A NOTE ON THE CYCLE INDEX POLYNOMIAL OF THE SYMMETRIC GROUP

by

R.J. Clarke
Department of Pure Mathematics
The University of Adelaide

Abstract: An identity concerning the cycle index polynomial of the symmetric group is proved and a consequence of it presented.

INTRODUCTION

Let X be a set with n indistinguishable elements and let k be a positive integer. Let $T(n, k)$ denote the number of ways of choosing k subsets of X whose union is X. Let \mathcal{P}_{n} denote the set of all partitions of n. If $\lambda \in \mathcal{P}_{n}$ we write $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, where $n=\lambda_{1}+\cdots+\lambda_{r}$ and $r=r(\lambda)$ is the number of parts in λ. In [2], the following two expressions for $T(n, k)$ were obtained.

$$
\begin{gather*}
T(n, k)=\frac{1}{n!k!} \sum_{\substack{\lambda \in \mathcal{P}_{n} \\
\mu \in \mathcal{P}_{k}}}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right]\left[\begin{array}{l}
k \\
\mu
\end{array}\right] \prod_{i}\left(\left(\prod_{j} 2^{\left(\lambda_{i}, \mu_{j}\right)}\right)-1\right) . \tag{1}\\
T(n, k)=U(n, k)-U(n-1, k), \tag{2}
\end{gather*}
$$

where

$$
U(n, k)=\frac{1}{n!k!} \sum_{\substack{\lambda \in \mathcal{P}_{n} \tag{3}\\
\mu \in \mathcal{P}_{k}}}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right]\left[\begin{array}{l}
k \\
\mu
\end{array}\right] \prod_{i, j} 2^{\left(\lambda_{i}, \mu_{j}\right)}
$$

Here (a, b) denotes the greatest common divisor of a and b and $\left[\begin{array}{l}n \\ \lambda\end{array}\right]$ is the number of permutations in the symmetric group S_{n} with cycle type λ.

It is claimed in [2] that the equality of (1) and (2) is equivalent to the following result.

Theorem 1. For any m-tuple of positive integers $\left(a_{1}, \ldots, a_{m}\right)$ and any positive integer n,

$$
\sum_{\lambda \in \mathcal{P}_{n}}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right] \prod_{i}\left(\left(\prod_{j=1}^{m} 2^{\left(\lambda_{i}, a_{j}\right)}\right)-1\right)=\sum_{\lambda \in \mathcal{P}_{n}}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right]\left(1-s_{1}(\lambda) / 2^{m}\right) \prod_{i, j} 2^{\left(\lambda_{i}, a_{j}\right)}
$$

where $s_{1}(\lambda)$ denotes the number of parts of λ of size 1 .
Now it is easy to show that Theorem 1 implies the equivalence of (1) and (2), but it is not easy to deduce the Theorem from these two results. However, in this note we deduce Theorem 1 from an old result of Bell on the cycle index polynomial of the symmetric group.

THE CYCLE INDEX POLYNOMIAL

Let n be a positive integer. The cycle index polynomial [Polya, 5] of S_{n} is the polynomial

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n!} \sum_{\lambda \in \mathcal{P}_{n}}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right] \prod_{i=1}^{r(\lambda)} x_{\lambda_{i}}
$$

Lemma.

$$
f_{n}\left(x_{1}-1, \ldots, x_{n}-1\right)=f_{n}\left(x_{1}, \ldots, x_{n}\right)-\frac{\partial}{\partial x_{1}} f_{n}\left(x_{1}, \ldots, x_{n}\right)
$$

Proof. Write $f_{n}(\bar{x})=f_{n}\left(x_{1}, \ldots, x_{n}\right)$. From Bell [1, page 265] or Riordan [6, page 80] we have that

$$
f_{n}(\bar{x}+\bar{y})=\sum_{j=0}^{n} f_{n-j}(\bar{x}) f_{j}(\bar{y})
$$

Setting $\bar{y}=(-1,-1, \ldots,-1)$, we obtain

$$
f_{n}\left(x_{1}-1, \ldots, x_{n}-1\right)=f_{n}\left(x_{1}, \ldots, x_{n}\right)-f_{n-1}\left(x_{1}, \ldots, x_{n-1}\right)
$$

By Riordan [6, page 70], $f_{n-1}=\frac{\partial f_{n}}{\partial x_{1}}$. Hence the result follows.
Proof of Theorem 1. The result of the above Lemma may be written as

$$
\sum_{\lambda \in \mathcal{P}_{n}}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right] \prod_{i}\left(x_{\lambda_{i}}-1\right)=\sum_{\lambda \in \mathcal{P}_{n}}\left[\begin{array}{l}
n \\
\lambda
\end{array}\right]\left(1-s_{1}(\lambda) / x_{1}\right) \prod_{i} x_{\lambda_{i}}
$$

We obtain Theorem 1 by substituting $x_{1}=2^{m}$ and $x_{i}=\Pi_{j} 2^{\left(i, a_{j}\right)}$ for $i>1$ in this equation.

It follows immediately that Theorem 1 may be generalised by replacing 2 by any real number r.

Note: The author wishes to thank Professor J.H. Moon for pointing out to him that equation (3) follows from a result of Harary [3, page 96] or [4] on enumerating bipartite graphs, and also wishes to thank the referee for drawing Bell's result to his attention.

REFERENCES

[1] Bell, E.T. (1934). Exponential Polynomials ,Ann. of Math 35, 258-277.
[2] Clarke, R.J. (1989). Covering a finite set by subsets, Discrete Mathematics, to appear.
[3] Harary, F. and Palmer, E.M. (1973). Graphical Enumeration, Academic Press, New York.
[4] Harary, F. (1958). On the number of bicoloured graphs, Pacific J. Math. 8, 743-755.
[5] Polya, G. and Read, R.C. (1987). Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, New York.
[6] Riordan, J. (1958). An Introduction to Combinatorial Analysis, Wiley, New York.

