+1}] \in S'$ . If the edge  $[v_1, v_2] \in S'$ , then let S be S' with  $[v_1, v_{k+1}]$  replaced by  $[v_k, v_{k+1}]$ . Then  $T/S \subseteq T'/S'$  and  $\omega(T/S) \leq \omega(T'/S') \leq [(n-2m)/(m+1)]$ , a contradiction. If there are edges  $[v_{t_1}, v_{t_1+1}]$ , ...,  $[v_{t_r}, v_{t_r+1}]$ , where  $2 \leq t_1 < t_2 < \ldots < t_r \leq k-2$ , in S', then let S be S' with  $[v_{t_i}, v_{t_i+1}]$  replaced by  $[v_{t_i-1}, v_{t_i}]$ , for all  $t_1, t_2, \ldots, t_r$ , and  $[v_1, v_{k+1}]$  replaced by  $[v_k, v_{k+1}]$ , then T/S and T'/S' have different components as follows:

T/S has the components path  $\mathcal{P}_0 = (v_1, ..., v_{t_1-2})$ , only if  $t_1 \ge 3$ , path  $\mathcal{P}_j = (v_{t_j+1}, ..., v_{t_{j+1}-2})$ , where  $1 \le j \le r-1$ , path  $\mathcal{P}_r = (v_{t_r+1}, ..., v_{k-1})$ ,  $\mathcal{C}_k$ : the component containing  $u_i$  (i = 1, 2, ...)(as shown in Figure 2).

T'/S' has the components —

path  $\mathcal{P}'_0 = (v_2, ..., v_{t_1-1})$ , only if  $t_1 \ge 3$ , path  $\mathcal{P}'_j = (v_{t_j+2}, ..., v_{t_{j+1}-1})$ , where  $1 \le j \le r-1$ ,  $\mathcal{C}'_r$ : the component containing a  $(k - t_r - 1)$ -path —  $(v_{t_r+2}, ..., v_k)$ , and containing  $u_i \ (i = 1, 2, ...)$ (as shown in Figure 2).

Other than the above, T/S and T'/S' have the same components. The order of  $\mathcal{P}_0$  = the order of  $\mathcal{P}'_0$ , the order of  $\mathcal{P}_j$  = the order of  $\mathcal{P}'_j$ , for all  $1 \leq j \leq r-1$ , the order of  $\mathcal{P}_r$  < the order of  $\mathcal{C}'_r$ , and the order of  $\mathcal{C}_k \leq$  the order of  $\mathcal{C}'_r$ , hence all of the components of T/S have sizes smaller than or equal to  $\omega(T'/S')$ , and  $\omega(T/S) \leq \omega(T'/S') \leq \lceil (n-2m)/(m+1) \rceil$ , a contradiction.

Therefore  $[v_1, v_{k+1}] \notin S'$ .

It has been shown that  $e, f \notin S'$ , where e is incident with  $v_{k+1}$  in T', and f is incident with  $v_k$  in T', hence  $v_k$  and  $v_{k+1}$  must be in T'/S'. It follows that there must exist  $v_{i_1}, v_{i_2}, ..., v_{i_r}, (r \ge 1)$ , where  $1 \le i_1 < i_2 < ... < i_r \le k-2$ , such that  $e_{i_1} = [v_{i_1}, v_{i_1+1}], e_{i_2} = [v_{i_2}, v_{i_2+1}], ..., e_{i_r} = [v_{i_r}, v_{i_r+1}] \in S'$ , since otherwise  $v_k$  and  $v_{k+1}$  are in the same component of T'/S', thus taking S=S' gives  $\omega(T/S) = \omega(T'/S') \le \lceil (n-2m)/(m+1) \rceil$ , a contradiction.

Let S\* be S' with  $[v_{i_j}, v_{i_j+1}]$  replaced by  $[v_{i_j+k-i_r}, v_{i_j+k-i_r+1}]$ , for all  $1 \leq j \leq r$ . Since  $i_r \leq k-2, 3 \leq i_1+k-i_r < i_2+k-i_r < i_3+k-i_r < \ldots < i_r+k-i_r = k$ . By the assumption on T,  $\omega(T/S^*) > \lceil (n-2m)/(m+1) \rceil$ , and all of the components of T/S\*, except the path P\* =  $(v_1, v_2, \ldots, v_{i_1+k-i_r-1})$ , have the sizes smaller than or equal to  $\omega(T'/S')$ , which is  $\leq \lceil (n-2m)/(m+1) \rceil$ , hence the order of P\* must be

$$i_1+k-i_r-1\ge \left\lceil rac{n-2m}{m+1}
ight
ceil+1.$$

Let  $\mathcal{A}'_k$  and  $\mathcal{A}'_{k+1}$  be two different components of T'/S' containing  $v_k$  and  $v_{k+1}$ , respectively, and h be the number of the vertices in  $\mathcal{A}'_{k+1}$  that are not in the set  $\{v_1, v_2, ..., v_{i_1-1}\}$ . Since the order of  $\mathcal{A}'_{k+1}$  is less than or equal to  $\lceil (n-2m)/(m+1) \rceil$ , we have

$$1 \le h \le \left\lceil \frac{n-2m}{m+1} \right\rceil - (i_1 - 1) \le k - i_r - 1.$$

Now, let S be the set S' with  $[v_{i_j}, v_{i_j+1}]$  replaced by  $[v_{i_j+h}, v_{i_j+h+1}]$ , for all  $1 \leq j \leq r$ , and consider the sizes of the components of T/S. By the constructions of S and S', all of the components of T/S, except those containing  $v_1$  and  $v_k$ , have at most  $\lceil (n-2m)/(m+1) \rceil$  vertices. The vertex set of the component of T/S containing  $v_1$  is obtained from the vertex set of  $\mathcal{A}'_{k+1}$  by deleting the *h* vertices  $\mathcal{A}'_{k+1} - \{v_1, v_2, ..., v_{i_1-1}\}$  and appending the vertices  $v_{i_1}, v_{i_1+1}, ..., v_{i_1+k-1}$  with no change in number of vertices. Similarly, the vertex set of the component of T/S containing  $v_k$  is obtained from the vertex set of  $\mathcal{A}'_k$  by deleting the *h* vertices  $v_{i_r+2}, v_{i_r+3}, ..., v_{i_r+h}, v_{i_r+h+1}$  and appending the *h* vertices,  $\mathcal{A}'_{k+1} - \{v_1, v_2, ..., v_{i_1-1}\}$  with no change in number of vertices. Hence  $\omega(T/S) \leq \lceil (n-2m)/(m+1) \rceil$ , a contradiction.

Therefore we obtain the result of the theorem. QED.

Using Theorem 5, we now show that the path  $P_n$  has the maximum edgeneighbor-integrity among all trees of order n.

**Theorem 6:** The path  $P_n$  has the maximum edge-neighbor-integrity among all trees of order  $n \ge 1$ .

**Proof:** It is trivial for n = 1.

Let T be a tree of order  $n \ge 2$ . Then by Theorem 5, for any integer m,  $0 \le m \le n-1$ , there is an edge-subset  $S' \subseteq E(T)$  such that |S'| = m and  $\omega(T/S') \le \lceil (n-2m)/(m+1) \rceil$ .

$$\mathrm{ENI}(\mathrm{T}) = \min_{\mathrm{S}\subseteq \mathrm{E}(\mathrm{T})} \left\{ |\mathrm{S}| + \omega(\mathrm{T}/\mathrm{S}) \right\}$$

$$\leq \min_{0\leq m\leq n-1}\left\{m\!+\!\left\lceilrac{n-2m}{m+1}
ight
ceil
ight\}.$$

By the proof of Theorem 4,  $\text{ENI}(P_n) = m + \lceil (n-2m)/(m+1) \rceil$  with  $m = \lceil \sqrt{n+2} \rceil - 1$ .  $0 \leq \lceil \sqrt{n+2} \rceil - 1 \leq n-1$  if and only if  $n \geq 2$ . Therefore

$$\begin{split} \mathrm{ENI}(\mathrm{T}) &\leq \min_{0 \leq m \leq n-1} \left\{ m + \left\lceil \frac{n-2m}{m+1} \right\rceil \right\} \\ &\leq m^* + \left\lceil \frac{n-2m^*}{m^*+1} \right\rceil, \quad \text{where} \quad m^* = \left\lceil \sqrt{n+2} \right\rceil - 1 \\ &= \mathrm{ENI}(\mathrm{P}_n). \end{split}$$

$$\begin{aligned} & \text{QED.} \end{aligned}$$

We have shown that the path  $P_n$  has the maximum edge-neighbor-integrity among all trees of order n. However,  $P_n$  is not the only tree that has the maximum edge-neighbor-integrity. We evaluate the edge-neighbor-integrity of  $T_{n,k}$  (as shown in Figure 3), where  $1 \le k \le n-2$ , in Theorem 8, stating that there are at least  $\lfloor \sqrt{n+2} - (9/4) \rfloor$  non-isomorphic trees of order *n* having the same edge-neighbor-integrity as  $P_n$ .





**Lemma 7:** There is a unique path  $P_n$  satisfying the following condition (A) — for any subset S of  $E(P_n)$ , if  $ENI(P_n) = |S| + \omega(P_n/S)$  then  $\omega(P_n/S) = 0$ . Moreover, n = 2.

**Proof:** Let  $P_n$  satisfy the condition (A). By the proof of Theorem 4, if  $n \ge 2$  and  $n \ne 3$ , then there is an edge subset  $S^*$  of  $E(P_n)$  such that  $ENI(P_n) = |S^*| + \omega(P_n/S^*)$ , where

$$\omega(\mathbf{P}_n/\mathbf{S}^*) = \left\lceil \frac{n-2|\mathbf{S}^*|}{|\mathbf{S}^*|+1} \right\rceil$$

and

$$|\mathbf{S}^*| = \lceil \sqrt{n+2} \rceil - 1.$$

Since  $P_n$  satisfies the condition (A),

$$ENI(P_n) = |S^*| + \omega(P_n/S^*)$$
$$= |S^*|$$
$$= \lceil \sqrt{n+2} \rceil - 1.$$

By Theorem 4,

$$\text{ENI}(\mathbf{P}_n) = \lceil 2\sqrt{n+2} \rceil - 3.$$

Therefore

$$\lceil \sqrt{n+2} \rceil - 1 = \lceil 2\sqrt{n+2} \rceil - 3,$$

and hence n = 2 or 4.

Let  $P_4 = (v_1, v_2, v_3, v_4)$ . Then  $S_1 = \{[v_1, v_2], [v_3, v_4]\}$  and  $S_2 = \{[v_2, v_3]\}$  satisfy

$$\begin{aligned} \mathrm{ENI}(\mathbf{P}_4) &= |\mathbf{S}_1| + \omega(\mathbf{P}_4/\mathbf{S}_1) \\ &= |\mathbf{S}_2| + \omega(\mathbf{P}_4/\mathbf{S}_2) \\ &= 2. \end{aligned}$$

 $\omega(P_4/S_1) = 0$ , but  $\omega(P_4/S_2) = 1 \neq 0$ . Therefore the path  $P_4$  does not satisfy the condition (A).

Let  $P_2 = (v_1, v_2)$ .  $S = \{[v_1, v_2]\}$  is the only edge subset of  $E(P_2)$  satisfying  $ENI(P_2) = |S| + \omega(P_2/S) = 1$ , and  $\omega(P_2/S) = 0$ .

The remaining case is that n = 3: Let  $P_3 = (v_1, v_2, v_3)$ . Then  $S_1 = \{[v_1, v_2], [v_2, v_3]\}$  and  $S_2 = \{[v_1, v_2]\}$  satisfy

ENI(P<sub>3</sub>) = 
$$|S_1| + \omega(P_3/S_1)$$
  
=  $|S_2| + \omega(P_3/S_2)$   
= 2.

 $\omega(P_3/S_1) = 0$ , but  $\omega(P_3/S_2) = 1 \neq 0$ . Therefore the path  $P_3$  does not satisfy the condition (A).

Hence  $P_2$  is the only path satisfying the condition (A). QED.

**Theorem 8:** The edge-neighbor-integrity of  $T_{n,k}$  (as shown in Figure 3), where  $n \geq 3$  and  $1 \leq k \leq n-2$ , is as follows:

$$\operatorname{ENI}(\operatorname{T}_{n,k}) = \begin{cases} \left\lceil 2\sqrt{n+2} \right\rceil - 3, & \text{if } 1 \leq k \leq \sqrt{n+2} - \frac{9}{4}; \\ \left\lceil 2\sqrt{n-k} \right\rceil - 2, & \text{if } \sqrt{n+2} - \frac{9}{4} \leq k \leq n-5; \\ 3, & \text{if } k = n-4; \\ 2, & \text{if } k = n-3, n-2. \end{cases}$$

**Proof:** If k = n - 2,  $T_{n,k}$  is a star. Then  $ENI(T_{n,k}) = 2$ .

If k = n - 3,  $T_{n,k}$  is a double star. Then  $ENI(T_{n,k}) = 2$ .

Now we consider the case of  $k \leq n-4$ . Let S<sup>\*</sup> be a subset of  $E(T_{n,k})$  for which  $ENI(T_{n,k}) = |S^*| + \omega(T_{n,k}/S^*)$ .

If  $[v, v_i] \in S^*$ , for some  $i, 1 \le i \le k$ , we may let S' be S\* with  $[v, v_i]$  replaced by  $[w_1, v]$ . Then

$$|\mathbf{S}'| + \omega(\mathbf{T}_{n,k}/\mathbf{S}') \le |\mathbf{S}^*| + \omega(\mathbf{T}_{n,k}/\mathbf{S}^*)$$

$$= \operatorname{ENI}(\mathbf{T}_{n,k})$$
$$= \min_{\mathbf{S} \subseteq \mathbf{E}(\mathbf{T}_{n,k})} \Big\{ |\mathbf{S}| + \omega(\mathbf{T}_{n,k}/\mathbf{S}) \Big\}.$$

Therefore

$$\mathrm{ENI}(\mathrm{T}_{n,k}) = |\mathrm{S}'| + \omega(\mathrm{T}_{n,k}/\mathrm{S}').$$

Hence without loss of generality we may assume that  $[v,v_i] \not\in \mathrm{S}^*,$  for all  $1 \leq i \leq k.$ 

Now we consider two cases:

<u>Case 1.</u> If  $[w_1, v] \in S^*$ , then

$$\mathrm{ENI}(\mathbf{T}_{n,k}) = \begin{cases} \mathrm{ENI}(\mathbf{P}_{n-(k+2)}) + 1, & \text{if } n - (k+2) \neq 2; \\ \\ \mathrm{ENI}(\mathbf{P}_{n-(k+2)}) + 2, & \text{if } n - (k+2) = 2. \end{cases}$$
(By Lemma 7.)

$$=egin{cases} \left\lceil 2\sqrt{n-k} 
ight
ceil -2, & ext{if } k
eq n-4; \ 3, & ext{if } k=n-4. \ & ext{(By Theorem 4.)} \end{cases}$$

<u>Case 2.</u> If  $[w_1, v] \notin S^*$ , then  $v, v_1, v_2, ...$ , and  $v_k$  are in the same component of  $T_{n,k}/S^*$ , and

$$\operatorname{ENI}(\operatorname{T}_{n,k}) = \operatorname{ENI}(\operatorname{P}_n) = \lceil 2\sqrt{n+2} \rceil - 3.$$

Hence,

$$\mathrm{ENI}(\mathrm{T}_{n,k}) = egin{cases} \min \limits_{k 
eq n-4} \left( \lceil 2 \sqrt{n-k} 
ceil - 2, \lceil 2 \sqrt{n+2} 
ceil - 3 
ight) \ \min \limits_{k=n-4} \left( 3, \lceil 2 \sqrt{n+2} 
ceil - 3 
ight). \end{cases}$$
 or

In the case of k = n-4,  $\lceil 2\sqrt{n+2} \rceil - 3 \leq 3$  if and only if  $n \leq 7$ . If  $n \leq 7$ ,  $k \geq 1$ , and k = n-4, then n can only be 7, 6, or 5. When n = 7, 6, or 5,  $\lceil 2\sqrt{n+2} \rceil - 3 = 3$ . Hence, in the case of k = n-4,  $\text{ENI}(T_{n,k}) = 3$ .

In the case of  $k \neq n-4$ ,  $\lceil 2\sqrt{n+2} \rceil - 3 \leq \lceil 2\sqrt{n-k} \rceil - 2$  if  $k \leq \sqrt{n+2} - (9/4)$ , and  $\lceil 2\sqrt{n-k} \rceil - 2 \leq \lceil 2\sqrt{n+2} \rceil - 3$  if  $k \geq \sqrt{n+2} - (9/4)$ .

Therefore,

$$\operatorname{ENI}(\operatorname{T}_{n,k}) = \begin{cases} \lceil 2\sqrt{n+2} \rceil - 3, & \text{if } 1 \le k \le \sqrt{n+2} - \frac{9}{4}; \\ \lceil 2\sqrt{n-k} \rceil - 2, & \text{if } \sqrt{n+2} - \frac{9}{4} \le k \le n-5; \\ 3, & \text{if } k = n-4; \\ 2, & \text{if } k = n-3, n-2. \end{cases}$$

QED.

Among all trees of order  $n \ge 3$ , the maximum edge-neighbor-integrity is  $\lfloor 2\sqrt{n+2} \rfloor - 3$ , and the minimum is 2. We can find a tree whose edge-neighbor-integrity is l, for any integer l between the extreme values, as shown below.

**Theorem 9:** If *l* is any integer, where  $2 \le l \le \lfloor 2\sqrt{n+2} \rfloor - 3$ , then there is a tree T of order *n* such that ENI(T) = *l*.

**Proof:** If l = 2,  $T = K_{1,n-1}$  or T = DS(i, n-i-2), where  $1 \le i \le \lfloor (n-2)/2 \rfloor$ ; if  $l = \lceil 2\sqrt{n+2} \rceil - 3$ ,  $T = P_n$  or  $T = T_{n,k}$ , where  $1 \le k \le \sqrt{n+2} - (9/4)$ . Therefore we assume that  $2 < l < \lceil 2\sqrt{n+2} \rceil - 3$ . Since

$$l < \lceil 2\sqrt{n+2} \rceil - 3,$$

we have

$$l+3<2\sqrt{n+2},$$

and

$$n > \frac{l^2}{4} + \frac{3}{2}l + \frac{1}{4}.$$
 (2)

Let r be the largest integer such that  $\lfloor 2\sqrt{r+2} \rfloor - 3 = l-1$ , so  $\lfloor 2\sqrt{(r+1)+2} \rfloor - 3 = l$ . Since

$$l+3 \geq 2\sqrt{r+3},$$

we have

$$r+1 \le \frac{l^2}{4} + \frac{3}{2}l + \frac{1}{4}.$$
(3)

Hence combining (2) and (3),

 $n \ge r+2.$ 

We let  $k = n - r - 1 \ge 1$ , so that  $T_{n,k}$  contains a path  $P_{r+1}$ . Then

$$\mathrm{ENI}(\mathrm{T}_{n,k}) \geq \mathrm{ENI}(\mathrm{P}_{r+1}) = \lceil 2\sqrt{(r+1)+2} \rceil - 3 = l.$$

The subversion of the edge  $[v, w_1]$  from  $T_{n,k}$  produces k isolated vertices and a path  $P_{r-1}$ . Hence

$$\begin{split} \mathrm{ENI}(\mathrm{T}_{n,k}) &\leq 1 + \mathrm{ENI}(\mathrm{P}_{r-1}), \quad \text{ if } r-1 \neq 2 \\ &= 1 + \lceil 2\sqrt{(r-1)+2} \rceil - 3 \\ &= \lceil 2\sqrt{r+1} \rceil - 2 \\ &\leq \lceil 2\sqrt{r+2} \rceil - 2 = l. \end{split}$$

Therefore if  $r - 1 \neq 2$ , ENI $(T_{n,k}) = l$ .

The remaining part is to show that r = 3 is impossible. r is the largest integer such that  $\lceil 2\sqrt{r+2} \rceil - 3 = l-1$ . If r = 3 then  $l = \lceil 2\sqrt{5} \rceil - 2 = 3$ . Thus  $\lceil 2\sqrt{(r+1)+2} \rceil - 3 = \lceil 2\sqrt{6} \rceil - 3 = 2 = l-1$ , a contradiction to the assumption on r. Hence  $r \neq 3$ .

Therefore we have found a tree,  $T_{n,k}$ , whose edge-neighbor-integrity is l. QED.

## References

- [1] C. A. Barefoot, R. Entringer and H. Swart, Vulnerability in Graphs a Comparative Survey, J. Combin. Math. Combin. Comp. 1 (1987), 13-22.
- [2] C. A. Barefoot, R. Entringer and H. Swart, Integrity of Trees and Powers of Cycles, Congr. Numer. 58 (1987), 103-114.
- [3] M. B. Cozzens and S.-S. Y. Wu, Extreme Values of the Edge-Neighbor-Connectivity, Ars Combinatoria (1994), in press.
- [4] M. B. Cozzens and S.-S. Y. Wu, Vertex-Neighbor-Integrity of Trees, Ars Combinatoria (1994), in press.
- [5] S.-S. Y. Wu and M. B. Cozzens, The Minimum Size of Critically m-Neighbor-Connected Graphs, Ars Combinatoria 29 (1990), 149-160.

(Received 10/1/94)