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Abstract 

For any integers n , m, 2n > m > n we construct a set of boolean func
tions on Vm , say {f1(Z), ... , fn(z)}, which has the following important 
cryptographic properties: 

(i) any nonzero linear combination of the functions is balanced; 

(ii) the nonlinearity of any nonzero linear combination of the functions 
is at least 2m - 1 - 2n - 1 ; 

(iii) any nonzero linear combination of the functions satisfies the strict 
avalanche criterion; 

(iv) the algebraic degree of any nonzero linear combination of the func
tions is m - n + 1; 

(v) F(z) = (f1(Z), ... , fn(z)) runs through each vector in Vn precisely 
2m -

n times while z runs through Vm . 

1 Basic Definitions 

Let Vn be the vector space of n tuples of elements from GF(2). Let a, f3 E Vn. Write 
a = (a1, ... , an), (3 = (b1, ... , bn), where ai, bi E GF(2). Write (a,(3) = 2:,j=l ajbj. 
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Also write a (aI, ... ,an) < f3 = (b l , ... , bn) if there exists k, 1 ;£ k ;£ n, such that 
al = bl , ... , ak-l = bk- l and ak = 0, bk = 1. Hence we can order all vectors in Vn 
by the relation < 

where 

ao = (0, ... , 0, 0), ... , 

a2n-1 (1, 0, ... , 0), ... , a2n-1 = (1,1, .. ,,1). 

Definition 1 Let f(x) be a function from Vn to GF(2) (or simply, a function on 
Vn ). The (1 -I)-sequence 'r/ = ((_l) fCao) (_1)f(a 1 ) ••• (_1) fCa2n-d) is called the 
sequence of f(x). Similarly, the (0, I)-sequence (f(ao) f(a1) ... f(a2n-d) is called 
the truth table of f(x). In particular, if the truth table of f(x) has 2n

-
1 zeros (ones) 

f(x) is said to be 0-1 balanced (or simply, balanced). 

Definition 2 We call hex) = alxl + .. ·+anxn +c, aj, c E GF(2), an affine function. 
In particular, we will call h( x ) a linear function if ca. The sequence of an affine 
function (a linear function) will be called an affine sequence (a linear sequence). 

Definition 3 Let f and 9 be functions on Vn whose sequences are e and 'r/ respec
tively. The Hamming distance between f and g, denoted by d(f,g), is the number 
of components where e and 'r/ differ. Let 'PI, ... , 'P2n, 'P2 n +l, ... ,'P2n+1 be all affine 
functions on Vn. N f = miI1i=1, ... ,2n+1 d(f, 'Pi) is called the nonlinearity of f(x). 

The nonlinearity is a crucial criterion for a good cryptographic design. It prevents 
a cryptosystem from being attacked by solving a set of linear equations. 

Definition 4 Let f(x) be a function on Vn . Hf(x)+f(x+a) isO-1 balanced for every 
a E Vn with W(a) 1, where W(a) denotes the number of nonzero components 
( the Hamming weight) of a, we say that f( x) satisfies the strict avalanche criterion 

the (SAC). 

The strict avalanche criterion was originally defined in [16], [17], and was gen
eralized in two different directions [2], [5], [8], [9], [10], [14]. The 0-1 balance, 
the nonlinearity and the avalanche criterion are important criteria for cryptographic 
functions [1], [5], [7], [10]. 

Definition 5 A (1, -I)-matrix of order n will be called a Hadamard matrix if 
HHT nino 
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special kind of Hadamard matrix defined below will be relevant: 

Definition 6 A Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 
2n , denoted by Hn , is generated by the recursive relation 

Hn
-

1 1 -Hn -
l 

,n 1, 2, ... , Ho = 1. 

Notation 1 For a vector 5 = (i l , ... , ip) E VpJ we define a function on Vp: 

where 1, = 1 + i. 

Notation 2 Define a matrix of order 8 + t, denoted by Q(8, t)} whose entries come 
from GF(2)} such that 

Q( s, t) = [~ OJ:' 1 ' 
where Ii is the identity matrix of order i} Osxt is the zero-matrix of order s x t} 

Obviously Q(s, t) is a nonsingular matrix. 

2 The Properties of Balance, Nonlinearity and 
SAC 

In this section we review a number of results on balance, nonlinearity and the SAC. 
These results will be employed in the later part of the paper. 

Lemma 1 

Proof. The verification is straightforward. o 
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Lemma 2 Let ~il, ... ,ip be the sequence of a function fi1, ... ,ip(Xl,""Xq) on Vq. Set 
~ (~o, ... ,o,o, ~o, ... ,O,l' ... , ~1, ... ,1,1)' Then ~ is the sequence of the function 

f(Yl,""YP'XI, ... ,xq) = L Dil,. .. ,ip(Yl,···,Yp)fil, ... ,ip(XI, ... ,Xq), (1) 
(il, .... ip)EVp 

that is a function on Vq+p. 

(See Lemma 1 of [11].) 

Lemma 3 f(Yl,"" YP' X!, ... , Xq)1 defined in (1) is the zero function on Vq+p if and 
only if each fi1, ... ,ip(X!, . .. ,Xq) is the zero function on Vq. 

Proof. f(Yl,"" YPl XI, ... ,Xq) is the zero function on Vq+p if and only if 
fe iI, ... , ip, Xl, . .. ,Xq) is the zero function on Vq for any fixed (iI, ... , ip) E Vp. From 
Lemma 1, f(i!,"" ip, Xl, .. , Xq) = lil, ... ,ip(Xl,"" Xq). 0 

From the proof of Lemma 3, any function can be uniquely presented by (1). 

Lemma 4 D5(Y + fJ) D6+(j(Y) where y, 6 E Vp. 

Proof. Since D5(Y + fJ) = 1 if and only if Y + fJ = 6. D5+(j(Y) = 1 if and only if 
Y = 6 + fJ. This proves the lemma. 0 

Lemma 5 Write Hn [ f2j~, where l; is a row of Hn o Then each f; is the 

sequence of the linear function hie x) = (ai, X) where ail 0 ;£ i ~ 2n 11 is a vector 
in Vnl X E Vn • 

(See Lemma 2 of [11].) 

From Lemma 5, the rows of Hn comprise all the sequences of linear functions on 
Vn and hence the rows of ±Hn comprise all the sequences of affine functions on Vn . 

Lemma 6 Let f and 9 be functions on Vn whose sequences are Tff and Tfg respectively. 
Then d(f,g) = 2n

-
1 

- ~(Tfj,Tfg). 

(See Lemma 3 of [11].) 
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Lemma '{ .i!or any Juncr;wn J on Vn ; IV! ~ ,r - - L;2" -

(See Lemma 4 of [11].) 

Lemma 8 Let f( x) be a function on Vn } A be a nonsingular matrix of order n; with 
entries from GF(2). Set f(xA) 'Ij;(x). Then 

(i) f is balanced if and only if'lj; is balanced; 

(ii) N j = N1jJ. 

Proof. (i) 'Ij;(xo) a if and only if f(xoA) = O. 

(ii) Let h(x) be an affine function on Vn . Set hA(X) h(xA). 'Ij;(xo) :f hA(XO) 
if and only if f(xoA) :f h(xoA). Thus d(f, h) = d('Ij;, hA)' Note that while h runs 
through all affine functions on Vn, hA runs through all affine functions on Vn since A 
is nonsingular. 0 

Theorem 1 Let f(x) be a function on VnJ A be a nonsingular matrix of order n, 
with entries from GF(2). Set f(xA) = 'Ij;(x). Let 'Yi denote the ith row of A. If 
f( x) + f( x + 'Yi) is balanced for i = 1, ... ,n then 'Ij;( x) satisfies the SAC. 

Proof. Let Di denote the vector Vn , whose the ith entry is 1 and others O. Note that 
IA = A. Thus DiA = 'Yi, i = 1, ... ,no Note that 'Ij;(x) + 'Ij;(x + Di) f(xA) + f((x + 
Di)A) f(u) + f(u + 'Yi), where u = xA. Since A is nonsingular uA-1 = x will go 
through Vn while u runs through Vn. Thus 'Ij;( x) + 'Ij;( x + Di) is balanced, i = 1, ... , n, 
that is to say, 'Ij;( x) satisfies the SAC. 0 

Lemma 9 Let g(Yl,""Ys) be a function on Ys. Set f(Yl, ... ,ys,Xl, ... ,Xt) 
g(Yl, .. " Ys), a function on Ys+t. 

(i) If g is balanced then f is balanced, 

Proof. (i) g(Yll'" ,Ys) takes the value a and the value 1 both 25
-

1 times while 
(Yl, ... , Ys) runs through Ys once. Hence f(YlJ· .. 1 YSl Xl,·· ., Xt) takes the value a 
and the value 1 both 2t+s- l times while (YlJ ... ,YS) Xl, ... 1 Xt) runs through Vs+t once. 
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(ii) Let JI(Xb' .. ,Xt, Yl,· .. , Ys) J(yl, .. . , Ys, Xl,· .. ,Xt) = g(YI, . .. , Ys). 

Let e be the sequence of 9 hence", = (e, ... ,0 is the sequence of Jl, where", is 
the concatenation of 2t es. 

Let L be an affine sequence of length 2t+s. By Lemma 5, L is a row of ±Ht+s = 
±Ht x Hs. Thus L ±i' x i" where f' is a linear sequence of length 2t , a row of Ht 

and i" is a linear sequence of length 2s, a row of Hs. Write f' = (al," ,a2t) thus 
L = (ali", ... , a2tf"). Note that ("', L) = I::~~l aj(e,f"). Let i" be the sequence of a 
linear function on Va, say h. Since d(g, h) ~ Ng, by Lemma 6, (e,i") ~ 2s 

- 2Ng. 
Note that I::~~l aj ~ 2t thus h, L) ~ 2t(2S - 2Ng). Let L be the sequence of an affine 
function on vt+s, say h*. Hence by Lemma 6, d(Jl, h*) ~ 2t N g. Since h* is arbitrary 
Nit ~ 2tNg. By (ii) of Lemma 8, N j = Nil ~ 2tNg. 0 

Corollary 1 Letg(yI, ... ,ys) be a Junction on Va. Set J(Yl, ... ,ys,Xl, ... ,Xt) = 
g(Yl, ... ,Ys)J a Junciion on Va+t. Let A = Q(s,t) where Q(s,t) is defined in Nota
tion 2. Set J(zA) = 'lj;(z) where z = (y, x)J Y = (Yl"",Ys)J X = (Xl, ... ,Xt). IJg 
satisfies the SAC then 'lj; satisfies the SAC. 

Proof. Let "Yi denote the ith row of A. Write "Yi = (O"i, 7 ,:) where O"i E Va, Ti E vt. 

For i = 1, ... , s, J(z) + J(z + "Yi) = g(y) + g(y + O"i). 

Since 9 satisfies the SAC g(y) + g(y + O"i) is balanced on Va, by (i) of Lemma 9, 
J(z) + J(z + "Yi) is balanced on Va+t. 

For i = s + 1, ... , s +t, J(z) + J(Z+"Yi) = g(y) + g(y + O"i). By the same reasoning, 
J(z) + J(z + "Yi) is balanced on Va+t. 
Note that A isnonsingular. By Theorem 1, 'lj;, as a function on ,Va+t, satisfies the 
SAC. 0 

3 Basic Construction 

J(YI, ... ,ys,Xl, ... ,Xt) = L Djl, ... ,j.(y)Iil, ... ,j)x)+r(y) (2) 
(il, ... ,j.)EV. 

where Dj1, ... ,j. is defined as in Notation 1, each Iil, ... ,j.(x) is a function on tt, r(y) is 
a function on Va. 

Lemma 10 IJ each Iil, ... ,j.(x) in (2) is balanced then J is balanced. 
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... 'V'V'J" .L'-./..l.. ~..l...J..J .J..L..o..-.\...A,. \Jl' .. ··'Jsj "- Va J\Jl,.~.,Js,wl, ... ,wtJ-

Dj1, ... ,j.(jll··· ,jS)hl, ... ,j.(X) + r(jl)'" ,js) = fj1, ... ,j.(X) + r(j!, ... ,js), that is bal
anced. Thus f is balanced. 0 

Theorem 2 Let f be defined in (2) and each h1, ... ,j. (x) is a nonzero linear function 
on vt then 

(i) f is balanced, 

(ii) Nt 2:; 2s +t
-

1 
- 2t

-
1 if all hi , ... ,j. (x) are distinct linear functions on vt, 

(iii) f( z) + f( z + 1') is balanced whenever f3 =1= 0, where z = (y, x), l' = (f3, D:), 
y,f3 E Va, X,D: E vt, if h1, ... ,j.(x) are distinct linear functions on vt. 

Proof. (i) Since any nonzero linear function is balanced, by Lemma 10, f is balanced. 

(ii) Let ejl, ... ,j. be the sequence of f(jl, ... , js, Xl) ... , Xt) = h1 , ... ,j. (X )+r(jl, ... ) js). 
Thus ej1, ... ,j. is a nonzero affine sequence. By Lemma 2, Tf = (eO"",O) eo, ... ,O,I)' .. ) 6, ... ,1,1) 
is the sequence of f(y!', .. , Ys, Xl,· .. , Xt). 

Let L be an affine sequence of length 2s+t. By Lemma 5, L is a row of ±Hs+t = 
±Hs x Ht . Thus L ±i' x ill where .e' is a linear sequence of length 28

, a 
row of Hs and i" is a linear sequence of length 2t, a row of Ht . Write.e' = 
(ao, ... ,o, ao, .... o.l,· .,al .... ,l.d· Thus L = (ao, .... oi", ao, .... o.li", ... ,al ..... l,l.e"). (Tf,L) 
~j1 .... ,j. aj1 .... ,j.(ej1 ..... j.,i"), where the subscript (jl)'" ,js) E Va. Note that each 
ejl, ... ,j. is a nonzero affine sequence. Thus 

( . ilf) = {±2t if ej1 , .... i. = ±i", 
J1.···.J., 0 otherWIse. 

Since all the ej1, .... j. are distinct there exists at most one ej1 ..... j. such that ej1 .... ,j. = 
±.e". Thus (Tf) L) = ±2t or O. Let L be the sequence of an affine function, say h*. 
By Lemma 6, d(f, h*) ~ 28 +t - 1 - 2t-l. Since h* is arbitrary Nt 2:; 2s+t - 1 - 2t-l. 

(iii) Let f3 = (bI, . .. , bs ). By Lemma 4, 

Hence 

f(z+1') 
]l •... ,j. 

j1 ..... j. 

(3) 
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f( z) + fez + ,) = L D i1 ,. .. ,i.(Y )(fj1, ... ,j.( x) + fj1 H1, ... ,j.H.( X + a)) + r(y) + r(y + (3). 
i1, ... ,i, 

Note that Q (b b) -'- 0 f· . (x) + f· b . b ex + a) = f· . (x) + I-' 1,···, S I ')1,.·,,), )1+ 1,"")'+ • )1,.·,,), 

h1 H1 , ... ,j.H. (x) + h1 Hl , ... ,j.H. (a) is a non-constant affine function since all hl , ... ,j. (x) 
are distinct linear functions on "'t. By Lemma 10 fez) + fez + (3) is balanced. 

o 

4 A Group Generalised Hadamard Matrix 

Let G be a group, P = (PI,'" ,Pn), q = (qlJ"" qn) be two vectors of length n, whose 
entries Pi> qj come-from G. Define the operation 0 such that po q = (Plql, ... ,Pnqn) 
and the inverse of 9.. such that 9..-1 = (q1l, ... ,qJ;l). - -

P and q are s-orthogonal if po q-1 = (plql\ ... ,Pnq;;:l) comprise s times of all the 
ele~ents ;;f G. - -

A generalised Hadamard matrix ([3], [4]) of type s for group G is a square 
matrix with entries from G whose rows are mutually s-orthogonal. 

A group Hadamard matrix [6] is a generalised Hadamard matrix whose rows 
form a group and whose columns form a group under the operation o. Note that in a 
group Hadamard matrix of type s for G there exists a row acting the role of identity. 
By the definition of generalised Hadamard matrix, each of other rows contains each 
element of G s times. 

Let c be a primitive element of GF(2k), G be the additive g[r~o.:up of ~Fl(2. k). Set 

X = (ci-i+1(mod 2k -l»), where i,j = 1,2, ... , 2k - 1, and Dl X Hence 

Dl is a generalised Hadamard matrix of order 2\ type 1 (I-orthogonal) for G also a 
group Hadamard matrix [3], [4], [6]. 

[ 

0 ... 0 1 
It is easy to find out that D2 = ~ Y , where Y = (ci+i - 1(mod2

k
-l»), is 

also a generalised Hadamard matrix of order 2k, type 1 (I-orthogonal) for G also a 
group Hadamard matrix. 
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1'10ee enae an enuy or .r ) an element or ti, IS a pOlynomIal In c, whose degree IS 
no more than k - 1, say ao + alC + . . . ak_lCk-l 

We now change ao + alC + ... + ak_Ick-1 into aOxl + alX2 + ... + ak-lXk, a linear 
function on 11k. 

Note that all linear functions on Vk form an additive group, denoted by f k . 

Correspondingly D2 becomes a matrix E with entries from f k . Obviously E is 
also a group Hadamard matrix of order 2k, type 1 (I-orthogonal) but for group f k. 

Write E = (ei,j), where i, j 0,1, ... , 2k - 1. 

Let Y = (Yl,"" Yk), x = (x!, . . , Xk)' Set 

fi(Yl, ... ,Yk, Xl, ... ,Xk) Do, ... ,o(Y )ei,O( X) + Do, ... ,O,l(Y )ei,l( x) + ... 
+DI, ... ,1(y)ei,2k_l(X) (4) 

where i = 0, 1, ... ,2k - 1. 

Lemma 11 For any fixed s, 1 s ;£ 2k - I, el,s,' .. ,ek,s are linearly independent. 

Proof. Consider E;=l CjiJ where (Cll"" Ck) i- (0, ... ,0). Note that el,l Xl, 

e2,1 = X2, ... , ek,l = Xk. It is obvious that 

k 

L Ciei,l i- O. (5) 
i=l 

Since E is a group Hadamard matrix of type 1 (I-orthogonal) for fk there exists 
a row in E, say the ioth row, such that eio = E~=l Ciei, where each ei denotes the 
ith row of E and hence E~=l Ciei,j = eio,j, for every j = 1, ... ,2k - 1. From (5), the 
ioth row of E is not a zero row (i.e. io i- 0) and thus contains every linear function 
on Vk since E is a group Hadamard matrix of type 1 (I-orthogonal) for f k . Thus 
E~=l Ciei,s = eio,s is a nonzero linear function for every s= 1, ... , 2k - 1. This proves 
that for any s, 1 ;£ s ;£ 2k - 1, E~=l Ciei,s = 0 if and only if (Cl, ... ,Ck) = (0, ... ,0) 
thus el,s, ... , ek,s are linearly independent. 0 

5 A Set of Functions with Cryptographic Prop
erties 

Let P be a permutation on 1, 2, ... , 2k -1. Let E' be the matrix obtained from E by 
putting P on the nonzero columns of E. Set E' = (e~), where i, j = 0, 1, ... , 2k - 1. 
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Let k < n < 2k. Write Y = (Yl, ... ,Yn-k), X = (Xl, ... ,Xk), z = (y, X). Note 
that e~,j is nonzero linear function on Vk for i = 1,2, ... ,2k - 1. Set 

gi.(Y, x) = Do, ... ,o(y)e~,l(x) + Do, ... ,O,1(y)e~,2(x) + 0 •• + Dl, ... ,1(y)e~,2n-k(X) + ri(Y) (6) 

where i = 1, ... , 2k -1, each subscript (ill"" in - k ) E Vn - k and each ri is a function 
on Vn - k . 

Let A = Q(n - k,k). Set 

'l/;i(Z) = gi(zA), i = 1, ... , 2k - 1. (7) 

Theorem 3 For any nonzero linear combination of '1/;1, ... ,'I/;k, defined as in (7), 
say 'I/; = 2:.;=1 Cj'l/;j} where (Cl," ., Ck) -; (0, ... ,0): 

(i) 'I/; is balanced, 

(ii) N1/J ~ 2n
-

1 
- 2k -\ 

(iii) 'I/; satisfies the SAC, 

(iv) the algebraic degree of 'I/; can be n - k + 1. 

Proof. From (6), 

k k k 

9 = L Cjgj = Do, ... ,o(y) L Cjej,l (x) + Do, ... ,O.l (y) L Cjej,2( x) + ... + 
j=l j=l j=l 

k 

Dl, ... ,l(Y) L Cjej,2n - k(X). 
j=l 

By Lemma 11, each Of2:.j=l Cjej,l(x), 2:.j=l Cjej,2(x)"", 2:.j=l cjej,2n _ k(x) is a nonzero 
linear function on Vk . Since E' is a group Hadamard matrix of type 1 for r k , 

E~=l Cjej,l(x), 2:.j=l Cjej,2(x), ... , 2:.j=l cjej,2n-k(x) are distinct linear functions. 
By Theorem 2, 9 is balanced and N g ~ 2n

-
l - 2k-l. By Lemma 8, 'I/; is balanced and 

N-.p ~ 2n - 1 _ 2k - 1 . 

Let Ii = (f3i, ai) be the ith row of A = Q(n - k, k), where f3i E Vn - k , ai E Vk , 

i = 1, ... ,n. Since all f3i -; 0, by (iii) of Theorem 2, g(z) + g(z + Ii) is balanced, 
i = 1, ... , n. Note that 'I/;(z) = g(zA). By Theorem 1, 'I/; satisfies the SAC. 

We can choose E' such that Lj:~k e~,j is a nonzero linear function on 11k. Other

wise if 2:.j:~k e~,j is zero, we exchange the 2n
-

k th and the (2n
-

k + l)th columns of E'. 
C d· 1 E" h d . E" (If) S' , -1-' "2,,,-k If orrespon Ing y, IS C ange lnto = ei,j' Ince e1,2n-k I e1,2n-k+l' L..Jj=l e1,j 

is a nonzero linear function on 11k. Hence it is reasonable to suppose Lj:~k e~,j is a 
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J.L,···,Jn-lIt\v.l.; -lr:;1'''-'''j -----~---- - ............. 

term Y1 ... Yn-k and Yl ., Yn-k e~,j cannot be deleted in 

This proves that the degree of gl is n - k 1. 

Since (E) is symmetric the columns of D2 (E) also form a group thus the 

columns of E' form a group. Recall .L:;:~k e~,j is a nonzero linear function on Vk, 
Th 2",,-k,. 1 l' f' T T . 2 2k 1 us .L:j =1 ei,j IS a so a nonzero Inear unctIOn on Vk, ~ = , ... , -. 

To show this, note that the columns of E' form a group thus the sum of the first, 
the second, ... , the 2n

-
k th columns of E' is equal to a column of E ' , say the soth 

column. Since .L:;:~k e~,j = e~,so is a nonzero linear function on Vk the 80th column 
of E' is a nonzero column (i.e. So -::f: 0). Thus the 80th column contains all the linear 
functions on Vk since the columns of E' form a group. 

h· h 2,,-k, 
T IS proves t at .L:j=I ei,j is a nonzero function if i :/:- o. 

By the same reasoning, the degree of gi is n - k + 1, i 2, ... ,2k - 1. 

Since the rows of E' form a group there exists io such that the ioth row is equal to 
the linear combination of gl, ... , gk corresponding the coefficients CI, .. , q. Thus 
.L:~=l Cigi. gio ' Since the first, the second, ... , the 2n

-
k th rows of E' are linearly 

independent (see Lemma 11) gio is a nonzero function (i.e. io :/:- 0). Thus the degree 
2,.-k . 

of .L:i=l Cigi gio IS n - k + 1. 

o 

Corollary 2 W(Z) = ('l/Jl(Z), ... ,'l/Jk(Z)), a mapping from Vn to Vk , where each'l/Jj is 
defined in Theorem 3, runs through all the 2k vectors in Vn each 2n- k times while Z 

runs through Vn . 

Proof. By Theorem 1 of [12], this corollary is equivalent to (i) of Theorem 3. 0 

Since any matrix obtained by permuting the columns of a group Hadamard ma
trix is still a group Hadamard matrix, we can obtain an extremely large number 
of boolean function sets with the cryptographic properties mentioned in Theorem 3 
and Corollary 2. These functions can be used in many cryptographic designs. In 
particular, results shown in this section have been successfully employed by the 
authors in systematically constructing cryptographically robust substitution boxes 
(S-boxes) [13]. 
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6 Example 

Example 1 By using Theorem 3, we now construct 4 functions of 6 variables. Let 
k = 4 and n 6 in Theorem 3. Choose x4 + x + 1 as the primitive polynomial. Let 
£ be a root of x4 + x 1 = 0. £i, j = 0, 1, ... , 24 - 1 form a sequence: 

1, £, £2, £\ 1 + e, £ + £2, 

£2 + £3, 1 + £ + £3, 1 + £2, £ + £3, 1 + £ + £2, £ + £2 + £3, 

1 + £ + £2 + £3, 1 + £2 + £3, 1 + £3, 

that is the first row of Y , where D2 = of order 2k (see Section 4). We [
00 .. y 0] 

change £i into Xi+l, i = 0,1,2,3. The above sequence becomes 

Xl, X2, X3, X4, Xl + X2, 

X2 + X3, X3 + X4, Xl + X2 + X4, Xl + X3, X2 + X4, 

Xl + X2 + X3, X2 + X3 + X4, Xl + X2 + X3 + X4, Xl + X3 + X4, Xl + X4, 

[°0.: W 0] that is the first row of W , where E = (see Section 4). 

We choose the submatrix of order k X 2k
-

2
, that is the conjunction of the first four 

rows and the 4th, the 9th, the 12th, the 15th columns of W: 

[ 

X4 Xl + X3 

Xl + X2 X2 + X4 

X2 + X3 Xl + X2 + X3 

X3 + X4 X2 + X3 + X4 

X2 + X3 + X4 

Xl + X2 + X3 + X4 

Xl + X3 + X4 

Xl + X4 

Using the above array we define (see (6)) 

91(YI, Y2, Xl, X2, X3, X4) = (1 + YI)(l + Y2)X4 + (1 + YI)Y2(XI + X3)+ 

YI(l + Y2)(X2 + X3 + X4) + YIY2(XI + X4), 

92(Yl, Y2, Xl, X2, X3, X4) = (1 + Yd(l + Y2)(XI + X2) + (1 + YI)Y2(X2 + X4)+ 

YI(l + Y2)(Xl + X2 + X3 + X4) + YIY2 X l, 

93(YI, Y2, Xl, X2, X3, X4) = (1 + yd(l + Y2)(X2 + X3) + (1 + ydY2(XI + X2 + X3)+ 

YI(1 + Y2)(XI + X3 + X4) + YIY2 X 2, 

94(Yl, Y2, XI, X2, X3, X4) = (1 + YI)(l + Y2)(X3 + X4) + (1 + ydY2(X2 + X3 + X4)+ 

Yl(1 + Y2)( Xl + X3) + YIY2 X 3, 
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92(Yl, Y2, Xl, X2, X3, X4) Xl + X2 + Y2 Xl + Y2 X4 + YIX3 + YIX4 + YIY2 Xl + 
YIY2 X2 + YIY2 X3, 

93(YI, Y2, Xl) X2, X3, X4) X2 + X3 + YIX2 + Y2 XI + YIXI + YIX4 + YIY2 X2+ 
YIY2 X3 + YIY2 X4, 

Let 
1 0 0 0 0 0 
0 1 0 0 0 0 

A Q(2,4) = 1 0 1 0 0 0 
1 0 0 1 0 0 
1 0 0 0 1 0 
1 0 0 0 0 1 

and 9i(zA) 'Ij;(z), where z = (Yl,Y2,XI,X2,X3,X4), j 1,2,3,4. Hence 
'lj;i(YI, Y2, Xl, X2, X3, X4) = 9i(YI +XI +X2+ X3+ X4, Y2, Xl, X2, X4), i = 1,2,3,4. Let 'Ij; 
be a nonzero linear combination of 'lj;1, 'lj;2, 'lj;3, 'lj;4 i.e. 'Ij; = Cj'lj;j, (CI' C2, C3, C4) =I
(0, 0, 0, 0). By Theorem 3 and Corollary 2 

(i) 'Ij; is balanced, 

(ii) N1/J ~ 25 
- 23 = 24, 

(iii) 'Ij; satisfies the SAG, 

(iv) the degree of 'Ij; is 3, 

(v) w(z) ('Ij;I(Z),'Ij;2(Z),'Ij;3(Z),'Ij;4(Z)), a mapping from V6 to 114, runs through all 
the 24 vectors in V4 each 22 times while Z runs through V6 once. 

Note that the upper bound of nonlinearities of a balanced function on V6 26 
(see Corollary 3 of [11]). Thus the nonlinearity 24 of any nonzero linear combination 
of the these functions in this S-box is very high. 
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