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Abstract. In [2] Bussemaker and Tonchev constructed six doubly 
even (56,28, 12) codes from two Hadamard matrices of order 28. But 
two of them were not distinguished. In [11] and [12] we characterized 
Hadamard matrices of order 28 and there are exactly 487 Hadamard 
matrices, up to equivalence. In this paper we show that only two of the 
above 487 matrices produce six doubly even (56,28,12) codes and that 
two of the six codes are equivalent. Therefore there are exactly five 
(56,28,12) codes, up to equivalence, produced by Hadamard matrices 
of order 28. 

1. INTRODUCTION 

A Hadamard matrix H of order n is an n x n matrix of ±1' s with H Ht = nI. It is 
well known that n is necessarily 1, 2 or a multiple of four. We say that two matrices 
Ml and M2 of the same size are equivalent if there exists a signed permutation 9 of 
rows and columns of Ml with Mf = M2 • A matrix which is equivalent to a Hadamard 
matrix is also a Hadamard matrix. An automorphism of H is a signed permutation 
9 of the set of rows and columns such that Hg = H. The set of automorphisms forms 
a group under composition called the automorphism group of H and it is denoted by 
Aut(H). We say that a set of four rows of H is a Hall set if the submatrix consisting 
of the four rows is equivalent to the following matrix: 

(1.1) 
[

+ + + + Jm 

+ + - - Jm 

+ - + - Jm 

+ - + -Jm 

where Jm is the alII's row vector of dimension (n 4)/4. 
The equivalence classes of Hadamard matrices of order ~ 28 have been determined 

by Hall, Ito-Leon-Longyear and the author([5], [6], [7], [11] and [12]). There are 
exactly 487 inequivalent Hadamard matrices of order 28. One of them has no Hall set 
and the others have Hall sets. These matrices are distinguished by their K-matrices 
except five matrices in [9]. 

Let F = GF(2) be the field of two elements 0 and 1. Let Fn be the vector space of 
dimension n over F. For elements x = (Xl,'" ,xn) and y = (Yl,'" ,Yn) of Fn, the 
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Hamming distance d( x, y) is defined by the number of i with Xi -I- Yi. The Hamming 
weight wt( x) of x is defined by d( X, 0). For a column vector x put wt( x) = wt( xt). 
A binary linear (n, k) code C is a subspace of Fn of dimension k. The minimum 
distance of C is defined by the minimum weight among all non-zero elements of C. 
The generator matrix of C is the matrix whose rows are the basis vectors of C. Two 
codes are equivalent if one can be obtained from the other by a permutation of the 
coordinate positions. 

We assume that the reader is familiar with the basic facts from the theory of 
self-dual linear codes. Our terminology follows [3]. 

It is well known that for a Hadamard matrix of order n there exists a binary code 
with n symbols, 2n code words, and minimum distance n/2. This is not necessar
ily a linear code. On the other hand many linear codes can be constructed from 
Hadamard matrices. It is well known that the (24,12,8) Golay code is obtained 
from a Hadamard matrix of order 12 ([15]). 

In [19] Tonchev gave a general method of a construction of binary self-orthogonal 
codes and in [2] obtained six doubly even self-dual (56, 28, 12) codes from two 
Hadamard matrices of order 28. But two of the six codes were not distinguished. 

We discuss the existence and equivalence of extremal doubly even self-dual 
(56,28,12) codes obtained from all Hadamard matrices of order 28 by the method 
in [19]. 

We can consider that (H + J)/2 is a matrix on F, where J is the an1's matrix, 
and we denote this also by H if there is no confusion. 

Theorem 1. Let H be a Hadamard matrix of order 28 and C a binary self-dual 
(56,28,12) code with generator matrix (1, H). Then Hand C are equivalent to one 
of two matrices and one of six codes in [2], respectively. Moreover two of the six 
codes are equivalent. 

One of the matrices in Theorem 1 is of Q R - type and the other is equivalent to 
the 471 th matrix in [13]. 

2. GENERAL PROPERTIES 

Let H = (hi,i) be a normalized Hadamard matrix of order n = 28. Let r = 
{I" .. ,28}. Let Band P be subsets of r. Let HB,P be a Hadamard matrix obtained 
from H by negating the rows in B and the columns in P. By [2], if the matrix 
(1, HB,P ) generates a binary self-dual doubly even (56, 28,12) code, then the following 
condition must be satisfied: 

Condition 1. The weight of every row and column of HB,P is greater than 10 and 
congruent to 3 (mod 4). 

Let C {H} be the set of equivalence classes of codes constructed from H as above. 
Then we have the following proposition. 

Proposition 2. If H' is equivalent to H, then C{H} = C{H'}. 

Therefore we may assume that H is of normal form, when we determine C{H}. 

Proposition 3. If Band P contain 1, then there exist subsets B' and pi of r not 
containing 1 such that C(HBIP) is equivalent to C(HBI,PI). 
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Since a matrix (Ht, 1) generates C(1, H), the following proposition is triviaL 

Proposition 4. C{H} = C{Ht} and hence we assume IBI ~ IPI. 
We denote a code generated by (1, HB,P ) EC(HB,p) if it is an extremal self-dual 

doubly even (56,28,12) code. 
We study H when HB,P generates EC(HBIP)' Since H is Hadamard matrix, it 

is trivial that the weight of a sum of every different two rows of (1, HB,p) is 16. 
By Proposition 4, (1, HB,p) generates EC(HB,p), if Condition 1 and the following 
condition are satisfied: 

Condition 2. Weights of sums of three or four rows of (1, HB,P ) and (H1,p, I) must 
be greater than 11, respectively. 

At first we assume B = {2,'" ,28} and P {I}. Then HB,p satisfies the Con
dition 1 and hence (1, HB,p) generates a doubly even code. Let H' be an equivalent 
matrix of H of normal form. Then a code generated by (I, H~ ,P ) is equivalent to 
the above code by [16]. If H has no Hall set, then Ht has also no hall set by [14]. 
Thus the weights of sums of all three or four row vectors of Hand Ht are greater 
than, or equal to 12. By Condition 2 (1, HB,P ) generates EC(HB,p). In this case 
set HI HB,P. If H has Hall sets, then we may assume by Propositon 2 that a 
submatrix of H consisting of its first four rows is of form (1.1). Thus the sum of 
the first four rows of (1, HB,P) is of weight 8 and the minimum weight of the code 
generated by (I, HB,P) is less than 12. 

~rOPIOSltl.O. 5. If the weight of some column of HB" P ' equals 27, then there exists 
a row of weight 27 and hence it is equivalent to (1, HB,P ). 

Proof. We may assume the weight of the first column equals 27, hIll = 0 and hI,i = O. 
By the orthogonality of the first and second columns, the weight of the second column 
must be 13. This contradicts the Condition 1. Hence hI,i = 1 for all i. This proves 
the proposition. 0 

By this proposition and [16], if there exists a row or column of H B,P whose weight 
is 27, then the code generated by (1, HB,P ) is equivalent to the code generated by 
(1, HI)' Therefore we assume the weights of all rows and columns of HB,P are less 
than 27. 

Since H does not have a Hall set, the weight of every different four rows of (I, HB,P ) 
and (H1,p, I) is greater than 12, respectively. 

3. ON THE CASE H HAS NO HALL SET 

In this section we assume that H has no Hall set. Then we may assume that 
H is the Paley matrix defined by the squares in F = GF(27) by [12]. Let F = 
Z3[X]/(f(X)), where Z3 = GF(3) and f(X) is an irreducible polynomial over Z3. 
We assign a number to an element of F in the following way: 

(3.1 ) aX2 + bX + c (mod (f(x)) f----+ 32a + 3b + c. 
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Then 1) tl, 0, or, ts,!:J, 11, lZ, iJ, 10, 10, zv, :l:l,:lD j IS a amerence set ana P T .vj'" t:: 

F} is a set of blocks of a Hadamard 2-(27, 13,6) design. We also denote an incidence 
matrix of this design by D = (di,j). Then 

(3.2) [1 1]. 
H = (HI =) i D 

Let col( D) be the set of columns i such that (i - 2) are not contained in the 
difference set D. The permutation groups Aut(H) on the set of rows and Aut(H) 
on the set of columns are same as permutation groups. 

Proposition 6. We may assume Band P do not contain 1. 

Proof. By Proposition 3 and 4, assume 1 E Band 1 rt P. Since 1 < IBI == 1 (4) 
and IPI == 3 (4), there exists i (> 1) not contained in B n P. Then (i,i)-component 
of HB,p is 1. By Proposition 2 we may assume that (1, l)-component of HB,p is 1. 
This proves the proposition. 0 

Proposition 7. We may assume Band P do not contain 2. 

Proof. If B uP i= r, then the proposition follows. Assume B U P i=- r. Then, by the 
same permutation of r if necessary, HB,p is the following form: 

where MI and M2 have diagonals of all l's, M3 has a diagonal of all O's, A~ = A2 
and Bf B 2 • Let Mi be of size mi (i = 1,2,3). If m3 0, then mi + 1 = 11,15"" 
and m2 + 1 11,15, .. '. this contradicts ml + m2 = 27. Therefore m3 > O. If 
Al = 0 and BI = 0, then m3 2: 12 by Condition 2. Thus there exists a pair (i, j) of a 
row and a column such that the (i,i), (i,j) and (j,i) components are 1 and the (j,j) 
component is O. Since Aut(H) is doubly transitive, then the proposition follows. 0 

Proposition 8. Icol(D) - PI is an odd number greater than 2 and we may assume 
P does not contain 3. 

Proof. Let a and b be the numbers of columns of col(D) - P and columns not 
contained in P U col(D) U {1, 2}, respectively. Applying Condition 1 to the first and 
the second columns, a + b = 9,13"" and a + (13 b) = 10,14,···. a + b == 1 (4) 
and a - b == 1 (4). Therefore a 2: 3 and a is odd. There exists an element of Aut ( H) 
fixing the first and second rows and columns such that it transforms the 3rd column 
to a column of col(D) - P. Thus we may assume the 3rd column is not negated. 0 

Under Conditions 1 and 2 we compute by a computer program satisfying the 
propositions in this section. Then we have four solutions case 2,3,4 and 5 in Table 2. 
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4. UN THE CASE .t1 HA!:) UALL !:).ti'l':::i 

In this section we assume that H has Hall sets. Then H is one of the 486 matrices 
obtained in [11] by Proposition 2. The following proposition is trivial from the 
definition of Hall set. 

Proposition 9. Let {Tl, Ta, T3, T4} be a Hall set of H. The vectoT TI + Ta + T3 + T4 
in Fn is of weight 4 OT 24. 

By this, if (1, HB,p) generates EC(HB,p), then 

( 4.1) {
I or 3, if wt(TI + Ta + T3 + T4J = 4 

0,2 or 4, ifwt(TI +Ta +T3 + T4) = 24. 

Let {All'" ,Am} be a family consisting of all the Hall sets of H. Set ~i 
Al U··· U Ai. Assume the following: 

Condition 3. ~l ~ }ja ~ ... ~ ~k = ~m 

Set k(H) = r-~m for H. For almost all matrices in [11] ~ r. Max{k(H)} 3. 
If we make a computer program under the conditions in Section 2 and this section, H 
must be a matrix H471 in [11], say Ha in this paper. In fact the following subfamily 
of Hall sets of Ha satisfies Condition 3: 

TABLE 1. A subfamily of Hall sets of Ha 

Hall set Al A2 Aa A4 A5 Aa A7 As As AlO 
rows 2 2 2 3 3 3 4 4 4 5 

11 12 15 12 13 16 11 13 14 14 
21 23 21 22 24 22 23 20 20 23 
24 24 23 25 25 24 25 23 25 27 

weight 4 4 4 4 4 4 4 4 4 4 

Ha.ll set All Au Ala A14 A15 Ala A17 A1S A1S 

rows 5 5 6 6 7 7 8 9 10 
15 17 15 18 14 19 12 13 11 
26 23 24 24 26 25 21 22 20 
27 26 28 27 28 28 26 27 28 

weight 4 4 4 4 4 4 4 4 4 

The weight of the sum of the four elements of every Hall set Ai {i = 1, ... , 19} is 
four. Therefore I{B n Ai}1 must be one or three. There exists no Hall set containing 
the first row and the first column is not contained in any Hall set of Ht. In this case 
we may compute by hand and two solutions are obtained: 

(4.2) 

and 

(4.3) 

{ 
BI = {2,3,4,5,6,7,8,9,10} 

PI = {11,12,13,14,15,16,17,18,19} 

{ 
Ba = {ll, 12, 13, 14, 15, 16, 17, 18, 19} 

Pa = {2,3,4,5,6,7,8,9,10} 
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~mce 112 and 112 have the same K -matrIx, they are equIvalent. In tact, by the 
following permutations 9 and h on the sets of rows and columns of H2 , respectively, 
H2 transforms to its transpose. 

( 4.4) 
9 (2,3)(4,9)(5,8)(6, 7)(10,11)(13,17,15,18,14,16)(19,20)(22,25,23,27,24,26) 

(4.5) 
h = (2,3)(4,9)(5,8)(6, 7)(10,11)(13,16,14,18,15,17)(19,20)(22,26,24,27,23,25) 

Applying 9 and h, (4.2) is equivalent to (4.3). This code is the 6-th code in Table 2. 

5. ON EQUIVALENCE OF CODES 

In this section we discuss the of the six codes in Table 2 or in [2]. We 
consider the 3-designs formed by the minimum weight codewords. The definition of 
the class size of a code is given in [2]. The codes No.4 and No.6 in Table 2 have the 
same class size. 

We introduced the K -matrices and K-boxes associated with Hadamard matrices. 
This idea is useful for a classification of codes or designs. For the definition of 
K -matrix, see [8] or [9]. Let 0 be a binary self-dual doubly even (56,28,12) code. 
We define the K -box for O. Let D (d,;,;) be the 3 (56,12,65) design formed by 
the minimum weight codewords. 

For any different p points i I ,'" j 

containing the p points. Next we 
q2 (ql S; q2) as follows: 

let bit ,'" ,ip be the number of blocks of D 
ai1, ... ,ip for two positive integers ql and 

{
II 
0, 

if qI S; bi1 ,'" ,ip S; q2 
otherwise 

If l{i1 ••. ,ip}1 < p, then set ail, ... ,ip 

Cx ,y,z ( ql, q2) as follows: 
0. For three points x, y and z, define 

Cx,y,z( ql, q2) = 2: ai1, .. ·,ip ( ql, q2)' 
x,y,zE{i1,···,ip } 

For fixed i, j, by a permutation of indexes we assume that Ck1 ,';,j( qI, q2) S; Ck2 ,i,;( ql, q2) 
if kl < k2. Then we have 56 matrices B( i);,ql,q2( 0) = (Cj,k,i( ql, q2)), i = 1" .. ,56. For 
fixed i, after ordering B(i);,ql,q2(0) lexicographically, we denote this by B(i)~,ql,q2(C). 
Furthermore we rearrange lexicographically the collection of matrices B( i)~,ql,q2 with 
1 S; i S; 56. We call this collection the K - box of 0 (or D) and denote it by 
Bp,ql,qa(O). By the definition of K -box, if a code Of is equivalent to 0, then their 
K - boxes are the same. 

Let 0 4 and 0 6 be codes No.4 and No.6 in Table 2, respectively. Then B5,1,8( 0 4 ) = 
B 5,l,8(06) and therefore we can not distinguish the two codes by K -boxes. But 
we can find a permutation 9 of coordinates of 0 4 such that 0 4 is equivalent to 
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LtG uy 9. J-U urSL we can lUlU a perrnU{;a(;lOn 91 or (;ne sel; 11,'" ,00) sucn l;nat 

B( i)5,l,8( C:l) = B( i)5,l,8( Ce) for all i: 

{

(1)(2,20 1 26,54,17,33,32,31)9,19,25,51,53, 16, 30, 39, 
91 = 38,41,37,34,40,3,35,14,6,21,48,45,8,56,47,44,7,36,15, 

24,27,4,18)(5,10,22,11,23,13)(12,50,52,46,49)(28)(29)(55) 

Next we find a permutation 92 such that B(2)~,l,8( C:l92) B(2)~,1.8( Ce): 

{

(1)(2)(3,12,17,14,19,10,7,18 1 81 15,16,13,6,5,4)(9 1 11) 

92 (20,42,25,41,22,45)(21,39,26,47,27,40,28,44,23,43)(24,46) 

(29)(30,56,52,37,38,36,48,51,53,33,55,34,32,35,49,31)(50,54). 

G (1 I H4 )9192 is a generator matrix of the code C:192. We can obtain another 
generator matrix (1, H) from G. Then we can easily check that H is an Hadamard 
matrix with Hall sets and its K -matrix is one of H2 in (5.1). Therefore H is 
equivalent to H2 by [11]. Thus C4 is equivalent to Ce.This completes the proof of 
Theorem 1. 

TABLE 2. The extremal codes 

code H Negated columns (P) Class sizes 
and rows (B) 

1 HI col: 1 56 
row: ,,' ,,28 

2 HI col: 4, 5, 6, 7, 8,12,17,19,28 2,6,6,6,6,6,6,6,6,6 
row: 3, 6, 8, 9,10,11,13,19,20,22,25,26,28 

3 HI col: 4,5,8,21,22 2,2,2,2,6,6,6,6,6,6,6,6 
row: 12,14,17,21,22 

4 HI col: 4, 5, 9,13,14,18,22,23,27 2,18,18,18 
row: 3, 7, 8,12,16,17,21,25,26 

5 HI col: 4, 5, 9,11,13,14,15,18,19 1,1, 9,9,9,9,9 
row: 12,16,17,21,22,23,25,26,27 

6 H2 col: 3,4,5,6,7,8,9,10,11 2,18,18,18 
row: 12,13,14,15,16,17,18,19,20 
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(5.1) 
1111 111 111111 111111 111111111 

1 010 000 111 101 110 110001010010 
1 001 000 111110 011 011 100001001 
1 100 000 111 011 101 101 010 100 100 

1111 010 000 110 101 110010001010 
1 111 001 000 011 110 011 001 100 001 
1 111100000 101 011101100010 100 

1 000 111 010 110 110 101 010 010 001 
1 000 111 001 011 011 110 001 001 100 
1 000 111 100 101 101 011 100 100 010 

1 001 010 010 010 000 111 101 110 110 
1 100 001 001 001 000 111 110 011 011 
1 010 100 100 100 000 111 011 101 101 

Hl = 1 010001 010 111 010000 110 101110 
1 001100001 111 001 000011110011 
1 100010 100 111 100000 101011101 

1 010 010 001 000 111 010 110 110 101 
1 001 001 100 000 111 001 011 011 110 
1 100 100 010 000 111 100 101 101 011 

1 101 110 110 001 010 010 010 000 111 
1 110 011 011 100 001 001 001 000 111 
1 011 101 101 010 100 100 100 000 111 

1 110 101 110 010 001 010 111 010 000 
1 011 110 011 001 100001111001 000 
1 101 011 101 100 010 100 111100 000 

1 110 110 101 010 010 001 000 111 010 
1 011 011 110001 001 100000 111 001 
1 101 101 011100 100010000 111 100 

K(H2) = [; .. . 
9 .. . 

9 ". 

1 111 111 111111 111 111111111 111 

1 100010 110 000001101111 010 110 
1 010 001 011 000 100 110 111 001 011 
1 001 100 101 000 010 011111100 101 

1 011 001 010 101 000 001 110 111 100 
1 101 100 001 110 000 100 011 111 010 
1 110010 100 011 000 010 101111 001 

1 001 110001 001 101 000 100 011 111 
1 100 011 100 100 110000010 101111 
1 010 101 010 010 011 000 001 110 111 

1 000 100 110 111 100 110 100 100 110 
1 000 010 011 111 010 011 010 010 011 
1 000 001 101 111 001 101 001 001 101 

H2 = 1 011 000 100 110 111 100 110 010 001 
1 101 000 010 011 111 010 011 001 100 
1 110000001101 111 001101100 010 

1 001 011 000010011 111100 101 010 
1 100 101 000 001 101 111 010 110 001 
1 010 110 000 100 110 111 001 011 100 

1 111 010 011 100 001 110 000 100 101 
1 111 001 101 010 100011 000 010 110 
1 111 100 110 001 010 101 000 001 011 

1 110 111 001 011 010 100 110 000 100 
1 011 111 100 101 001 010 011 000 010 
1 101 111 010 110 100 001 101 000 001 

1 100 101 111100011 010 100011 000 
1 010 110 111 010 101 001 010 101 000 
1 001 011 111 001 110 100 001 110 000 

111 111 111 
111 22'2] 

111 111 111 111 222 
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