Edge-Neighbor-Integrity of Trees

Margaret B. Cozzens* \dagger \& Shu-Shih Y. Wu

Department of Mathematics
Northeastern University
Boston, MA 02115, USA

Abstract. The edge-neighbor-integrity of a graph $G, \operatorname{ENI}(G)$, is defined to be $\operatorname{ENI}(\mathrm{G})=\min _{\mathrm{S} \subseteq \mathrm{E}(\mathrm{G})}\{|\mathrm{S}|+\omega(\mathrm{G} / \mathrm{S})\}$, where S is any edge subversion strategy of G , and $\omega(\mathrm{G} / \mathrm{S})$ is the maximum order of the components of G / S. In this paper, we find the minimum and maximum edge-neighbor-integrity among all trees with any fixed order, and also show that for any integer l between the extreme values there is a tree with the edge-neighbor-integrity l.

I. Introduction

In 1987 Barefoot, Entringer, and Swart introduced the integrity of a graph to measure the "vulnerability" of the graph. [1,2] In 1994 [4] we developed a graph parameter, called "vertex-neighbor-integrity", incorporating the concept of the integrity $[1,2]$ and the idea of the vertex-neighbor-connectivity [5]. Here we consider the edge- analogue of vertex-neighbor-integrity, incorporating the concept of the integrity and the idea of the edge-neighbor-connectivity [3].

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. An edge $e=[u, v]$ in G is said to be subverted when the incident vertices, u, v, of the edge e are deleted from G. A set of edges $\mathrm{S}=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is called an edge subversion strategy of G if each of the edges in S has been subverted from G. Let G/S be the survival-subgraph left when S has been an edge subversion strategy of G . The edge-neighbor-integrity of a graph G, $\operatorname{ENI}(\mathrm{G})$, is defined to be

$$
\operatorname{ENI}(\mathrm{G})=\min _{\mathrm{SGE}(\mathrm{G})}\{|\mathrm{S}|+\omega(\mathrm{G} / \mathrm{S})\}
$$

where S is any edge subversion strategy of G, and $\omega(\mathrm{G} / \mathrm{S})$ is the maximum order of the components of G / S.

Example: $\mathrm{K}_{n, m}$, where $n>1$ and $m>1$, is a complete bipartite graph with a bipartition (X, Y), where $|\mathrm{X}|=n$ and $|\mathrm{Y}|=m$.

[^0]$\operatorname{ENI}\left(\mathrm{K}_{n, m}\right)=\min _{\mathrm{S} \subseteq \mathrm{E}\left(\mathrm{K}_{n, m}\right)}\left\{|\mathrm{S}|+\omega\left(\mathrm{K}_{n, m} / \mathrm{S}\right)\right\}$
\[

$$
\begin{aligned}
= & \left|S^{*}\right|+\omega\left(\mathrm{K}_{n, m} / \mathrm{S}^{*}\right), \quad \text { where } \mathrm{S}^{*} \text { is a set of matching } \\
& \text { saturating each vertex of } \mathrm{X} \text { if }|\mathrm{X}| \leq|\mathrm{Y}| \text { (or } \mathrm{Y} \text { if }|\mathrm{Y}| \leq|\mathrm{X}|),
\end{aligned}
$$
\]

$$
= \begin{cases}n+1, & \text { if } n<m ; \\ m+1, & \text { if } m<n ; \\ m \text { or } n, & \text { if } m=n .\end{cases}
$$

In this paper, we find the minimum and maximum edge-neighbor-integrity among all trees with any fixed order, and also show that for any integer l between the extreme values there is a tree whose edge-neighbor-integrity is $l .\lceil x\rceil$ is the smallest integer greater than or equal to $x .\lfloor x\rfloor$ is the greatest integer less than or equal to x.

II. The Minimum and Maximum Edge-Neighbor-Integrity of Trees

For any connected graph G of order at least 3 , the edge-neighbor-integrity, $\operatorname{ENI}(\mathrm{G}) \geq 2$, since there is no edge e in G such that $\mathrm{G} /\{e\}=\emptyset$. Trees are connected graphs, and therefore $\operatorname{ENI}(\mathrm{T}) \geq 2$, for any tree T of order at least 3 . If we can find a tree of order at least 3 whose edge-neighbor-integrity is 2 , then the minimum edge-neighbor-integrity among all trees is 2 .

Lemma 1: Let G be a connected graph of order at least 3. If $\operatorname{ENI}(G)=2$, then the diameter of G is ≤ 3.

Proof: Assume that the diameter of G is ≥ 4, then G contains a path P_{5}. Hence for any edge e in $G, \omega(\mathrm{G} /\{e\}) \geq 2$, and for any two edges e_{1} and e_{2} in G, $\omega\left(\mathrm{G} /\left\{e_{1}, e_{2}\right\}\right) \geq 1$. Therefore $\operatorname{ENI}(\mathrm{G}) \geq 3$, a contradiction. Hence the diameter of G is $\leq 3 . \quad$ QED.

Let $\mathrm{K}_{1, n}$ be a complete bipartite graph with a vertex bipartition (X,Y), where $|\mathrm{X}|=1$ and $|\mathrm{Y}|=n$. We also call $\mathrm{K}_{1, n}$ a star with $n+1$ vertices. Let $\operatorname{DS}\left(n_{1}, n_{2}\right)$ be a double star with $\left\{n_{1}, n_{2}\right\}$ end-vertices, where $n_{1} \geq 0$ and $n_{2} \geq 0$, and a common edge $\left[u, v\right.$], as shown in Figure 1. Note that if either n_{1} or n_{2} is 0 , then the double $\operatorname{star} \mathrm{DS}\left(n_{1}, n_{2}\right)$ is a star.
$\mathrm{DS}\left(n_{1}, n_{2}\right): \quad n_{1}$ vertices

n_{2} vertices

Figure 1

Then we have the following theorem.
Theorem 2: Let T be a tree of order $n \geq 3$. Then $\operatorname{ENI}(\mathrm{T})=2$ if and only if T is either a star $\mathrm{K}_{1, n-1}$ or a double star $\operatorname{DS}\left(n_{1}, n_{2}\right)$, where $n_{1} \geq 1, n_{2} \geq 1$, and $n_{1}+n_{2}=n-2$.

Proof: If T is a tree of order at least 3 and $\operatorname{ENI}(\mathrm{T})=2$, then by Lemma 1, the diameter of T is either 2 or 3 . If the diameter of T is 2 , then T is a star $K_{1, n-1}$. If the diameter of T is 3 , then T is a double star $\mathrm{DS}\left(n_{1}, n_{2}\right)$, where $n_{1} \geq 1, n_{2} \geq 1$, and $n_{1}+n_{2}=n-2$.

Conversely, let T be either a star $\mathrm{K}_{1, n-1}$ with the order $n \geq 3$ or a double star $\operatorname{DS}\left(n_{1}, n_{2}\right)$, where $n_{1} \geq 1, n_{2} \geq 1$, and the order $n=n_{1}+n_{2}+2 \geq 4$. Then the subversion of any one edge ϵ from $\mathrm{K}_{1, n-1}$ produces $n-2$ isolated vertices. Hence

$$
\begin{aligned}
\operatorname{ENI}\left(\mathrm{K}_{1, n-1}\right) & =\min _{\mathrm{S} \subseteq \mathrm{E}(\mathrm{G})}\{|\mathrm{S}|+\omega(\mathrm{G} / \mathrm{S})\} \\
& =|\{e\}|+\omega(\mathrm{G} /\{e\})=1+1=2 .
\end{aligned}
$$

The subversion of the common edge e from $\operatorname{DS}\left(n_{1}, n_{2}\right)$ produces $n_{1}+n_{2}$ isolated vertices; the subversion of any another edge from $\operatorname{DS}\left(n_{1}, n_{2}\right)$ produces a subgraph with the maximum order of the components ≥ 2. Hence

$$
\begin{aligned}
\operatorname{ENI}\left(\mathrm{DS}\left(n_{1}, n_{2}\right)\right) & =\min _{\mathrm{S} \subseteq \mathrm{E}(\mathrm{G})}\{|\mathrm{S}|+\omega(\mathrm{G} / \mathrm{S})\} \\
& =|\{e\}|+\omega(\mathrm{G} /\{e\})=1+1=2 .
\end{aligned}
$$

QED.

Since $\operatorname{DS}(0, n-2)\left(=\mathrm{K}_{1, n-1}\right), \operatorname{DS}(1, n-3), \operatorname{DS}(2, n-4), \ldots$, and $\operatorname{DS}(\lfloor n / 2\rfloor-1, n-\lfloor n / 2\rfloor-1)$ are all of the trees with the order n, where $n \geq 3$, and the edge-neighbor-integrity is 2 , there are $\lfloor n / 2\rfloor$ non-isomorphic trees of order n with the minimum edge-neighbor-integrity.

Next, we find the maximum edge-neighbor-integrity among all trees of order $n \geq 1$.

Lemma 3: For positive integers, n and m, if n is fixed, then the function $g(m)=$ $m+\lceil n / m\rceil$ has the minimum value $\lceil 2 \sqrt{n}\rceil$ at $m=\lceil\sqrt{n}\rceil .[2]$

Theorem 4: Let P_{n} be a path of order $n \geq 1$. Then

$$
\operatorname{ENI}\left(\mathrm{P}_{n}\right)=\lceil 2 \sqrt{n+2}\rceil-3
$$

Proof: Let $\mathrm{V}\left(\mathrm{P}_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and S be any subset of $\mathrm{E}\left(\mathrm{P}_{n}\right)$. The subversion of an edge $e=\left[v_{i}, v_{i+1}\right]$ from P_{n} is the removal of the vertices v_{i} and v_{i+1} from P_{n}, so

$$
\omega\left(\mathrm{P}_{n} / \mathrm{S}\right) \geq\left[\frac{(n-2|\mathrm{~S}|)}{(|\mathrm{S}|+1)}\right] .
$$

Let $|S|=m$.

$$
\begin{align*}
\operatorname{ENI}\left(\mathrm{P}_{n}\right) & =\min _{\mathrm{S} \mathrm{\subseteq E}\left(\mathrm{P}_{n}\right)}\left\{|\mathrm{S}|+\omega\left(\mathrm{P}_{n} / \mathrm{S}\right)\right\} \\
& \geq \min _{m \geq 0}\left\{m+\left\lceil\frac{n-2 m}{m+1}\right\rceil\right\} \tag{1}\\
& =-3+\min _{m \geq 0}\left\{m+1+\left\lceil\frac{n+2}{m+1}\right\rceil\right\} \\
& =-3+\lceil 2 \sqrt{n+2}\rceil . \quad \text { (By Lemma 3.) }
\end{align*}
$$

Setting $|\mathrm{S}|=m=\lceil\sqrt{n+2}\rceil-1$ gives the minimum value of $\{m+\lceil(n-2 m) /(m+1)\rceil\}$ and the equality of (1) holds by taking S to be a set of m edges with equal distance in $\mathrm{P}_{n} . m=\lceil\sqrt{n+2}\rceil-1$ and $n-2 m \geq 0$ if and only if $n \geq 2$ and $n \neq 3$. Therefore, if $n \geq 2$ and $n \neq 3$, then the set S is taken to be a set of $[\sqrt{n+2}]-1$ edges with equal distance in P_{n}. If $n=1$, then $\operatorname{ENI}\left(\mathrm{P}_{n}\right)=1$ and $\lceil 2 \sqrt{n+2}\rceil-3=1$. If $n=3$, then $\operatorname{ENI}\left(\mathrm{P}_{n}\right)=2$ and $\lceil 2 \sqrt{n+2}\rceil-3=2$. Hence we obtain the result.

QED.
To show that a path P_{n} has the maximum edge-neighbor-integrity among all trees of order n, we first show the following theorem.

Theorem 5: If T is a tree of order n and $0 \leq m \leq n-1$, then there is a subset S $\subseteq \mathrm{E}(\mathrm{T})$ such that $|\mathrm{S}|=m$ and $\omega(\mathrm{T} / \mathrm{S}) \leq\lceil(n-2 m) /(m+1)\rceil$.

Proof: Assume that the result is not true for some n, and let T be a tree of order n with largest diameter, say d, satisfying

$$
\omega(\mathrm{T} / \mathrm{S})>\left\lceil\frac{(n-2|\mathrm{~S}|)}{(|\mathrm{S}|+1)}\right\rceil,
$$

for any subset $S \subseteq E(T)$. From the proof of Theorem 4, we know that $T \not \approx P_{n}$, i.e., $d \leq n-2$. Let $\mathrm{P}=\left(v_{1}, v_{2}, \ldots, v_{d+1}\right)$ be a longest path in T . Then there is a vertex v in the path P such that the degree of v is greater than 2 ; let the least index of such vertices be k. Then $1<k<d+1$. Now construct the tree T^{\prime} which is T $-\left[v_{k}, v_{k+1}\right]+\left[v_{1}, v_{k+1}\right]$ (as shown in Figure 2).

T :

T^{\prime} :

Figure 2

Since the order of T^{\prime} is n and diameter $d^{\prime}>d$, by the assumption on T , there is an edge-subset $S^{\prime} \subseteq E\left(T^{\prime}\right)$ such that $\left|S^{\prime}\right|=m$ and

$$
\omega\left(\mathrm{T}^{\prime} / \mathrm{S}^{\prime}\right) \leq\left\lceil\frac{(n-2 m)}{(m+1)}\right\rceil
$$

Obviously, $\mathrm{T} /\{e\} \cong \mathrm{T}^{\prime} /\{e\}$ if the edge e is incident with v_{k+1} in T^{\prime} and $e \neq$ $\left[v_{1}, v_{k+1}\right]$, and $\mathrm{T} /\{f\} \subseteq \mathrm{T}^{\prime} /\{f\}$ if the edge f is incident with v_{k} in T^{\prime}. It follows that $e, f \notin \mathrm{~S}^{\prime}$, for all edges e incident with v_{k+1} in T^{\prime} and $e \neq\left[v_{1}, v_{k+1}\right]$, and for all edges f incident with v_{k} in T^{\prime}, since otherwise taking $\mathrm{S}=\mathrm{S}^{\prime}$ gives $\omega(\mathrm{T} / \mathrm{S}) \leq$ $\omega\left(\mathrm{T}^{\prime} / \mathrm{S}^{\prime}\right) \leq\lceil(n-2 m) /(m+1)\rceil$, a contradiction.

Next, we show that $\left[v_{1}, v_{k+1}\right] \notin \mathrm{S}^{\prime}$.
Assume that $\left[v_{1}, v_{k+1}\right] \in S^{\prime}$. If the edge $\left[v_{1}, v_{2}\right] \in S^{\prime}$, then let S be S^{\prime} with $\left[v_{1}, v_{k+1}\right]$ replaced by $\left[v_{k}, v_{k+1}\right]$. Then $\mathrm{T} / \mathrm{S} \subseteq \mathrm{T}^{\prime} / \mathrm{S}^{\prime}$ and $\omega(\mathrm{T} / \mathrm{S}) \leq \omega\left(\mathrm{T}^{\prime} / \mathrm{S}^{\prime}\right) \leq$ $\lceil(n-2 m) /(m+1)\rceil$, a contradiction. If there are edges $\left[v_{t_{1}}, v_{t_{1}+1}\right], \ldots,\left[v_{t_{r}}, v_{t_{r}+1}\right]$, where $2 \leq t_{1}<t_{2}<\ldots<t_{r} \leq k-2$, in S^{\prime}, then let S be S^{\prime} with $\left[v_{t_{i}}, v_{t_{i}+1}\right]$ replaced by $\left[v_{t_{i}-1}, v_{t_{i}}\right]$, for all $t_{1}, t_{2}, \ldots, t_{r}$, and $\left[v_{1}, v_{k+1}\right]$ replaced by $\left[v_{k}, v_{k+1}\right]$, then T / S and $\mathrm{T}^{\prime} / \mathrm{S}^{\prime}$ have different components as follows:
T / S has the components
path $\mathcal{P}_{0}=\left(v_{1}, \ldots, v_{t_{1}-2}\right), \quad$ only if $t_{1} \geq 3$,
path $\mathcal{P}_{j}=\left(v_{t_{j}+1}, \ldots, v_{t_{j+1}-2}\right)$, where $1 \leq j \leq r-1$,
path $\mathcal{P}_{r}=\left(v_{t_{r}+1}, \ldots, v_{k-1}\right)$,
\mathcal{C}_{k} : the component containing $u_{i}(i=1,2, \ldots)$
(as shown in Figure 2).
$\mathrm{T}^{\prime} / \mathrm{S}^{\prime}$ has the components
path $\mathcal{P}_{0}^{\prime}=\left(v_{2}, \ldots, v_{t_{1}-1}\right), \quad$ only if $t_{1} \geq 3$,
path $\mathcal{P}_{j}^{\prime}=\left(v_{t_{j}+2}, \ldots, v_{t_{j+1}-1}\right)$, where $1 \leq j \leq r-1$,
\mathcal{C}_{r}^{\prime} : the component containing a $\left(k-t_{r}-1\right)$-path $-\left(v_{t_{r}+2}, \ldots, v_{k}\right)$,
and containing $u_{i}(i=1,2, \ldots)$
(as shown in Figure 2).
Other than the above, T / S and $\mathrm{T}^{\prime} / \mathrm{S}^{\prime}$ have the same components. The order of $\mathcal{P}_{0}=$ the order of \mathcal{P}_{0}^{\prime}, the order of $\mathcal{P}_{j}=$ the order of \mathcal{P}_{j}^{\prime}, for all $1 \leq j \leq r-1$, the order of $\mathcal{P}_{r}<$ the order of \mathcal{C}_{r}^{\prime}, and the order of $\mathcal{C}_{k} \leq$ the order of \mathcal{C}_{r}^{\prime}, hence all of the components of T / S have sizes smaller than or equal to $\omega\left(\mathrm{T}^{\prime} / \mathrm{S}^{\prime}\right)$, and $\omega(\mathrm{T} / \mathrm{S}) \leq \omega\left(\mathrm{T}^{\prime} / \mathrm{S}^{\prime}\right) \leq\lceil(n-2 m) /(m+1)\rceil$, a contradiction.

Therefore $\left[v_{1}, v_{k+1}\right] \notin \mathrm{S}^{\prime}$.
It has been shown that $e, f \notin \mathrm{~S}^{\prime}$, where e is incident with v_{k+1} in T^{\prime}, and f is incident with v_{k} in T^{\prime}, hence v_{k} and v_{k+1} must be in $\mathrm{T}^{\prime} / \mathrm{S}^{\prime}$. It follows that there must exist $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{r}},(r \geq 1)$, where $1 \leq i_{1}<i_{2}<\ldots<i_{r} \leq k-2$, such that $e_{i_{1}}=\left[v_{i_{1}}, v_{i_{1}+1}\right], e_{i_{2}}=\left[v_{i_{2}}, v_{i_{2}+1}\right], \ldots, e_{i_{r}}=\left[v_{i_{r}}, v_{i_{r}+1}\right] \in S^{\prime}$, since otherwise v_{k} and v_{k+1} are in the same component of $\mathrm{T}^{\prime} / \mathrm{S}^{\prime}$, thus taking $\mathrm{S}=\mathrm{S}^{\prime}$ gives $\omega(\mathrm{T} / \mathrm{S})=$ $\omega\left(\mathrm{T}^{\prime} / \mathrm{S}^{\prime}\right) \leq\lceil(n-2 m) /(m+1)\rceil$, a contradiction.

Let S^{*} be S^{\prime} with $\left[v_{i_{j}}, v_{i_{j}+1}\right]$ replaced by $\left[v_{i_{j}+k-i_{r}}, v_{i_{j}+k-i_{r}+1}\right]$, for all $1 \leq j \leq r$. Since $i_{r} \leq k-2,3 \leq i_{1}+k-i_{r}<i_{2}+k-i_{r}<i_{3}+k-i_{r}<\ldots<i_{r}+k-i_{r}=k$. By the assumption on $\mathrm{T}, \omega\left(\mathrm{T} / \mathrm{S}^{*}\right)>\lceil(n-2 m) /(m+1)\rceil$, and all of the components of $\mathrm{T} / \mathrm{S}^{*}$, except the path $\mathrm{P}^{*}=\left(v_{1}, v_{2}, \ldots, v_{i_{1}+k-i_{r}-1}\right)$, have the sizes smaller than or equal to $\omega\left(\mathrm{T}^{\prime} / \mathrm{S}^{\prime}\right)$, which is $\leq\lceil(n-2 m) /(m+1)\rceil$, hence the order of P^{*} must be

$$
i_{1}+k-i_{r}-1 \geq\left\lceil\frac{n-2 m}{m+1}\right\rceil+1
$$

Let \mathcal{A}_{k}^{\prime} and $\mathcal{A}_{k+1}^{\prime}$ be two different components of $\mathrm{T}^{\prime} / \mathrm{S}^{\prime}$ containing v_{k} and v_{k+1}, respectively, and h be the number of the vertices in $\mathcal{A}_{k+1}^{\prime}$ that are not in the set $\left\{v_{1}, v_{2}, \ldots, v_{i_{1}-1}\right\}$. Since the order of $\mathcal{A}_{k+1}^{\prime}$ is less than or equal to $\lceil(n-2 m) /(m+1)\rceil$, we have

$$
1 \leq h \leq\left\lceil\frac{n-2 m}{m+1}\right\rceil-\left(i_{1}-1\right) \leq k-i_{r}-1 .
$$

Now, let S be the set S^{\prime} with $\left[v_{i_{j}}, v_{i_{j}+1}\right]$ replaced by $\left[v_{i_{j}+h}, v_{i_{j}+h+1}\right]$, for all $1 \leq$ $j \leq r$, and consider the sizes of the components of T/S. By the constructions of S and S^{\prime}, all of the components of T / S, except those containing v_{1} and v_{k}, have at most $\lceil(n-2 m) /(m+1)\rceil$ vertices. The vertex set of the component of T/S containing v_{1} is obtained from the vertex set of $\mathcal{A}_{k+1}^{\prime}$ by deleting the h vertices $\mathcal{A}_{k+1}^{\prime}-\left\{v_{1}, v_{2}, \ldots, v_{i_{1}-1}\right\}$ and appending the vertices $v_{i_{1}}, v_{i_{1}+1}, \ldots, v_{i_{1}+h-1}$ with no change in number of vertices. Similarly, the vertex set of the component of T/S containing v_{k} is obtained from the vertex set of \mathcal{A}_{k}^{\prime} by deleting the h vertices $v_{i_{r}+2}, v_{i_{r}+3}, \ldots, v_{i_{r}+h}, v_{i_{r}+h+1}$ and appending the h vertices, $\mathcal{A}_{k+1}^{\prime}-\left\{v_{1}, v_{2}, \ldots, v_{i_{1}-1}\right\}$ with no change in number of vertices. Hence $\omega(\mathrm{T} / \mathrm{S}) \leq\lceil(n-2 m) /(m+1)\rceil$, a contradiction.

Therefore we obtain the result of the theorem. QED.

Using Theorem 5, we now show that the path P_{n} has the maximum edge-neighbor-integrity among all trees of order n.

Theorem 6: The path P_{n} has the maximum edge-neighbor-integrity among all trees of order $n \geq 1$.

Proof: It is trivial for $n=1$.
Let T be a tree of order $n \geq 2$. Then by Theorem 5 , for any integer m, $0 \leq m \leq n-1$, there is an edge-subset $\mathrm{S}^{\prime} \subseteq \mathrm{E}(\mathrm{T})$ such that $\left|\mathrm{S}^{\prime}\right|=m$ and $\omega\left(\mathrm{T} / \mathrm{S}^{\prime}\right) \leq$ $\lceil(n-2 m) /(m+1)\rceil$.

$$
\begin{aligned}
\operatorname{ENI}(\mathrm{T}) & =\min _{\mathrm{S} \subseteq \mathrm{E}(\mathrm{~T})}\{|\mathrm{S}|+\omega(\mathrm{T} / \mathrm{S})\} \\
& \leq \min _{0 \leq m \leq n-1}\left\{m+\left\lceil\frac{n-2 m}{m+1}\right\rceil\right\}
\end{aligned}
$$

By the proof of Theorem 4, $\operatorname{ENI}\left(\mathrm{P}_{n}\right)=m+\lceil(n-2 m) /(m+1)\rceil$ with $m=\lceil\sqrt{n+2}\rceil-$ 1. $0 \leq\lceil\sqrt{n+2}\rceil-1 \leq n-1$ if and only if $n \geq 2$. Therefore

$$
\begin{aligned}
\operatorname{ENI}(\mathrm{T}) & \leq \min _{0 \leq m \leq n-1}\left\{m+\left\lceil\frac{n-2 m}{m+1}\right\rceil\right\} \\
& \leq m^{*}+\left\lceil\frac{n-2 m^{*}}{m^{*}+1}\right\rceil, \quad \text { where } m^{*}=\lceil\sqrt{n+2}\rceil-1 \\
& =\operatorname{ENI}\left(\mathrm{P}_{n}\right)
\end{aligned}
$$

QED.
We have shown that the path P_{n} has the maximum edge-neighbor-integrity among all trees of order n. However, P_{n} is not the only tree that has the maximum
edge-neighbor-integrity. We evaluate the edge-neighbor-integrity of $\mathrm{T}_{n, k}$ (as shown in Figure 3), where $1 \leq k \leq n-2$, in Theorem 8 , stating that there are at least $\lfloor\sqrt{n+2}-(9 / 4)\rfloor$ non-isomorphic trees of order n having the same edge-neighborintegrity as P_{n}.

k vertices

Figure 3

Lemma 7: There is a unique path P_{n} satisfying the following condition (A) for any subset S of $E\left(P_{n}\right)$, if $\operatorname{ENI}\left(P_{n}\right)=|S|+\omega\left(P_{n} / S\right)$ then $\omega\left(P_{n} / S\right)=0$. Moreover, $n=2$.

Proof: Let P_{n} satisfy the condition (A). By the proof of Theorem 4 , if $n \geq 2$ and $n \neq 3$, then there is an edge subset S^{*} of $\mathrm{E}\left(\mathrm{P}_{n}\right)$ such that $\operatorname{ENI}\left(\mathrm{P}_{n}\right)=\left|\mathrm{S}^{*}\right|+\omega\left(\mathrm{P}_{n} / \mathrm{S}^{*}\right)$, where

$$
\omega\left(\mathrm{P}_{n} / \mathrm{S}^{*}\right)=\left\lceil\frac{n-2\left|\mathrm{~S}^{*}\right|}{\left|\mathrm{S}^{*}\right|+1}\right\rceil
$$

and

$$
\left|S^{*}\right|=\lceil\sqrt{n+2}\rceil-1
$$

Since P_{n} satisfies the condition (A),

$$
\begin{aligned}
\operatorname{ENI}\left(\mathrm{P}_{n}\right) & =\left|\mathrm{S}^{*}\right|+\omega\left(\mathrm{P}_{n} / \mathrm{S}^{*}\right) \\
& =\left|\mathrm{S}^{*}\right| \\
& =\lceil\sqrt{n+2}\rceil-1
\end{aligned}
$$

By Theorem 4,

$$
\operatorname{ENI}\left(\mathrm{P}_{n}\right)=\lceil 2 \sqrt{n+2}\rceil-3
$$

Therefore

$$
\lceil\sqrt{n+2}\rceil-1=\lceil 2 \sqrt{n+2}\rceil-3
$$

and hence $n=2$ or 4 .
Let $\mathrm{P}_{4}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$. Then $\mathrm{S}_{1}=\left\{\left[v_{1}, v_{2}\right],\left[v_{3}, v_{4}\right]\right\}$ and $\mathrm{S}_{2}=\left\{\left[v_{2}, v_{3}\right]\right\}$ satisfy

$$
\begin{aligned}
\operatorname{ENI}\left(\mathrm{P}_{4}\right) & =\left|\mathrm{S}_{1}\right|+\omega\left(\mathrm{P}_{4} / \mathrm{S}_{1}\right) \\
& =\left|\mathrm{S}_{2}\right|+\omega\left(\mathrm{P}_{4} / \mathrm{S}_{2}\right) \\
& =2
\end{aligned}
$$

$\omega\left(\mathrm{P}_{4} / \mathrm{S}_{1}\right)=0$, but $\omega\left(\mathrm{P}_{4} / \mathrm{S}_{2}\right)=1 \neq 0$. Therefore the path P_{4} does not satisfy the condition (A).

Let $\mathrm{P}_{2}=\left(v_{1}, v_{2}\right) . \mathrm{S}=\left\{\left[v_{1}, v_{2}\right]\right\}$ is the only edge subset of $\mathrm{E}\left(\mathrm{P}_{2}\right)$ satisfying $\operatorname{ENI}\left(\mathrm{P}_{2}\right)=|\mathrm{S}|+\omega\left(\mathrm{P}_{2} / \mathrm{S}\right)=1$, and $\omega\left(\mathrm{P}_{2} / \mathrm{S}\right)=0$.

The remaining case is that $n=3$: Let $\mathrm{P}_{3}=\left(v_{1}, v_{2}, v_{3}\right)$. Then $\mathrm{S}_{1}=\left\{\left[v_{1}, v_{2}\right],\left[v_{2}, v_{3}\right]\right\}$ and $\mathrm{S}_{2}=\left\{\left[v_{1}, v_{2}\right]\right\}$ satisfy

$$
\begin{aligned}
\operatorname{ENI}\left(\mathrm{P}_{3}\right) & =\left|\mathrm{S}_{1}\right|+\omega\left(\mathrm{P}_{3} / \mathrm{S}_{1}\right) \\
& =\left|\mathrm{S}_{2}\right|+\omega\left(\mathrm{P}_{3} / \mathrm{S}_{2}\right) \\
& =2
\end{aligned}
$$

$\omega\left(\mathrm{P}_{3} / \mathrm{S}_{1}\right)=0$, but $\omega\left(\mathrm{P}_{3} / \mathrm{S}_{2}\right)=1 \neq 0$. Therefore the path P_{3} does not satisfy the condition (A).

Hence P_{2} is the only path satisfying the condition (A). QED.
Theorem 8: The edge-neighbor-integrity of $\mathrm{T}_{n, k}$ (as shown in Figure 3), where $n \geq 3$ and $1 \leq k \leq n-2$, is as follows:

$$
\operatorname{ENI}\left(\mathrm{T}_{n, k}\right)= \begin{cases}\lceil 2 \sqrt{n+2}\rceil-3, & \text { if } 1 \leq k \leq \sqrt{n+2}-\frac{9}{4} ; \\ \lceil 2 \sqrt{n-k}\rceil-2, & \text { if } \sqrt{n+2}-\frac{9}{4} \leq k \leq n-5 ; \\ 3, & \text { if } k=n-4 ; \\ 2, & \text { if } k=n-3, n-2 .\end{cases}
$$

Proof: If $k=n-2, \mathrm{~T}_{n, k}$ is a star. Then $\operatorname{ENI}\left(\mathrm{T}_{n, k}\right)=2$.
If $k=n-3, \mathrm{~T}_{n, k}$ is a double star. Then $\operatorname{ENI}\left(\mathrm{T}_{n, k}\right)=2$.
Now we consider the case of $k \leq n-4$. Let S^{*} be a subset of $\mathrm{E}\left(\mathrm{T}_{n, k}\right)$ for which $\operatorname{ENI}\left(\mathrm{T}_{n, k}\right)=\left|\mathrm{S}^{*}\right|+\omega\left(\mathrm{T}_{n, k} / \mathrm{S}^{*}\right)$.

If $\left[v, v_{i}\right] \in \mathrm{S}^{*}$, for some $i, 1 \leq i \leq k$, we may let S^{\prime} be S^{*} with $\left[v, v_{i}\right]$ replaced by $\left[w_{1}, v\right]$. Then

$$
\begin{aligned}
\left|\mathrm{S}^{\prime}\right|+\omega\left(\mathrm{T}_{n, k} / \mathrm{S}^{\prime}\right) & \leq\left|\mathrm{S}^{*}\right|+\omega\left(\mathrm{T}_{n, k} / \mathrm{S}^{*}\right) \\
& =\operatorname{ENI}\left(\mathrm{T}_{n, k}\right) \\
& =\min _{\mathrm{S} \subseteq \mathrm{E}\left(\mathrm{~T}_{n, k}\right)}\left\{|\mathrm{S}|+\omega\left(\mathrm{T}_{n, k} / \mathrm{S}\right)\right\} .
\end{aligned}
$$

Therefore

$$
\operatorname{ENI}\left(\mathrm{T}_{n, k}\right)=\left|\mathrm{S}^{\prime}\right|+\omega\left(\mathrm{T}_{n, k} / \mathrm{S}^{\prime}\right) .
$$

Hence without loss of generality we may assume that $\left[v, v_{i}\right] \notin \mathrm{S}^{*}$, for all $1 \leq i \leq k$.
Now we consider two cases:
Case 1. If $\left[w_{1}, v\right] \in \mathrm{S}^{*}$, then

$$
\begin{aligned}
\operatorname{ENI}\left(\mathrm{T}_{n, k}\right) & =\left\{\begin{array}{rr}
\operatorname{ENI}\left(\mathrm{P}_{n-(k+2)}\right)+1, & \text { if } n-(k+2) \neq 2 ; \\
\operatorname{ENI}\left(\mathrm{P}_{n-(k+2)}\right)+2, & \text { if } n-(k+2)=2 . \\
& (\text { By Lemma } 7 .)
\end{array}\right. \\
& = \begin{cases}\lceil 2 \sqrt{n-k}\rceil-2, & \text { if } k \neq n-4 ; \\
3, & \text { if } k=n-4 .\end{cases}
\end{aligned}
$$

(By Theorem 4.)
Case 2. If $\left[w_{1}, v\right] \notin \mathrm{S}^{*}$, then v, v_{1}, v_{2}, \ldots, and v_{k} are in the same component of $\mathrm{T}_{n, k} / \mathrm{S}^{*}$, and

$$
\operatorname{ENI}\left(\mathrm{T}_{n, k}\right)=\operatorname{ENI}\left(\mathrm{P}_{n}\right)=\lceil 2 \sqrt{n+2}\rceil-3 .
$$

Hence,

$$
\operatorname{ENI}\left(\mathrm{T}_{n, k}\right)=\left\{\begin{array}{l}
\min _{k \neq n-4}(\lceil 2 \sqrt{n-k}\rceil-2,\lceil 2 \sqrt{n+2}\rceil-3) \\
\min _{k=n-4}(3,\lceil 2 \sqrt{n+2}\rceil-3)
\end{array} \quad\right. \text { or }
$$

In the case of $k=n-4,\lceil 2 \sqrt{n+2}\rceil-3 \leq 3$ if and only if $n \leq 7$. If $n \leq 7, k \geq 1$, and $k=n-4$, then n can only be 7,6 , or 5 . When $n=7,6$, or $5,\lceil 2 \sqrt{n+2}\rceil-3=3$. Hence, in the case of $k=n-4, \operatorname{ENI}\left(\mathrm{~T}_{n, k}\right)=3$.

In the case of $k \neq n-4,\lceil 2 \sqrt{n+2}\rceil-3 \leq\lceil 2 \sqrt{n-k}\rceil-2$ if $k \leq \sqrt{n+2}-(9 / 4)$, and $\lceil 2 \sqrt{n-k}\rceil-2 \leq\lceil 2 \sqrt{n+2}\rceil-3$ if $k \geq \sqrt{n+2}-(9 / 4)$.

Therefore,

$$
\operatorname{ENI}\left(\mathrm{T}_{n, k}\right)= \begin{cases}\lceil 2 \sqrt{n+2}\rceil-3, & \text { if } 1 \leq k \leq \sqrt{n+2}-\frac{9}{4} ; \\ \lceil 2 \sqrt{n-k}\rceil-2, & \text { if } \sqrt{n+2}-\frac{9}{4} \leq k \leq n-5 \\ 3, & \text { if } k=n-4 ; \\ 2, & \text { if } k=n-3, n-2 .\end{cases}
$$

QED.

Among all trees of order $n \geq 3$, the maximum edge-neighbor-integrity is $\lceil 2 \sqrt{n+2}\rceil-3$, and the minimum is 2 . We can find a tree whose edge-neighborintegrity is l, for any integer l between the extreme values, as shown below.

Theorem 9: If l is any integer, where $2 \leq l \leq\lceil 2 \sqrt{n+2}\rceil-3$, then there is a tree T of order n such that $\operatorname{ENI}(\mathrm{T})=l$.
Proof: If $l=2, \mathrm{~T}=\mathrm{K}_{1, n-1}$ or $\mathrm{T}=\mathrm{DS}(i, n-i-2)$, where $1 \leq i \leq\lfloor(n-2) / 2\rfloor$; if $l=\lceil 2 \sqrt{n+2}\rceil-3, \mathrm{~T}=\mathrm{P}_{n}$ or $\mathrm{T}=\mathrm{T}_{n, k}$, where $1 \leq k \leq \sqrt{n+2}-(9 / 4)$. Therefore we assume that $2<l<\lceil 2 \sqrt{n+2}\rceil-3$. Since

$$
l<\lceil 2 \sqrt{n+2}\rceil-3
$$

we have

$$
l+3<2 \sqrt{n+2}
$$

and

$$
\begin{equation*}
n>\frac{l^{2}}{4}+\frac{3}{2} l+\frac{1}{4} . \tag{2}
\end{equation*}
$$

Let r be the largest integer such that $\lceil 2 \sqrt{r+2}\rceil-3=l-1$, so $\lceil 2 \sqrt{(r+1)+2}\rceil-3=$ l. Since

$$
l+3 \geq 2 \sqrt{r+3}
$$

we have

$$
\begin{equation*}
r+1 \leq \frac{l^{2}}{4}+\frac{3}{2} l+\frac{1}{4} \tag{3}
\end{equation*}
$$

Hence combining (2) and (3),

$$
n \geq r+2
$$

We let $k=n-r-1 \geq 1$, so that $\mathrm{T}_{n, k}$ contains a path P_{r+1}. Then

$$
\operatorname{ENI}\left(\mathrm{T}_{n, k}\right) \geq \operatorname{ENI}\left(\mathrm{P}_{r+1}\right)=\lceil 2 \sqrt{(r+1)+2}\rceil-3=l .
$$

The subversion of the edge $\left[v, w_{1}\right]$ from $\mathrm{T}_{n, k}$ produces k isolated vertices and a path P_{r-1}. Hence

$$
\begin{aligned}
\operatorname{ENI}\left(\mathrm{T}_{n, k}\right) & \leq 1+\operatorname{ENI}\left(\mathrm{P}_{r-1}\right), \quad \text { if } r-1 \neq 2 \\
& =1+\lceil 2 \sqrt{(r-1)+2}\rceil-3 \\
& =\lceil 2 \sqrt{r+1}\rceil-2 \\
& \leq\lceil 2 \sqrt{r+2}\rceil-2=l .
\end{aligned}
$$

Therefore if $r-1 \neq 2, \operatorname{ENI}\left(\mathrm{~T}_{n, k}\right)=\boldsymbol{l}$.
The remaining part is to show that $r=3$ is impossible. r is the largest integer such that $\lceil 2 \sqrt{r+2}\rceil-3=l-1$. If $r=3$ then $l=\lceil 2 \sqrt{5}\rceil-2=3$. Thus $\lceil 2 \sqrt{(r+1)+2}\rceil-3=\lceil 2 \sqrt{6}\rceil-3=2=l-1$, a contradiction to the assumption on r. Hence $r \neq 3$.

Therefore we have found a tree, $\mathrm{T}_{n, k}$, whose edge-neighbor-integrity is l. QED.

References

[1] C. A. Barefoot, R. Entringer and H. Swart, Vulnerability in Graphs - a Comparative Survey, J. Combin. Math. Combin. Comp. 1 (1987), 13-22.
[2] C. A. Barefoot, R. Entringer and H. Swart, Integrity of Trees and Powers of Cycles, Congr. Numer. 58 (1987), 103-114.
[3] M. B. Cozzens and S.-S. Y. Wu, Extreme Values of the Edge-NeighborConnectivity, Ars Combinatoria (1994), in press.
[4] M. B. Cozzens and S.-S. Y. Wu, Vertex-Neighbor-Integrity of Trees, Ars Combinatoria (1994), in press.
[5] S.-S. Y. Wu and M. B. Cozzens, The Minimum Size of Critically m-Neighbor-Connected Graphs, Ars Combinatoria 29 (1990), 149-160.

[^0]: * Currently at the National Science Foundation
 \dagger The work is supported by ONR

