Block-transitive designs and maximal subgroups of finite symmetric groups.

Cheryl E. Praeger Department of Mathematics University of Western Australia Nedlands WA 6009 Australia

1. Introduction

A $t - (v, k, \lambda)$ design is a pair $\mathcal{D} = (X, \mathcal{B})$, where X is a set of v points, and ${\mathcal B}$ is a set of k-element subsets of X called blocks, such that any t points are contained in exactly λ blocks, where $\lambda > 0$. Such a design is called trivial if \mathcal{B} consists of all the k-element subsets of X . An $\underline{automorphism}$ of a design $\mathcal D$ is a permutation of the point set X which fixes ${\mathcal B}$ setwise (in its induced action on k-element subsets of X). In this paper we discuss some construction methods for <u>block-transitive</u> t-designs, that is for t-designs ${\mathcal D}$ for which the group of automorphisms of ${\mathcal D}$ is transitive on the block set \mathcal{B} . Let $\mathcal{D} = (X, \mathcal{B})$ be a t- (v, k, λ) design with automorphism group G . By a result of R.E. Block [1] the number of G-orbits in \mathcal{B} is greater than or equal to the number of G-orbits in X. In particular if G is block-transitive then G is also point-transitive, that is G is a transitive subgroup of the symmetric group Sym (X) on X . Suppose now that ${\mathcal D}$ is block-transitive. It was shown in [2, Proposition 1.1] that, for any over-group H of G in Sym (X), the possibly larger family $\mathcal{B}^* = \{B^h \mid B \in \mathcal{B}, h \in H\}$ of k-element subsets of X is also the block set of a t- (v,k,λ^*) design $\mathcal{D}^{\star} = (X, \mathcal{B}^{\star})$ for some $\lambda^{\star} \geq \lambda$. The design \mathcal{D}^{\star} is also block-transitive with automorphism group containing H . If H is

Australasian Journal of Combinatorics 1(1990), pp.193-205

<u>k-homogeneous</u> on X , that is if H is transitive on the k-element subsets of X , then D^* will be a trivial design, while if H is not k-homogeneous on X then D^* will be nontrivial. Consider the problem:

<u>Problem</u>. Given positive integers t, v, k , decide whether there exists a nontrivial block-transitive t- (v,k, λ) design for some $\lambda > 0$.

According to our discussion, one way of deciding this is to check, for each maximal non-k-homogeneous subgroup H of Sym(X) and for each H-orbit \mathcal{B} on k-element subsets, whether (X,\mathcal{B}) is a t-design. This decision can be made by examining a single k-subset B of \mathcal{B} as follows: Let Q_1, \ldots, Q_m be the H-orbits on t-element subsets of X, and for each $i = 1, \ldots, m$ let q_i be the number of t-element subsets of B which belong to Q_i . Then, by [2, Proposition 1.3], (X,\mathcal{B}) is a t-design if and only if

$$\frac{q_1}{\left|Q_1\right|} = \frac{q_2}{\left|Q_2\right|} = \dots = \frac{q_m}{\left|Q_m\right|} \quad . \tag{1}$$

According to the O'Nan-Scott Theorem (see [5]) the maximal transitive subgroups G of S_{ij} are of one of the following types:

1.	imprimitive:	$G = S_c wr S_d$, where $v = cd$, $c > 1$, $d > 1$;
2.	affine:	$G = AGL(d,p)$, where $v = p^d$, p is a prime
		and $d \ge 1$;
3.	product:	$G=S_{c} \ \text{wr} \ S_{d}$, where $v=c^{d}$, $c \geq 5$, $d>1$;
4.	simple diagona	1: $G = T^{d}(Out T \times S_{d})$, where $v = T ^{d-1}$,
		T is a nonabelian simple group and $d > 1$;

5. almost simple:
$$T \le G \le Aut T$$
, where T is a nonabelian simple group.

The imprimitive case has been studied at length in [2]. In this paper we examine the other cases in the hope of discovering interesting families of t-designs. First we note that if G is t-homogeneous on X, then, for every subset B of X of size at least t, the pair

194

 (X,B^G) will be a block transitive t-design, and will be a nontrivial design as long as G is not |B|-homogeneous. Thus we shall always assume that G is not t-homogeneous. The paper [3] investigates block-transitive and flag-transitive t-designs with large t. (Recall that a <u>flag</u> in a design is an incident point-block pair.) It follows from a theorem of Ray-Chaudhuri and Wilson [6] that a block-transitive automorphism group of a t-design is $\lfloor t/2 \rfloor$ -homogeneous on points, and a flag-transitive automorphism group of a t-design is $\lfloor (t+1)/2 \rfloor$ -homogeneous on points. It is shown in [3] that there are no nontrivial block-transitive 8-designs and no nontrivial flag-transitive 7-designs. In this paper we shall concentrate on t-designs for small t (usually t = 2 or t = 3) and shall examine the possible automorphism groups type by type.

Further if (X, B^G) is a block-transitive t-design then also (X, (X-B)^G) is a block-transitive t-design, so we may assume that $t < k \le v/2$.

2. The affine case.

Let G = AGL(d,p) < Sym(X) where $v = |X| = p^d$, p is prime and $d \ge 1$. Then G is 2-transitive, and, if p = 2, G is 3-transitive. Thus we shall look for 3-designs when p is odd and for 4-designs when p = 2. A search for block-transitive and flag-transitive 5-designs admitting AGL(d,2) is described in [3].

Now let p be an odd prime and consider the case $d \ge 2$. Then G has 2 orbits on 3-element subsets of X, namely the sets Q_1 and Q_2 of collinear triples and non-collinear triples respectively. By [2, Proposition 1.3], for a k-element subset B of X, (X, B^G) is a 3-design if and only if $q_1/|Q_1| = q_2/|Q_2|$ where q_1, q_2 are the numbers of collinear and non-collinear triples in B respectively. Moreover $q_1 + q_2 = {k \choose 3}$ so we have the following result.

<u>Lemma 2.1.</u> If $G = AGL(d,p) \le Sym(X)$ with $d \ge 2$ and p an odd prime, and if B is a k-element subset of X, where $k \ge 3$, then the pair (X,B^G) is a block-transitive 3-design if and only if the number

195

 q_1 of collinear triples in B is

$$\frac{k(k-1)(k-2)(p-2)}{6(p^{d}-2)}$$

It seems unlikely that a large family of 3-designs of this type will be found as the divisibility condition seems so difficult to satisfy. If u is a prime dividing $p^d - 2$ then u is odd and so u divides at most one of k,k - 1 and k - 2. If, in particular, $p^d - 2 = u^a$ then, when $k \le p^d/2$, u must be a divisor of p-2. From these observations it follows for example that when p = 3 we must have $d \ge 7$ and $3^7 - 2 = 5.19.23$. Is there a block-transitive $3 - (3^7, k, \lambda)$ design of this type?

If G = AGL(d,2) with $d \ge 3$ then G has 2 orbits on 4-element subsets of X , namely affine planes, and non-coplanar 4-sets. Applying [2, Proposition 1.3] we have

Lemma 2.2. If G = AGL(d,2) with $d \ge 3$ and if $B \subseteq X$ with $|B| = k \ge 4$ then the pair (X, B^G) is a block-transitive 4-design if and only if the number q of affine planes in B is

$$\frac{k (k-1) (k-2) (k-3)}{24 (2^{d} - 3)}$$

This situation has been studied in more detail in [3] which looks at the problem of classifying all flag-transitive 5-designs. It is shown there that, for G = AGL(d,2), (X, B^G) is a 4-design if and only if (X, B^G) is a 5-design, a very surprising result. From the divisibility condition above it follows that $d \ge 8$, and if d = 8then the only integers k satisfying the divisibility condition are 23, 24, 25, 46, 47, 69, 209, 210, 232, 233. If the design is assumed to be flag-transitive then k must divide |G| and so k is 24, 25, or 210. Moreover it is shown in [3] that there is indeed a flag-transitive 5- $(2^8, 24, \lambda)$ design (where $\lambda = 2^{24} \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 31$) related to the extended Golay code, and there are no flag-transitive designs with k = 25 or k = 210.

3. The product action case.

Consider the wreath product $G = S_c \text{ wr } S_d$ in product action on X, that is $v = |X| = c^d$ and X is identified with Y^d where Y is a set of size c. Since we want G to be maximal in Sym(X) we have $c \ge 5$ and $d \ge 2$. Now G has d orbits on unordered pairs of points of X, namely Q_1, \ldots, Q_d , where $\{x, y\} \in Q_i$ if and only if x and y differ at exactly i entries, for $i = 1, \ldots, d$. The following criterion for a 2-design follows immediately from [2, Proposition 1.3].

Lemma 3.1. Let $G = S_c \text{ wr } S_d \leq \text{Sym}(X)$, where $X = Y^d$, |Y| = c, and let $B \subseteq X$ be such that, for $1 \leq i \leq d$, q_i unordered pairs of points of B belong to Q_i , where |B| = k and $\Sigma q_i = {k \choose 2}$. Then (X, B^G) is a 2-design if and only if,

$$\frac{q_1}{\begin{pmatrix} d \\ 1 \end{pmatrix}(c-1)} = \frac{q_2}{\begin{pmatrix} d \\ 2 \end{pmatrix}(c-1)^2} = \dots = \frac{q_d}{\begin{pmatrix} d \\ d \end{pmatrix}(c-1)^d}$$

In the case d = 2 this lemma leads to a simple construction principle. When d = 2, the points of X are ordered pairs of elements from the set Y of size c, and the k-set B can be interpreted as the edge set of a directed graph with vertex set Y. Note that loops are allowed. For an edge e = (y, y') the first entry y will be called the <u>tail</u> and the second entry y' the <u>head</u> of e. The conditions given by Lemma 3.1 under which (X, B^G) is a 2-design reduce to just one equation:

$$q_1 = \frac{k (k-1)}{c+1} .$$

Thus we have the following:

<u>Theorem 3.2</u>. Let D = (Y, B) be a directed graph with vertex set Y of size c and edge set $B \subseteq Y \times Y$ of size k. Then the set of all images of B under the group G = Sym(Y) wr S_2 is the set of blocks of a 2-design if and only if the number of unordered pairs of edges of B with a common head or a common tail is exactly k(k-1)/(c+1). Moreover the design will be flag-transitive if and only if the automorphism group of the directed graph D is edge-transitive.

<u>Construction 3.3</u>. Let $D_0 = (X_0, B)$ be a directed graph with vertex set X_0 of size c_0 , no isolated vertices and with k edges such that the number q of unordered pairs of edges of D_0 having a common head or a common tail is a divisor of k(k-1). Then, provided $c = \frac{k(k-1)}{q} - 1 \ge c_0$, the digraph D = (X, B) obtained from D_0 by adding $c - c_0$ isolated vertices gives rise to a 2-design as described in Theorem 3.2.

<u>Example 3.4</u>. Let $k = 2s \ge 6$ and let $D_0 = (\mathbb{Z}_s, B)$ be an "undirected" cycle of length s, that is $B = \{(i, i+1) \mid i \in \mathbb{Z}_s\} \cup \{(i+1, i) \mid i \in \mathbb{Z}_s\}$. Then the number of pairs of edges sharing a head or a tail is s which divides $k \ (k-1) = 2s \ (2s - 1)$. Then adding 3(s - 1) isolated vertices yields a flag-transitive $2 - ((2k - 3)^2, k, \lambda)$ design for some λ .

It is difficult to obtain a general construction for large d as the number of restrictions on the parameters increases. However one necessary condition is the following.

<u>Corollary 3.5</u>. With the notation of Lemma 3.1, a necessary condition for (X, B^G) to be a 2-design is that $d\binom{k}{2}$ is divisible by $(c^d-1)/(c-1)$. (In fact $q_1 = d\binom{k}{2}/((c^d-1)/(c-1))$.)

<u>Proof</u>. By Lemma 3.1, $q_i = \begin{pmatrix} d \\ i \end{pmatrix} (c - 1)^{i-1} q_1 / d$ and $\begin{pmatrix} k \\ 2 \end{pmatrix} = \sum_{i=1}^{d} q_1 = q_1 \begin{pmatrix} d \\ \Sigma \\ i=1 \end{pmatrix} \begin{pmatrix} d \\ i \end{pmatrix} (c - 1)^i / (c - 1) d = q_1 (c^d - 1) / (c - 1) d.$

Thus d $\binom{k}{2}$ is divisible by $(c^d - 1) / (c - 1)$.

It may be helpful to use the language of coding theory to describe the situation here. If the set Y is taken as the set \mathbb{Z}_c of integers modulo c then $\{x, y\} \in Q_i$ if and only if x - y has weight i, that is has exactly i nonzero entries. Thus B contains q_i unordered pairs $\{x, y\}$ with x - y of weight i for i = 1, ..., d. Since G is transitive on X we may assume that $Q = (0, ..., 0) \in B$. Then, if (X, B^G) is a flag-transitive 2-design, there are $2q_i/k$ pairs (0, y) in B with y = y - 0 of weight i, that is there are $2q_i/k$ elements of $B - \{0\}$ of weight i.

<u>Theorem 3.6</u>. Let $G = S_c$ wr $S_d \leq Sym(X)$ where $X = \mathbb{Z}_c^d$, and let B be a k-element subset of X containing $\underline{0} = (0, \ldots, 0)$. Then (X, B^G) is a flag-transitive 2-design if and only if

(i) the setwise stabilizer $G_{R}^{}$ of B is transitive on B , and (ii) for each $1 \le i \le d$ there are $2q_i/k$ elements of $B - \{\underline{0}\}$ of weight i, where $q_i = \begin{pmatrix} d \\ i \end{pmatrix} (c - 1)^{i-1} q_1 / d$ $= \begin{pmatrix} k \\ 2 \end{pmatrix} \begin{pmatrix} d \\ i \end{pmatrix} (c - 1)^{i} / (c^{d} - 1)^{i}.$

<u>Proof</u>. If (X, B^G) is a flag-transitive 2-design then G_{R} is transitive on B , and, by Lemma 3.1 and Corollary 3.5, the parameters q1 are as in (ii). So, by the discussion above (ii) is true. Conversely if (i) and (ii) are true then B contains q_i pairs in Q_i with q_i as in Lemma 3.1. Hence (X, B^G) is a 2-design, and, as G_n is transitive on B , $(X,\ B^{\mathsf{G}})$ is a flag-transitive design.

The conditions for a flag-transitive 2-design in this case are very restrictive: by Corollary 3.5, $k - 1 = \left(\frac{2q_1}{k}\right) \cdot \left(\frac{c^d - 1}{c - 1}\right) \cdot \frac{1}{d} \ge (c^d - 1)/d$ (c - 1) , that is the block size is very large.

Question 3.7. Are there any flag-transitive (or even block-transitive) $\overline{2-(c^d, k, \lambda)}$ designs admitting $S_c \text{ wr } S_d$ with $d \ge 3$?

4.

 $\frac{\text{The simple diagonal case}}{\text{Let } G = T^{\ell}.(\text{Out } T \times S_{\ell}) \leq \text{Sym}(X) \text{ act on } X \text{ in its diagonal}}$ action, where T is a nonabelian simple group and $\ell \geq 2$. Let $\mathbb{N} = T^{\ell} < \mathbb{G}$, and let $\mathbb{D} = \{ \underline{t} = (t, \ldots, t) \mid t \in T \}$ be the natural diagonal subgroup of N . Then X can be identified with the set of right cosets of D in N with N acting by right multiplication. If $\alpha = D$ is the trivial coset then $G_{\alpha} = Aut T \times S_{\ell}$ and $G = NG_{\alpha}$. Elements of Aut T act on X by conjugation and elements of S_{ρ} act by permuting the entries of coset representatives \underline{x} of cosets D \underline{x} .

It is very unlikely that there will be any interesting 2-designs arising from this family of groups as G acting on pairs of points has many orbits in general. Perhaps it is worth saying a little about the simplest case, namely the case $\ell = 2$. Here each coset of D in N has a unique representative with first entry 1_T and so we may identify X with T. With this identification, $\alpha = 1_T$, and for $x \in X = T$, elements $(t_1, t_2) \in N$, $\sigma \in Aut T \leq G_{\alpha}$, and $\tau = (12) \in S_2 \leq G_{\alpha}$ act as follows.

$$(t_1, t_2) : x \longrightarrow t_1^{-1} x t_2$$

$$\sigma : x \longrightarrow x^{\sigma}$$

$$\tau : x \longrightarrow x^{-1} .$$

The orbits of G on unordered pairs from X correspond to "fusion" classes of elements of T , where the fusion class $\mathcal{F}(x)$ of x is $\mathcal{F}(x) = \{(x) \in \sigma \mid \sigma \in \text{Aut } T, \epsilon = \pm 1\} : \{x, y\} \text{ and } \{x', y'\} \text{ are in the}$ same orbit on pairs if and only if $x^{-1}y$ and $(x')^{-1}y'$ are in the same fusion class. Let the fusion classes be $F_1 = \{1_T\}, \ldots, F_s$, let B be a k-element subset of T and let f_i be the number of unordered pairs of elements of B lying in F_i , for i = 1, ..., s. Then by [2, Proposition 1.3], (X, B^G) is a 2-design if and only if $f_i / |F_i| = E$ is independent of i (for i = 1, ..., s). Note that $\binom{k}{2} = \Sigma f_i = E \Sigma |F_i| = E (|T| - 1)$, so that k cannot be much smaller than $|T|^{1/2}$. Suppose now that G acts flag-transitively on (X,B^G) . Then k divides |G|, and hence (|T| - 1) / y divides k-1 where y is the greatest common division of $\left| T \right|$ — 1 and |G|. Since k < v = |T| it follows that y > 1. Now y = (|T| - 1, |Out T|) and it follows that T is a group of Lie type over a field of order p^a for some prime p and positive integer a, and y divides the odd part a' of a. Thus we have k = 1 + z(|T| - 1)/y for some $1 \le z < y$. This means, on the one hand, that k > |T|/a', and on the other hand that (k, |T|) divides (z - y, |T|), whence (k, |G|) divides $2(z - y)^2 |Out T|$. Since k divides |G| it follows that $|T|/a' < k < 2(a')^2 |Out T|$. Thus $|T| < 2(a')^3 |Out T|$, and the only group satisfying this inequality is T = PSL(2,8), but for this group y = 1. Thus G is never flag-transitive on (X, B^G) .

<u>Theorem 4.1</u>. If $G = T^2$ (Out $T \times S_2$) \leq Sym(T) in simple diagonal action, where T is a nonabelian simple group, then G does not act flag-transitively on any nontrivial 2-design with point set T.

<u>Question 4.2</u>. Can $G = T^2$ (Out $T \times S_2$) act block-transitively on a nontrivial 2-design with point set T?

5. The almost simple Case.

This case is the most difficult to discuss as the maximal almost simple subgroups of Sym (X) are only very loosely classified in [4]. There may be interesting classes of block-transitive 2-designs admitting primitive almost simple groups of small rank $\ell \geq 3$. For example in the rank 3 case we have:

Lemma 5.1. Let $G \leq Sym(X)$ be a primitive rank 3 group of degree v such that, for $x \in X$, G_X has a self-paired orbit $\Gamma(x)$ in $X - \{x\}$ of length m. Let B be a k-element subset of X and let q be the number of unordered pairs $\{x,y\}$ of points of B such that $y \in \Gamma(x)$ (or equivalently $x \in \Gamma(y)$). Then (X, B^G) is a block-transitive 2-design if and only if $q = \binom{k}{2} m / (v - 1)$.

In [2, Example 1.4] a construction of 2-designs was given based on the rank 3 groups $G = S_n$ acting on $v = {n \choose 2}$ unordered pairs from a set Y of size n. In this case the set B can be interpreted as the edge set of a graph with vertex set Y having k edges. A 2-design was obtained if and only if the number of (unordered) pairs of edges of (Y, B) sharing a common vertex was 2k (k - 1) / (n + 1), and the design was flag-transitive if and only if the automorphism group of (Y, B) was edge-transitive.

Other classes of rank 3 groups may give similar constructions. For example the groups $G = P\Gamma L(n, q)$, $n \ge 4$, induce a primitive rank 3 action on the set of lines of the projective geometry PG(n - 1, q).

<u>Theorem 5.2</u>. Let $G = P\Gamma L(n, q)$, $n \ge 4$, act on the set X of lines of PG(n - 1, q), and let B be a k-element subset of X. Then (X, B^G) is a block-transitive 2-design if and only if the number of unordered pairs of intersecting lines in B is $\binom{k}{2}$ $(q + 1)^2 (q - 1) / (q^n + q^2 - q - 1)$.

<u>Proof</u>. Now $v = |X| = (q^n - 1) (q^{n-1} - 1) / (q^2 - 1) (q - 1)$ so $v - 1 = q (q^{n-2} - 1) (q^n + q^2 - q - 1) / (q^2 - 1) (q - 1)$. Also the number of lines intersecting a given line is $m = q (q^{n-2} - 1) (q + 1) / (q - 1)$. The result now follows from Lemma 5.1.

When considering primitive groups of rank greater than 3 the number of conditions to be satisfied increases and the problem of finding 2-designs becomes more difficult. We give just one example.

<u>Theorem 5.3</u>. Let $G = S_n$, the symmetric group on a set Y of size n and consider the primitive rank s + 1 action of G on the set X of $v = {n \choose s} s$ -element subsets of Y where $3 \le s \le n/2$. Let B be a k-element subset of X. Then (X, B^G) is a block-transitive 2-design if and only if, for each i = 1, ..., s - 1, the number q_i of unordered pairs of elements of B which intersect in exactly i elements of Y is

$$q_{i} = \frac{k (k-1) {\binom{s}{i}} {\binom{n-s}{s-i}}}{2 (\binom{n}{s} - 1)}$$

 $\begin{array}{l} \underline{\operatorname{Proof}} & \text{The group } \mathsf{G} \ \text{has s orbits } \mathsf{Q}_0,\ldots,\mathsf{Q}_{s-1} \ \text{ on unordered pairs of } \\ \mathrm{s-subsets of } \mathsf{Y} \ , \ \operatorname{namely } \mathsf{Q}_i \ \ \operatorname{consists of pairs which intersect in } \\ \mathrm{exactly } i \ \ \operatorname{points of } \mathsf{Y} \ , \ \ \operatorname{for } 0 \leq i \leq s-1 \ . \ \ \operatorname{By } [2, \ \operatorname{Proposition} \\ 1.3], \ \ (\mathsf{X},\mathsf{B}^G) \ \ is a \ \ \operatorname{block-transitive } 2-design \ \ if \ \ \operatorname{and only if } \\ \mathsf{q}_0/|\mathsf{Q}_0| = \ldots = \mathsf{q}_{s-1}/|\mathsf{Q}_{s-1}| = \mathsf{x} \ \ \operatorname{say.} \ \ \ \operatorname{Then } \left(\begin{smallmatrix} \mathsf{k}_2 \\ \mathsf{k} \end{smallmatrix} \right) = \Sigma \mathsf{q}_i = \mathsf{x} \ \Sigma |\mathsf{Q}_i| = \mathsf{x} \left(\begin{smallmatrix} \mathsf{v}_2 \\ \mathsf{q} \end{smallmatrix} \right) \\ \text{and so these equations are equivalent to the equations} \\ \mathsf{q}_i = \mathsf{x} |\mathsf{Q}_i| = \left(\begin{smallmatrix} \mathsf{k}_2 \\ \mathsf{k} \end{smallmatrix} \right) |\mathsf{Q}_i| \ / \left(\begin{smallmatrix} \mathsf{v}_2 \\ \mathsf{k} \end{smallmatrix} \right) \ \ \ \ for \ \ each \ \ i = 1,\ldots,s-1, \ \ (\text{since } \mathsf{q}_0 \ \ \ is \\ \\ determined \ \ by \ \ \left(\begin{smallmatrix} \mathsf{k}_2 \\ \mathsf{k} \end{smallmatrix} \right) = \Sigma \mathsf{q}_i). \ \ \ \ \ \ this \ \ yields \ \ the \ \ result \ \ since \\ |\mathsf{Q}_i| = \mathsf{v} \ \left(\begin{smallmatrix} \mathsf{s} \\ \mathsf{s} \cr \mathsf{s$

Example 5.4 Taking s = 3, we may interpret X as the set of triangles (cycles of length 3) of the complete graph with vertex set

202

Y, and we may interpret B as the set of triangles of a graph with vertex set Y having k triangles. Then, by Theorem 5.3, (X,B^G) is a 2-design if and only if the number q_2 of points of triangles in B sharing an edge is $3k(k - 1)(n - 3)/2(v - 1) = 9k(k - 1)/(n^2 + 2)$ and the number q_1 of pairs of triangles in B with a single vertex in common is $3k(k - 1)\binom{n-3}{2}/2(v - 1) = 9k(k - 1)(n - 4)/2(n^2 + 2)$.

On the other hand if G is 2-transitive then we should be looking for t-designs with $t \ge 3$. We do this for the projective linear groups below.

<u>Theorem 5.5</u> Consider $G = P\Gamma L(n,q)$, $n \ge 3$, acting on the set X of $v = (q^n - 1)/(q - 1)$ points of the projective geometry PG(n - 1,q), and let B be a k-elelment subset of X. Then (X,B^G) is a block-transitive 3-design if and only if the number of (unordered) collinear triples of points in B is $k(k - 1)(k - 2)(q - 1)^2/6(q^n - 2q + 1) = k(k - 1)(k - 2)(q - 1)/6(v - 2)$.

<u>Proof</u> The group G has two orbits on unordered triples of distinct points, namely on collinear triples and non-collinear triples and there are m = v(v - 1)(q - 1)/6 collinear triples. By [2, Proposition 1.3] the condition for a 3-design is that the number of collinear triples in B is $\binom{k}{3}m/\binom{v}{3}$.

Example 5.6 If G = PGL(3,7) then the number of collinear triples in B is c = k(k - 1)(k - 2)/55 and so k is 11,12,22,35,45, or 46. An example with k = 11 can be constructed as follows: Note that B must contain c = 18 collinear triples in this case. Let 0 be an oval in PG(2,7), that is a set of 8 points with no three collinear. Let $\alpha_1, \alpha_2 \in 0$, let ℓ be the line through α_1 and α_2 , and let $\alpha_3, \alpha_4, \alpha_5, \alpha_6$ be four distinct points on $\ell - \{\alpha_1, \alpha_2\}$. Set $B = \{\alpha_3, \alpha_4, \alpha_5, \alpha_6\} \cup (0 - \{\alpha_1\})$. Then |B| = 11. The only collinear triples in B containing at least two points of B - 0 are triples from $\{\alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6\} \subseteq \ell$ and there are 10 of these. The only other collinear triples in B contain one point of B - 0 and two points of 0 (that is they are on secant lines to 0 different from ℓ and passing through one of $\alpha_3, \alpha_4, \alpha_5, \alpha_6$), and there are 8 of these, two containing each of $\alpha_3, \alpha_4, \alpha_5$ and α_6 . Thus (X, B^G) is a block-transitive $3-(57, 11, \lambda)$ design, for some λ , admitting G.

Similarly there is an example with k = 12 and c = 24constructed as follows. Let β be a point not on 0 or ℓ such that the lines through β and α_1 and through β and α_2 are both secant lines to 0 (see Figure 1). Choose α_3 and α_4 on ℓ such that the lines through β and α_3 and through β and α_4 are both tangent lines to 0. Finally choose α_5 such that the line through β and α_5 is a secant line to 0 and choose α_6 such that the line through β and α_6 is an external line to 0.

Let $B = \{\alpha_3, \alpha_4, \alpha_5, \alpha_6, \beta\} \cup (0 - \{\alpha_1\})$. Then |B| = 12. There are 10 collinear triples in B containing 3 points of ℓ . There are 7 collinear triples in B containing β , namely each of $\alpha_2, \alpha_3, \alpha_4$ lies in one such triple and there are 4 triples in B on the line through β and α_5 . The remaining triples lie on secant lines to 0 not on β , and contain two points of $0 - \ell$ and one point of $\ell - 0$: each of α_3, α_4 and α_6 lie on two such triples, and α_5 lies on one such triple. Thus B contains 24 collinear triples and so (X, B^G) is a block-transitive $3 - (57, 12, \lambda)$ design, for some λ , admitting G.

References

- 1. R.E. Block, On the orbits of collineation groups, Math. Zeit., 96(1967), 33-49.
- 2. P.J. Cameron and C.E. Praeger, Block-transitive designs. I: pointimprimitive designs, Discrete Math. (submitted).
- 3. P.J. Cameron, C. O'Keefe, C.E. Praeger, and T. Penttila, in preparation.
- M.W. Liebeck, C.E. Praeger and J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra 111(1987), 365-383.
- M.W. Liebeck, C.E. Praeger and J. Saxl, On the O'Nan-Scott Theorem for finite primitive permutation groups, J. Austral. Math. Soc(A) 44(1988), 389-396.
- D.K. Ray-Chaudhuri and R.M. Wilson, On t-designs, Osaka J. Math. 12(1975), 737-744.

