L. Caccetta and S. Mardiyono
School of Mathematics and Statistics Curtin University of Technology
G. P.O. Box U1987
Perth, 6001
WESTERN AUSTRALIA

Abstract

A set S of edge-disjoint one-factors in a Graph G is said to be maximal if there is no one-factor of G which is edge-disjoint from S, and if the union of S is not all of G. Maximal sets of one-factors of $K_{2 n}$ have been investigated and until very recently only results for particular cases have been obtained. In this paper we present a new technique for solving the problem.

1. INTRODUCTION

We consider graphs which are undirected, finite, loopless and have no multiple edges. For the most part our notation and terminology follows that of Bondy and Murty [1]. Thus G is a graph with vertex set $V(G)$, edge set $E(G), \nu(G)$ vertices and $\varepsilon(G)$ edges. K_{n} denotes the complete graph on n vertices and $K_{n, m}$ denotes the complete bipartite graph with bipartitioning sets of size n and m.

A 1-factor of a graph G is a 1 -regular spanning subgraph. A 1-factorization of G is a set of (pairwise) edge-disjoint one factors which between them contain each edge of G. It is very well known (see [3]) that $K_{2 n}$ and $K_{n, n}$ have 1-factorizations for all n.

A set F of edge disjoint 1-factors in a graph G is said to be maximal if there is no 1 -factor which is edge-disjoint from F and if F
is not all of G. Thus if we write \bar{F} for the complement in G of the union of members of F, then F is maximal if and only if \bar{F} is a non-empty graph with no 1-factor. We call \bar{F} the leave of F. Observe that if G is regular, then \bar{F} is regular. If \bar{F} is d-regular, then F is called a maximal set of deficiency d or simply a d-set. The existence of d-sets in $K_{2 n}$ for $n>2$ was shown by Cousins and Wallis [4].

Caccetta and Wallis [2] established that 3 -sets exist in $K_{2 n}$ for every $2 \mathrm{n} \geq 16$. This was accomplished by first establishing properties which reduced the problem to one of finding 3 -sets in $K_{2 n}$ for $16 \leq 2 n$ ≤ 28, and then exhibiting the required 3 -sets. In this paper we generalize these methods. In particular, we prove that if $K_{2 n}$ has a d-set, then $K_{4 n-2 t}$ has a d-set for each $0 \leq t \leq n-\frac{1}{2}(d+1)$. We apply this result to show that 5 -sets exist in $K_{2 n}$ for every $2 n \geq 22$.

Recently, Rees and Wallis [6] solved the problem of determining the spectrum of maximal sets of 1 -factors in $K_{2 n}$. Our approach is, however, quite different and has the potential to yield a simpler and more intuitive proof. Our main result is of interest in its own right.

2. PRELIMINARIES

In this section we discuss three results which we make use of in the proof of our main theorem. A matching M in a graph G is a subset of $E(G)$ in which no t wo edges have a common vertex. We begin by stating a lemma proved in Rees and Wallis [6].

Lemma 2.1. Let $K_{m, n}$ be the complete bipartite graph with bipartition (X, Y), where $|X|=m,|Y|=n$ and $m \leq n$. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be any collection of m-subsets of Y such that each vertex $y \in Y$ is contained in exactly m of the Y_{j} 's. Then there is an edge-decomposition of $K_{m, n}$ into matchings $M_{1}, M_{2}, \ldots, M_{n}$ where for each $j=1,2, \ldots, n M_{j}$ is a matching with m edges from X to Y_{j}.

The edge-chromatic number $\chi^{\prime}(G)$ of a graph G is the minimum
number of colours needed to colour the edges of G. Our next lemma is a special case of a theorem of Folkman and Fulkerson [5]. The proof we give was given to us in a personal communication by Rees.

Lemma 2.2. If G is a graph with $c . k$ edges and $c \geq \chi^{\prime}(G)$, then the edge set of G admits a decomposition into c matchings, each with k edges.
Proof: Let \mathscr{C} be the set of all proper c-colourings of G. Note that \mathscr{C} $\neq \phi$ since $c \geq \chi^{\prime}(G)$. For $K \in \mathscr{C}$, define

$$
n(K)=\sum_{i=1}^{c}\left|e_{i}-k\right|
$$

where e_{i} is the number of edges in the $i^{\text {th }}$ matching (i.e. $i^{\text {th }}$ colour class) of $K, i=1,2, \ldots, c$.

Let

$$
n_{0}=\min \{n(K): K \in \mathscr{C}\},
$$

and let K_{0} be a colouring for which $n\left(K_{0}\right)=n_{0}$. We will prove that n_{0} $=0$, i.e. K_{0} is a decomposition of G into c matchings, each with k edges. Suppose that this is not the case and $n\left(K_{0}\right)>0$. Then there is a matching M_{i} for which $e_{i}=\left|M_{i}\right|$ is not k. Now since $\varepsilon(G)=c k$, there must be matchings M_{1} and M_{2} say, with $e_{1}=\left|M_{1}\right|<k$ and $e_{2}=$ $\left|M_{2}\right|>k$.

Let H be the subgraph of G whose edge set is $M_{1} \cup M_{2}$. Then H is the disjoint union of cycles and paths. Since $e_{2}>e_{1}, H$ must contain as a component a path P of odd length which begins and ends with an edge of M_{2}. Now switch the colours in P, i.e. those edges of P that were coloured 1 get coloured 2 and vice-versa. Let us call the matchings corresponding to these colour changes M_{1} ' and $M_{2}{ }^{\prime}$. This creates a new colouring K_{o}^{\prime} of G with corresponding matchings $M_{1}{ }^{\prime}, M_{2}{ }^{\prime}, M_{3}, \ldots, M_{c}$. Furthermore,

$$
e_{1}^{\prime}=\left|M_{1}^{\prime}\right|=e_{1}+1
$$

and

$$
e_{2}^{\prime}=\left|M_{2}^{\prime}\right|=e_{2}-1
$$

Now recalling that $e_{1}<k$ and $e_{2}>k$, we have

$$
\left|e_{1}^{\prime}-k\right|<\left|e_{1}-k\right|
$$

and

$$
\left|e_{2}^{\prime}-k\right|<\left|e_{2}-k\right|
$$

Hence

$$
n\left(K_{0}^{\prime}\right)<n\left(K_{0}\right),
$$

and this contradicts the minimality of $n\left(K_{0}\right)$. It thus follows that $n_{0}=0$. This proves the lemma.

We conclude this section by stating a result of Wallis [7].

Lemma 2.3. A d-regular graph G with no 1 -factor and no odd-component satisfies:

$$
v(G) \geq \begin{cases}3 d+7, & \text { for odd } d \geq 3 \\ 3 d+4, & \text { for even } d \geq 6 \\ 22, & \text { for } d=4\end{cases}
$$

No such G exists for $d=1$ or 2 .

3. MAIN RESULT

Our main result is essentially a generalization of Theorems 4 and 5 of Caccetta and Wallis [2].

Theorem 3.1. Suppose for odd d there exists a d-set in $K_{2 n}$. Then for each $0 \leq t \leq n-\frac{1}{2}(d+1)$ there is a d-set in $K_{4 n-2 t}$.

Proof: We can write $K_{4 n-2 t}=K_{2 n-2 t} \vee K_{2 n}$. Let X and Y denote the graphs $K_{2 n-2 t}$ and $K_{2 n}$, respectively. Now Y has a maximal set of ($2 n-$ d - 1) 1-factors. Take $2 t$ of these 1 -factors and let H be the graph formed by the union of these 1 -factors.

Applying Lemma 2.2 (with $c=2 n$ and $k=t$) we decompose the edge-set of H into $2 n$ matchings $M_{1}, M_{2}, \ldots, M_{2 n}$, each with t edges. Let Y_{i} denote the vertices of Y not saturated by the matching M_{i}. Note that since H has regularity $2 t$, each vertex in Y will be contained in exactly $2 n-2 t$ of the Y_{i} 's. Furthermore, each Y_{i} contains exactly $2 n-2 t$ vertices of Y.

Now we apply Lemma 2.1 to the subgraph $K_{2 n-2 t, 2 n}$. This yields 2n disjoint matchings $N_{1}, N_{2}, \ldots, N_{2 n}$, where N_{i} joins the vertices of Y_{i} to the vertices of X. Let

$$
L_{i}=M_{i} \cup N_{i} \quad i=1,2, \ldots, 2 n
$$

There remain in Y a set S of $(2 n-1-d)-2 t 1$-factors from the original maximal set on Y. Construct ($2 n-1-d$) - $2 t 1$-factors on X (such a set exists since $K_{2 p}$ has a 1-factorization) and pair these off with the 1-factors of S to form a set of ($2 n-1-d-2 t$) 1-factors $\bar{L}_{1}, \bar{L}_{2}, \ldots, \bar{L}_{2 n-1-d-2 t}$. Then the set

$$
F=\left\{L_{i}: i=1,2, \ldots, 2 n\right\} \cup\left\{\bar{L}_{j}: j=1,2, \ldots, 2 n-1-d-2 t\right\}
$$

forms a maximal set of 1-factors of deficiency d in $K_{4 n-2 t}$. Note that the leave $\overline{\mathrm{F}}$ of F consists of 2 -components one of which is the leave of the maximal set of 1 -factors in $K_{2 n}$. This completes the proof of the theorem.

As a corollary we have:
Corollary: If $K_{2 n}$ has a d-set, d odd, then for each even integer $m \geq$ $2 n+d+1, K_{m}$ has a d-set.

Proof: Suppose $K_{2 n}$ has a d-set, d odd. Then by Theorem 3.1 there exists a $d-s e t$ in $K_{2 n+d+1}, K_{2 n+d+3}, \ldots, K_{4 n}$. Further a d-set in $K_{2 n+d+1}$ implies a d-set in $K_{2 n+2 d+2}, K_{2 n+2 d+4}, \ldots, K_{4 n+2 d+2}$. Now since a d-set in $K_{2 n}$ implies (Dirac's Theorem) that $d \leq n$ we have $2 n+$ $2 d+2 \leq 4 n+2$. Hence repeated applications of Theorem 3.1 will in fact cover all even integers $m \geq 2 n+d+1$. This completes the proof of the Corollary.

4. APPLICATION OF THEOREM 3.1

We now discuss the application of Theorem 3.1. First we consider the existence of 3 -sets in $K_{2 n}$. Since, by Lemma 2.3, the smallest 3 -regular graph without a 1 -factor contains at least 16 vertices, $K_{2 n}$ has no 3 -set for $2 n \leq 14$. A 3 -set in K_{16} was shown in [2]. The above result implies that if we can find a 3 -set in K_{18}, then we have a 3 -set in $K_{2 n}$ for every $2 n \geq 16$. This is the case as shown in [2]. We remark that the proof that $K_{2 n}$ has a 3-set for every $2 n \geq 16$ in [2] involved the construction of 3 -sets in $K_{2 n}$ for $16 \leq 2 n$ ≤ 28. Application of Theorem 3.1 eliminates the need to look at the cases $20 \leq 2 n \leq 28$.

We now illustrate the work involved in establishing the existence of d-sets, by consider the case $d=5$.

Lemma 2.3 implies that 5 -sets do not exist in $K_{2 n}$ for $2 n \leq 20$. So suppose $2 n \geq 22$. We will exhibit 5 -sets in K_{22}, K_{24} and K_{26}. Then the corollary to Theorem 3.1 implies the existence of 5 --sets in $K_{2 n}$ for every $2 n \geq 22$.

Consider K_{22} with vertices labelled $1,2, \ldots, 9, A, B, \ldots, M$. Take the 16 1-factors:

T_{1}	$=$	18	25	3D	4L	JC	6 H	7A	9 I	BF	EK	MG
T_{2}	=	15	2G	3E	4 I	8H	6A	7 J	9 F	BK	CM	DL
T_{3}	$=$	19	2 E	3L	4H	5D	6J	7G	8K	AF	BM	CI
T4	$=$	1 A	2 H	3 F	4 M	5C	61	7K	8L	9 D	BG	EJ
T_{5}	$=$	1B	2 F	3K	4C	5 I	6 D	7 L	8J	9 M	AH	GE
T_{6}	=	1 C	29	3H	4 J	5K	6 F	7E	8G	DI	AM	BL
T_{7}	$=$	1D	21	3M	4 F	5A	6G	7H	8C	9K	BJ	EL
T_{8}	$=$	1E	2 C	3 J	48	5B	69	7D	AI	LH	MF	KG
T_{9}	$=$	1 F	2 L	3G	4 E	59	6M	7 C	8I	A. ${ }^{\text {d }}$	DK	BH
T_{10}	$=$	1G	2 M	38	47	5E	6B	LI	AK	CH	DF	9 J
T_{11}	=	1H	2 J	3A	4 K	5G	6C	7M	8 F	9 L	BI	DE
T_{12}	=	1 I	2A	36	4 B	58	HE	7 F	LC	9G	DJ	KM
T_{13}	$=$	1 J	28	3 C	49	SL	DG	71	$A B$	FE	HM	K6
T_{14}	=	1 K	2 B	79	4A	5 F	6L	31	8E	CG	DH	JM
T_{15}	$=$	1L	2 K	3B	4D	5J	6E	78	9H	AG	FC	MI
T_{16}	=	1M	2D	39	4G	5H	68	7B	CK	AL	FJ	EI

The leave of this set of 1 -factors is given in Figure 4.1. Thus we have a 5 -set in K_{22}.

Figure 4.1

Consider K_{24} with vertices labelled $1,2, \ldots, 9, \mathrm{~A}, \mathrm{~B}, \ldots, 0$. Take the 18 1-factors:

R_{1}	$=$	14	2 J	38	DI	5G	8 F	7 E	NO	9H	AL	BM	CK
R_{2}	$=$	16	2D	30	4 B	58	9L	7 C	JN	AE	FG	HK	MI
R_{3}	=	17	25	3 L	48	6M	9K	AN	BF	CD	EH	GI	Jo
R_{4}	$=$	1 A	2 N	3M	47	59	6 J	8C	BL	DH	EO	FI	GK
R_{5}	$=$	1B	20	3N	4 M	5L	69	7G	8A	CH	DJ	EI	FK
R_{6}	$=$	10	2K	31	4 L	$5 B$	6C	7M	8D	9A	GJ	EN	FH
R_{7}	$=$	1D	2G	3E	4 F	5 I	6N	7H	8M	9C	AK	BJ	LO
R_{8}	$=$	1 C	2 F	3H	4 C	50	6K	7N	81	9B	AM	EJ	DL
R_{9}	=	1E	2 H	3 F	40	5 J	6G	7K	8L	90	AI	EN	CM
R_{10}	$=$	1 L	2A	37	$4 \mathrm{~K}^{*}$	5 C	6E	8J	9 F	BH	DM	GN	10
R_{11}	$=$	1G	2 B	3A	4 J	5H	6D	71	8K	9 E	CL.	MO	FN
R_{12}	$=$	1H	2 L	3 J	4A	5E	6B	7 D	8G	9 N	CI	FM	KO
R_{13}	$=$	11	26	39	4 C	5D	70	8 N	AH	BK	EL	FJ	GM
R_{14}	$=$	1 J	28	3K	41	5 F	6A	7 B	96	CO	DN	EM	HL
R_{15}	$=$	1K	2M	CN	4 E	5 A	6H	7 F	80	9J	GL.	3D	BI
R_{16}	=	1 F	2C	38	DO	6 L	7 J	91	5M	AG	EK	4 N	8H
R_{17}	$=$	1 M	2 E	3G	DK	5N	FL	7 A	8B	90	4H	61	CJ
R_{18}	$=$	1 N	21	3C	4D	5K	6F	7 L	8E	9M	HG	AJ	BO

Figure 4.2

Finally, consider K_{26} with vertices labelled $1,2, \ldots, 9$, A, B, \ldots, Q. A suitable 5 -set is:
$T_{1}=14 \quad 2 \mathrm{G} \quad 30 \quad 5 \mathrm{~L} \quad 6 \mathrm{~J} \quad 7 \mathrm{M} \quad 8 \mathrm{C} \quad 9 \mathrm{H} \quad 10 \quad \mathrm{BF} \quad \mathrm{DP} \quad \mathrm{EK} \quad \mathrm{NI}$
$T_{2}=15 \quad 27 \quad 39 \quad 4 \mathrm{C} \quad 6 \mathrm{~B} \quad 8 \mathrm{~A} \quad \mathrm{DK} \quad \mathrm{EQ} \quad \mathrm{FN} \quad \mathrm{GM} \quad \mathrm{HL} \quad 10 \quad \mathrm{JP}$
$T_{3}=\begin{array}{llllllllllll}16 & 2 A & 3 C & 49 & 50 & 7 D & 8 B & E P & F I & G K & H N & J M\end{array} \quad L Q$
$\begin{array}{llllllllllllll}T_{4} & = & 17 & 28 & 36 & 4 B & 5 A & 9 C & D E & F H & G J & I L & K N & M P\end{array} \quad O Q$
$T_{5}=1 A \quad 2 \mathrm{D} \quad 3 \mathrm{~B} \quad 47 \quad 5 \mathrm{I} \quad 8 \mathrm{~N} \quad 8 \mathrm{~F} \quad 9 \mathrm{P} \quad \mathrm{CO} \quad \mathrm{EJ} \quad \mathrm{GL} \quad \mathrm{HK} \quad \mathrm{MQ}$
$T_{6}=1 B \quad 2 \mathrm{M} \quad 3 \mathrm{H} \quad 4 \mathrm{~L} \quad 5 \mathrm{~K} \quad 6 \mathrm{P} \quad 7 \mathrm{~A} \quad 8 \mathrm{E} \quad 9 \mathrm{~J} \quad \mathrm{CQ} \quad \mathrm{DI} \quad \mathrm{FO} \quad \mathrm{GN}$
$T_{7}=\begin{array}{lllllllllllll}1 \mathrm{C} & 2 \mathrm{~L} & 3 \mathrm{~J} & 4 \mathrm{G} & 5 \mathrm{P} & 6 \mathrm{M} & 7 \mathrm{H} & 8 \mathrm{I} & 9 B & A K & \mathrm{DN} & \mathrm{EO} & \mathrm{FQ}\end{array}$
$T_{8}=1 \mathrm{D} \quad 2 \mathrm{~F} \quad 3 \mathrm{~N} \quad 4 \mathrm{~K} \quad 5 \mathrm{E} \quad 6 \mathrm{H} \quad 7 \mathrm{~L} \quad 80 \quad 9 \mathrm{~A} \quad \mathrm{BI} \quad \mathrm{CM} \quad \mathrm{GP} \quad \mathrm{JQ}$
$T_{9}=\begin{array}{llllllllllll}1 \mathrm{E} & 2 \mathrm{~B} & 38 & 4 \mathrm{~A} & 5 \mathrm{~N} & 6 \mathrm{~L} & 7 \mathrm{C} & \mathrm{DM} & 9 \mathrm{~K} & \mathrm{FP} & \mathrm{GH} & \mathrm{IQ} \\ \mathrm{J}\end{array}$
$T_{10}=1 \mathrm{~F} \quad 2 \mathrm{Q} \quad 3 \mathrm{D} \quad 4 \mathrm{P} \quad 5 \mathrm{~J} \quad 60 \quad 7 \mathrm{G} \quad 8 \mathrm{~K} \quad 9 \mathrm{I} \quad \mathrm{AB} \quad \mathrm{CL} \quad \mathrm{EN} \quad \mathrm{HM}$
$T_{11}=1 \mathrm{G} \quad 20 \quad 3 \mathrm{P} \quad 4 \mathrm{D} \quad 5 \mathrm{C} \quad 6 \mathrm{~F} \quad 7 \mathrm{~J} \quad 8 \mathrm{M} \quad 9 \mathrm{~N} \quad \mathrm{BL} \quad \mathrm{AH} \quad \mathrm{EI} \quad \mathrm{KQ}$

$T_{13}=1 I \quad 2 \mathrm{~N} \quad 3 \mathrm{M} \quad 40 \quad 58 \quad 5 \mathrm{~A} \quad 7 \mathrm{E} \quad 9 \mathrm{G} \quad \mathrm{BH} \quad \mathrm{CJ} \quad \mathrm{DQ} \quad \mathrm{FL} \quad \mathrm{KP}$
$T_{14}=1 \mathrm{~J} \quad 2 \mathrm{~K} \quad 3 \mathrm{G} \quad 4 \mathrm{E} \quad 5 \mathrm{~B} \quad 6 \mathrm{I} \quad 7 \mathrm{P} \quad 8 \mathrm{H} \quad 9 \mathrm{Q} \quad \mathrm{AL} \quad \mathrm{CN} \quad \mathrm{DO} \quad \mathrm{FM}$ $T_{15}=1 \mathrm{~K} \quad 2 \mathrm{~J} \quad 30 \quad 4 \mathrm{Q} \quad 5 \mathrm{~F} \quad 6 \mathrm{D} \quad 7 \mathrm{~N} \quad 8 \mathrm{~L} \quad 9 \mathrm{E} \quad \mathrm{AP} \quad \mathrm{BM} \quad \mathrm{CH} \quad \mathrm{GI}$ $T_{16}=1 \mathrm{~L} \quad 2 \mathrm{H} \quad 3 \mathrm{E} \quad 4 \mathrm{I} \quad 5 \mathrm{M} \quad 6 \mathrm{~K} \quad 7 \mathrm{~F} \quad 8 \mathrm{Q} \quad 9 \mathrm{D} \quad \mathrm{AN} \quad \mathrm{CP} \quad \mathrm{BJ} \quad 60$ $\begin{array}{lllllllllllll}T_{17} & 1 \mathrm{M} & 2 \mathrm{P} & 3 \mathrm{~L} & 4 \mathrm{~F} & 5 \mathrm{D} & 6 \mathrm{Q} & 7 \mathrm{I} & 8 \mathrm{G} & 90 & \mathrm{AJ} & \mathrm{BN} & \mathrm{CK} \\ \mathrm{EH}\end{array}$ $T_{18}=1 \mathrm{~N} \quad 2 \mathrm{I} \quad 3 \mathrm{~K} \quad 4 \mathrm{~J} \quad 5 \mathrm{H}$ 6C $\quad 7 \mathrm{Q} \quad 8 \mathrm{D} \quad 9 \mathrm{~F} \quad \mathrm{AG} \quad \mathrm{BP} \quad \mathrm{EM} \quad$ LO $\mathrm{T}_{19}=10 \quad 2 \mathrm{C} \quad 3 \mathrm{I} \quad 4 \mathrm{H} \quad 5 \mathrm{G}$ $69 \quad 7 \mathrm{~B} \quad 8 \mathrm{~N} \quad \mathrm{AM} \quad \mathrm{EL} \quad \mathrm{DJ} \quad \mathrm{FK} \quad \mathrm{PQ}$ $\begin{array}{lllllllllllll}T_{20} & = & 1 P & 25 & 3 F & 4 M & D H & 6 E & 7 K & 8 J & 9 L & A I & B O \\ C G & N Q\end{array}$ The leave of this set is given in Figure 4.3.

Figure 4.3

We have proved:

Theorem 4.1. There exists a 5 -set in $K_{2 n}$ for every $2 n \geq 22$.

ACKNOWLEDGEMENT: We wish to express our sincere thanks to Professor Rolf Rees for a number of useful discussions on the problem which lead to a much simpler proof of Theorem 3.1.

REFERENCES

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, 1976.
[2] L. Caccetta and W.D. Wallis, Maximal set of deficiency three, Cong. Num. 23 (1980) 217-227.
[3] G. Chartrand and L. Lesniak, Graphs \& Digraphs, Belmont, California, 1986.
[4] E.A. Cousins and W.D. Wallis, Maximal set of one-factors, Combinatorial Mathematics III (Lecture Notes in Mathematics 452, Springer Verlag 1984) 90-94.
[5] J. Folkman and D.R. Fulkerson, Edge Colourings in Bipartite Graphs, Combinatorial Maths. and its Applications. (Eds. Bose and Dowling) (1969), 561-577.
[6] R. Rees and W.D. Wallis, The spectrum of maximal set of one-factors, Research report $M / c s$ 89-10 (1989), Mount Allison University. (to appear in Discrete Math).
[7] W. D. Wallis, The smallest regular graphs without one-factors, Ars. Combinatoria 11 (1981) 21-25.

