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ABSTRACT: A set S of edge-disjoint in a Graph G is 

to be maximal if there no one-factor of G which is 

edge-disjoint from if the union of 

sets of one-factors of have 

recently only resul ts for part icular 

G. Maximal 

and unt i 1 very 

been obtained. In 

this paper we present a new technique for sol ving the problem. 

1. INTRODUCTION 

. We consider graphs which are undirected, finite, loopless and 

have no multiple edges. For the most part our notation and 

terminology follows that of Bondy and Murty [1]. Thus G a graph 

with vertex set V(G), edge set E(G), v(G) vertices and £(G) edges. Kn 

denotes the complete graph on n vertices m denotes the complete 

bipartite graph with bipartitioning sets of size nand m. 

A 1-factor of a graph G is a 1-regular spanning subgraph. A 

I-factorization of G a set of (pairwise) edge-disjoint one factors 

which between them contain each edge of G. It is very well known (see 

[3]) that K
2n 

and K have 1-factorizations for all n. 
n,n 

A set F of edge disjoint 1-factors in a graph G is said to be 

maximal if there is no 1-factor which is edge-disjoint from F and if F 
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is not all of G. Thus if we write F for the complement in G of the 

union of members of F, then F is maximal if and only if F is a 

non-empty graph with no i-factor. We call F the leave of F. Observe 

that if G is regular, then F is regular. If F is d-regular, then F is 

called a maximal set of deficiency d or simply a d-set. The existence 

of d-sets in K
2n 

for n > 2 was shown by Cousins and Wallis [4]. 

Caccetta and Wallis [2] established that 3-sets exist in ~n for 

every 2n ~ 16. This accomplished by first establishing properties 

which reduced the problem to one of finding 3-sets in for 16 ~ 2n 

and then exhibiting the required 3-sets. In this paper we 

generalize these methods. In particular, we prove that if K2 has a 
1 n 

d-set, then K4n- 2t has a d-set for each 0 ~ t ~ n - 2( d + 1). We 

apply this result to show that 5-sets exist in K
2n 

for every 2n ~ 22 

Recently, Rees and Wallis [6] solved the problem of determining 

the spectrum of maximal sets of i-factors in K
2n

. Our approach is, 

however, quite different and has the potential to yield a simpler and 

more intuitive proof. 

right. 

Our main resul t is of interest in its own 

2. PRELIMINARIES 

In this section we discuss three results which we make use of in 

the proof of our main theorem. A matching M in a graph G is a subset 

of E(G) in which no two edges have a common vertex. 

stating a lemma proved in Rees and Wallis [6]. 

We begin by 

Lemma 2.1. Let K be the complete bipartite graph with bipartition m,n 
(X, V), where IXI = m, Iyl = nand m ~ n. Let Y1' y2'···' Yn be any 

collection of m-subsets of Y such that each vertex y E Y is contained 

in exactly m of the Y.'s. Then there is an edge-decomposition of K 
J m, n 

into matchings M
1

, M
2

, ... ,Mn where for each j = 1,2, ... , n M
j 

is a 

matching with m edges from X to Y.. 0 
J 

The edge-chromatic number X' (G) of a graph G is the minimum 
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number of colours needed to colour the edges of G. Our next lemma is 

a special case of a theorem of Folkman and Fulkerson [5]. 

we give was given to us in a personal communication by Rees. 

The proof 

Lemma 2.2. If G is a graph with c.k edges and c~ X'(G), then the edge 

set of G admits a decomposition into c matchings, each with kedges. 

Proof: Let b be the set of all proper c-colourings of G. Note that b 

* ¢ since c ~ X'(G). For K E b, define 

n(K) 

where e is the number of edges in the i th matching (i. e. i th colour 

class) K, i = 1,2, ... ,c. 

Let 

no min{n(K):K E b} , 

and let Ko be a colouring for which nCKo) = no' We will prove that no 

= 0, i.e. Ko is a decomposition of G into c matchings, each with k 

edges. Suppose that this is not the case and nC Ko) > O. Then there 

is a matching Mi for which e i = IMil is not k. 

there must be matchings Ml and M2 say, with e
1 

IM21 > k. 

Now since e(G) = ck, 

= I Mil < k and e2 

Let H be the subgraph of G whose edge set is Ml U M
2

• Then H is 

the disjoint union of cycles and paths. Since > e
l

, H must contain 

as a component a path P of odd length which begins and ends with an 

edge of M
2

. Now switch the colours in P, i.e. those edges of P that 

were coloured 1 get coloured 2 and vice-versa. Let us call the 

matchings corresponding to these colour changes M1' and M
2

' This 

corresponding matchings creates a new colouring K ' of G with 
0 

M 1 I , M2 I , M 3' . . . , M c . Furthermore, 

e I IM1' I e + 1 , 
1 1 

and 

e I 
1 M

2 ' I e - 1. 
2 2 
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Now recalling that e
1 

< k and e
2 

> k. we have 

and 

Hence 

and this contradicts the minimali ty of nCKo)' 

no = O. Thi s proves the lemma. 

It thus follows that 

o 

We conclude this section by stating a result of Wallis [7] 

Lemma 2.3. A d-regular graph G with no 1-factor and no odd-component 

satisfies: 

{ 
3d + 7, for odd d i!: 3 

v(G) i!: 3d + 4. for even d i!: 6 

22, for d = 4 

No such G exists for d = 1 or 2. o 

3. MAIN RESULT 

Our main result is essentially a general ization of Theorems 4 

and 5 of Caccetta and Wallis [2]. 

Theorem 3.1. Suppose for odd d there exists a d-set in K
2n

. Then for 

each 0 ~ t ~ n - ~Cd + 1) there is a d-set in K4n- 2t . 

Proof: We can write K4n- 2t = K2n- 2t v K2n. Let X and Y denote the 

graphs K
2n

-
2t 

and K2n , respectively. Now Y has a maximal set of C2n -

d - 1) 1-factors. Take 2t of these 1-factors and let H be the graph 

formed by the union of these 1-factors. 
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Applying Lemma 2.2 (with c == 2n and k t) we decompose the 

edge-set H into 2n matchings M
1

,M
2

, ... ,M
2n

, each with t edges. Let 

Y i denote the vertices of Y not saturated by the matching Mi' Note 

that since H has regularity 2t, each vertex in Y will be contained in 

exactly of the Y.'s. 
1 

Furthermore, each Y i contains exact ly 

2n-2t vertices of Y. 

Now we apply Lemma 1 to the subgraph K2n- 2t ,2n This yields 

2n disjoint matchings N
i

, ... ,N2n , where Ni joins the vertices of Y
i 

to the vertices of Let 

Mi v Ni = 1,2, ... ,2n. 

There remain in Y set of (2n - 1 - d) 2t 1-factors from the 

- d) - 2t 1-factors on X original maximal set on Y. Construct (2n 

(such has 1-factorization) and pair these off 

wi th the S to form set of (2n 1 - d 2t) 1-factors 

Then the set 

F 1, 2, ... ,2n} v {[ j: J 1,2, ... ,2n-I-d-2t} 

forms maximal set of I-factors of deficiency d in K4n- 2t , Note that 

the leave F of F consists of 2-components one of which is the leave 

of the maximal set of 1-factors in K
2n

. 

the theorem. 

As a corollary we have: 

This completes the proof of 

o 

Corollary: If K2n has ad-set, d odd, then for each even integer m ~ 

2n + d + 1, Km has ad-set. 

Proof: Suppose K has a d-set, 
2n 

d odd. Then by Theorem 3,1 there 

exists a d-set in K , K 
2n+d+l 2n+d+3' 

K Further 
4n 

a d-set in 

K implies a d-set in K 
2n+d+l 2n+2d+2' 

K 
2n+2d+4' 

K Now 
4n+2d+2 

since a d-set in K
2n 

implies (Dirac's Theorem) that d ~ n we have 2n + 

2d + 2 ~ 4n + 2. Hence repeated applications of Theorem 3.1 will in 

fact cover all even integers m ~ 2n + d + 1. This completes the proof 

of the Corollary. 0 
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APPLICATION OF THEOREM 3.1 

now the application of Theorem 3.1. First we 

consider the existence of 3-sets in Since, by Lemma 2.3, the 

smal 

vert 

[2 ]. 

then 

:2: 

28. 

cases 

3-regular graph without a l-factor contai 

A in 

The 

at least 16 

shown in 

3-set in 

3-set for 2n ~ 14. 

impl ies that jf 

for :2: 16. Thi sis the case as 

20 

[2] invol ved construction of 3-sets 

ion 

2n :$ 28. 

Theorem 3. iminates 

3-set for every 

for 

to look 

2n 

the 

We now iII ustrate the work involved in establ ishing the 

of 

Lemma 2.3 

2n :2: 

by consider the d 5. 

that 5-sets do not exist in 

We wi 11 t 5-sets in 

for 2n :$ 20. 

and 

Then the corollary to Theorem 3.1 implies the existence of 5-sets in 

for every 2n :2: 22. 
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Consider K with vertices labelled 1,2, ... ,9, A,B, ... ,M. Take 
22 

the 16 i-factors: 

T 18 25 3D 4L JC 6H 7A 9I BF EK MG 
1 

T 15 2G 3E 4I 8H 6A 7J 9F BK eM DL 
2 

T 19 2E 3L 4H 5D 6J 7G 8K AF BM C1 
3 

T 1A 2H 3F 4M 5C 61 7K 8L 9D BG EJ 
4 

T 1B 2F 3K 4C 51 6D 7L 8J 8M AH GE 
5 

T lC 29 3H 4J SK 6F 7E 8G DI AM BL 
6 

T lD 2I 3M 4F SA 6G 7H 8C 9K BJ EL 
7 

T lE 2C 
8 

3J 48 5B 69 7D AI LH MF KG 

T 
9 

iF 2L 3G 4E 59 6M 7C 81 AJ DK BH 

T lG 2M 
10 

38 47 5E 6B LI AK CH DF 9J 

T iH 2J 
11 

3A 4K SG 6C 7M 8F 9L BI DE 

T 11 2A 
12 

36 4B 58 HE 7F LC 8G DJ KM 

T 1J 28 
13 

3C 49 5L DG 71 AB FE HM K6 

T lK 2B 
14 

79 4A 5F 6L 31 8E CG DH JM 

T lL 2K 
15 

3B 4D 5J 6E 78 9H AG FC MI 

T 
16 

1M 2D 39 4G 5H 68 7B CK AL FJ EI 

The leave of this set of i-factors is given in Figure 4.1. Thus 

we have a 5-set in K 
22 

7 

2 
I 

A B 

Figure 4.1 
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Consider K with vertices labelled 1.2, ... ,9, 
24 

A,B, . ,0. Take 

the 18 I-factors: 
R 14 2J 36 DI 5G 8F 7E NO 9H AL BM CK 

1 

16 2D 30 4B 58 9L 7C IN FG HK M1 

R 17 25 3L 48 6M 9K AN BF CD EH GI JO 
3 

R lA 2N 3M 47 59 6J 8C BL DH EO FI GK 
4 

R 1B 3N 4M 5L 69 7G 8A CH DJ E1 FK 
5 

R 10 2K 4L 5B 6C 7M 8D 9A GJ EN FH 
6 

R ID 2G 4F 5I 6N 7H 8M 9C BJ LO 
7 

R lC 50 6K 7N 9B AM EJ DL 
8 

R IE 2H 40 5J 6G 7K 8L 9D AI BN CM 
9 

R lL 4K 5C 6E 8J DM GN 10 
10 

IG 2B 4J 5H 6D 71 9E CL MO FN 

R IH 2L 3J 4A 
12 

6B 7D 8N FM KO 

1I 26 4C 5D 70 8N EL FJ GM 

1J 28 6A DN EM HL 

lK 2M 4E 5A 6H 7F 3D BI 

IF 2C DO 6L 7J 91 AG 4N 8H 

1M DK 5N FL 61 CJ 

R IN 21 4D 5K 6F 8M AJ BO 
18 

The leave of set of I-factors in 4.2. We 

thus have a 5-set in 

K 

c o 
Figure 4.2 
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Finally. consider K26 with vertices labelled 1.2 •... ,9. 

A,B, ...• Q. A suitable 5-set is: 

T 
1 

T 
2 

T 
3 

T 
4 

T 
5 

T 
6 

T 
7 

T 
8 

T 
9 

T 
15 

14 2G 3Q 5L 6J 1M 8C 9H AO BF DP EK 

15 21 39 4C 6B 8A DK EQ FN GM HL 10 

16 2A 3C 49 50 1D 8B EP FI GK HN JM 

11 28 36 4B SA 9C DE FH GJ I L KN MP 

1A 2D 3B 41 5I 6N 8F 9P CO EJ GL HK 

1B 2M 3H 4L 5K 6P 1 A 8E 9J CQ D1 Fa 

1C 2L 3J 4G 5P 6M 7H 81 9B AK DN EO 

1D 2F 3N 4K 5E 6H 1L 80 9A B1 CM GP 

1E 2B 38 4A 5N 6L 7C DM 9K FP GH 1Q 

N1 

JP 

LQ 

OQ 

MQ 

GN 

FQ 

JQ 

JO 

1F 2Q 3D 4P 5J 60 1G 8K 91 AB CL EN HM 

1G 20 3P 4D 5C 6F 7J 8M 9N AH E1 KQ 

lH 2E 3A 4N 5Q 6G 70 8P 9M BK CI DL FJ 

11 2N 3M 40 58 6A 7E 9G BH CJ DQ FL KP 

1J 2K 3G 4E 5B 6 I 7P 8ll 9Q AL CN DO FM 

1K 2J 30 4Q 5F 6D 7N 8L 9E AP BM Cll G1 

1L 2ll 3E 41 5M 6K 7F 8Q 9D AN CP BJ GO 

1M 2P 3L 4F 5D 6Q 71 8G 90 AJ BN CK EH 

T
1S

= 1N 21 3K 4J 5H 6C 7Q 8D 9F AG BP EM La 

T
19

= 10 2C 31 4H 5G 69 7B 8N AM EL DJ FK PQ 

T
20

= lP 25 3F 4M DH 6E 7K 8J 9L AI BO CG NQ 

The leave of this set is given in Figure 4.3. 
4 

K 

D E 

Figure 4.3 
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We have proved: 

Theorem 4.1. There exists a 5-set in K2n for every 2n 2 22. o 
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