Block-transitive designs and maximal subgroups of finite symmetric groups.

Cheryl E. Praeger
Department of Mathematics University of Western Australia
Nedlands WA 6009
Australia

1. Introduction

A $t-(\mathrm{v}, \mathrm{k}, \lambda)$ design is a pair $\mathcal{D}=(\mathrm{X}, \mathcal{B})$, where X is a set of v points, and \mathcal{B} is a set of k-element subsets of X called blocks, such that any t points are contained in exactly λ blocks, where $\lambda>0$. Such a design is called trivial if \mathcal{B} consists of all the k-element subsets of X. An automorphism of a design D is a permutation of the point set X which fixes \mathcal{B} setwise (in its induced action on k-element subsets of X). In this paper we discuss some construction methods for block-transitive t-designs, that is for t-designs \mathcal{D} for which the group of automorphisms of \mathscr{D} is transitive on the block set \mathcal{B}. Let $\mathcal{D}=(\mathrm{X}, \mathcal{B})$ be a $t-(\mathrm{v}, \mathrm{k}, \lambda)$ design with automorphism group G. By a result of R.E. Block [1] the number of G-orbits in \mathscr{B} is greater than or equal to the number of G-orbits in X. In particular if G is block-transitive then G is also point-transitive, that is G is a transitive subgroup of the symmetric group Sym (X) on X . Suppose now that \mathcal{D} is block-transitive. It was shown in [2, Proposition 1.1] that, for any over-group H of G in Sym (X), the possibly larger family $\mathcal{B}^{*}=\left\{\mathrm{B}^{\mathrm{h}} \mid \mathrm{B} \in \mathcal{B}, \mathrm{h} \in \mathrm{H}\right\}$ of k-element subsets of X is also the block set of a $t-\left(v, k, \lambda^{*}\right)$ design $\mathscr{D}^{*}=\left(\mathrm{X}, \mathscr{B}^{\dot{B}^{*}}\right)$ for some $\lambda^{\lambda^{*}} \geq \lambda$. The design $\hat{D}^{\dot{(1}}$ is also block-transitive with automorphism group containing H. If H is
k-homogeneous on X, that is if H is transitive on the k-element subsets of X, then D^{*} will be a trivial design, while if H is not k-homogeneous on X then D^{*} will be nontrivial. Consider the problem:

Problem. Given positive integers t, v, k, decide whether there exists a nontrivial block-transitive $t-(v, k, \lambda)$ design for some $\lambda>0$.

According to our discussion, one way of deciding this is to check, for each maximal non- k-homogeneous subgroup H of $\operatorname{Sym}(X)$ and for each H-orbit \mathcal{B} on k-element subsets, whether (X, \mathcal{B}) is a t-design. This decision can be made by examining a single k-subset B of \mathcal{B} as follows: Let Q_{1}, \ldots, Q_{m} be the H-orbits on t-element subsets of X, and for each $i=1, \ldots, m$ let q_{i} be the number of t-element subsets of B which belong to Q_{i}. Then, by [2, Proposition 1.3], (X, $\left.\mathcal{B}\right)$ is a t-design if and only if

$$
\begin{equation*}
\frac{q_{1}}{\left|Q_{1}\right|}=\frac{q_{2}}{\left|Q_{2}\right|}=\ldots=\frac{q_{m}}{\left|Q_{m}\right|} \tag{1}
\end{equation*}
$$

According to the 0^{\prime} Nan-Scott Theorem (see [5]) the maximal transitive subgroups G of S_{V} are of one of the following types:

1. imprimitive: $G=S_{c} w r S_{d}$, where $v=c d, c>1, d>1$;
2. affine: $\quad G=\operatorname{AGL}(\mathrm{d}, \mathrm{p})$, where $v=\mathrm{p}^{\mathrm{d}}, \mathrm{p}$ is a prime and $d \geq 1$;
3. product: $G=S_{c}$ wr S_{d}, where $v=c^{d}, c \geq 5, d>1$;
4. simple diagonal: $G=T^{d}\left(\right.$ Out $T \times S_{d}$), where $v=|T|^{d-1}$, T is a nonabelian simple group and $\mathrm{d}>1$;
5. almost simple: $T \leq G \leq$ Aut T, where T is a nonabelian simple group.
The imprimitive case has been studied at length in [2]. In this paper we examine the other cases in the hope of discovering interesting families of t-designs. First we note that if G is t-homogeneous on X, then, for every subset B of X of size at least t, the pair
($\mathrm{X}, \mathrm{B}^{G}$) will be a block transitive t -design, and will be a nontrivial design as long as G is not $|B|$-homogeneous. Thus we shall always assume that G is not t-homogeneous. The paper [3] investigates block-transitive and flag-transitive t-designs with large t. (Recall that a flag in a design is an incident point-block pair.) It follows from a theorem of Ray-Chaudhuri and Wilson [6] that a block-transitive automorphism group of a t-design is $\lfloor t / 2\rfloor$-homogeneous on points, and a flag-transitive automorphism group of a t-design is $\lfloor(t+1) / 2\rfloor$-homogeneous on points. It is shown in [3] that there are no nontrivial block-transitive 8 -designs and no nontrivial flag-transitive 7-designs. In this paper we shall concentrate on t-designs for small t (usually $t=2$ or $t=3$) and shall examine the possible automorphism groups type by type.

Further if $\left(X, B^{G}\right)$ is a block-transitive t-design then also $\left(X,(X-B)^{G}\right)$ is a block-transitive t-design, so we may assume that $t<k \leq v / 2$.
2. The affine case.

Let $G=\operatorname{ACL}(d, p)<\operatorname{Sym}(X)$ where $v=|X|=p^{d}, p$ is prime and $d \geq 1$. Then G is 2 -transitive, and, if $p=2, G$ is 3 -transitive. Thus we shall look for 3 -designs when p is odd and for 4-designs when $p-2$. A search for block-transitive and flag-transitive 5-designs admitting AGL(d,2) is described in [3].

Now let p be an odd prime and consider the case $d \geq 2$. Then G has 2 orbits on 3-element subsets of X, namely the sets Q_{1} and Q_{2} of collinear triples and non-collinear triples respectively. By [2, Proposition 1.3], for a k-element subset B of $X,\left(X, B^{G}\right)$ is a 3 -design if and only if $q_{1} /\left|Q_{1}\right|=q_{2} /\left|Q_{2}\right|$ where q_{1}, q_{2} are the numbers of collinear and non-collinear triples in B respectively. Moreover $q_{1}+q_{2}=\binom{k}{3}$ so we have the following result.

Lemma 2.1. If $G=\operatorname{AGL}(\mathrm{d}, \mathrm{p}) \leq \operatorname{Sym}(\mathrm{X})$ with $\mathrm{d} \geq 2$ and p an odd prime, and if B is a k-element subset of X, where $k \geq 3$, then the pair $\left(X, B^{G}\right)$ is a block-transitive 3 -design if and only if the number
q_{1} of collinear triples in B is

$$
\frac{k(k-1)(k-2)(p-2)}{6\left(p^{d}-2\right)}
$$

It seems unlikely that a large family of 3-designs of this type will be found as the divisibility condition seems so difficult to satisfy. If u is a prime dividing $p^{d}-2$ then u is odd and so u divides at most one of $k, k-1$ and $k-2$. If, in particular, $p^{d}-2=u^{a}$ then, when $k \leq p^{d} / 2, u$ must be a divisor of $p-2$. From these observations it follows for example that when $p=3$ we must have $\mathrm{d} \geq 7$ and $3^{7}-2=5.19 .23$. Is there a block-transitive $3-\left(3^{7}, k, \lambda\right)$ design of this type?

If $G=\operatorname{AGL}(d, 2)$ with $d \geq 3$ then G has 2 orbits on 4 -element subsets of X, namely affine planes, and non-coplanar 4-sets. Applying [2, Proposition 1.3] we have

Lemma 2.2. If $G=\operatorname{AGL}(d, 2)$ with $d \geq 3$ and if $B \subseteq X$ with $|B|=k \geq 4$ then the pair $\left(X, B^{G}\right)$ is a block-transitive 4-design if and only if the number q of affine planes in B is

$$
\frac{k(k-1)(k-2)(k-3)}{24\left(2^{d}-3\right)}
$$

This situation has been studied in more detail in [3] which looks at the problem of classifying all flag-transitive 5 -designs. It is shown there that, for $G=\operatorname{AGL}(d, 2),\left(X, B^{G}\right)$ is a 4 -design if and only if $\left(X, B^{G}\right)$ is a 5 -design, a very surprising result. From the divisibility condition above it follows that $d \geq 8$, and if $d=8$ then the only integers k satisfying the divisibility condition are $23,24,25,46,47,69,209,210,232,233$. If the design is assumed to be flag-transitive then k must divide $|G|$ and so k is 24,25 , or 210. Moreover it is shown in [3] that there is indeed a flag-transitive $5-\left(2^{8}, 24, \lambda\right)$ design (where $\lambda=2^{24} \cdot 3^{2} \cdot 5^{2} \cdot 7.31$) related to the extended Golay code, and there are no flag-transitive designs with $k=25$ or $k=210$.
3. The product action case.

Consider the wreath product $G=S_{c} w r S_{d}$ in product action on X, that is $V=|X|=c^{d}$ and X is identified with Y^{d} where Y is a set of size c. Since we want G to be maximal in Sym(X) we have $c \geq 5$ and $d \geq 2$. Now G has d orbits on unordered pairs of points of X, namely Q_{1}, \ldots, Q_{d}, where $\{x, y\} \in Q_{i}$ if and only if x and y differ at exactly i entries, for $i=1, \ldots, d$. The following criterion for a 2 -design follows immediately from [2, Proposition 1.3].

Lemma 3.1. Let $G=S_{c}$ wr $S_{d} \leq \operatorname{Sym}(X)$, where $X=Y^{d},|Y|=c$, and let $B \subseteq X$ be such that, for $1 \leq i \leq d, q_{i}$ unordered pairs of points of B belong to Q_{i}, where $|B|=k$ and $\Sigma q_{i}=\binom{k}{2}$. Then (X, B^{G}) is a 2 -design if and only if,

$$
\frac{q_{1}}{\binom{d}{1}(c-1)}=\frac{q_{2}}{\binom{d}{2}(c-1)^{2}}=\ldots=\frac{q_{d}}{\binom{d}{d}(c-1)^{d}}
$$

In the case $\mathrm{d}=2$ this lemma leads to a simple construction principle. When $d=2$, the points of X are ordered pairs of elements from the set Y of size c, and the $k-s e t B$ can be interpreted as the edge set of a directed graph with vertex set Y. Note that loops are allowed. For an edge $e=\left(y, y^{\prime}\right)$ the first entry y will be called the tail and the second entry y^{\prime} the head of e. The conditions given by Lemma 3.1 under which (X, B^{G}) is a 2 -design reduce to just one equation:

$$
q_{1}=\frac{k(k-1)}{c+1}
$$

Thus we have the following:

Theorem 3.2. Let $D=(Y, B)$ be a directed graph with vertex set Y of size c and edge set $B \subseteq Y \times Y$ of size k. Then the set of all images of B under the group $G=S y m(Y) w r S_{2}$ is the set of blocks of a 2-design if and only if the number of unordered pairs of edges of B with a common head or a common tail is exactly $k(k-1) /(c+1)$. Moreover the design will be flag-transitive if and only if the automorphism group of the directed graph D is edge-transitive.

Construction 3.3. Let $D_{0}=\left(X_{0}, B\right)$ be a directed graph with vertex set X_{0} of size c_{0}, no isolated vertices and with k edges such that the number q of unordered pairs of edges of D_{0} having a common head or a common tail is a divisor of $k(k-1)$. Then, provided $c=\frac{k(k-1)}{q}-1 \geq c_{0}$, the digraph $D=(X, B)$ obtained from D_{0} by adding $c-c_{0}$ isolated vertices gives rise to a 2 -design as described in Theorem 3.2.

Example 3.4. Let $k=2 s \geq 6$ and let $D_{0}=\left(\mathbb{Z}_{s}\right.$, B) be an "undirected" cycle of length s, that is $B=\left\{(i, i+1) \mid i \in \mathbb{Z}_{s}\right\} \cup\left\{(i+1, i) \mid i \in \mathbb{Z}_{s}\right\}$. Then the number of pairs of edges sharing a head or a tail is s which divides $k(k-1)=2 s(2 s-1)$. Then adding $3(s-1)$ isolated vertices yields a flag-transitive $2-\left((2 k-3)^{2}, k, \lambda\right)$ design for some λ.

It is difficult to obtain a general construction for large d as the number of restrictions on the parameters increases. However one necessary condition is the following.

Corollary 3.5. With the notation of Lemma 3.1, a necessary condition for $\left(X, B^{G}\right)$ to be a 2-design is that $d\binom{k}{2}$ is divisible by $\left(c^{d}-1\right) /(c-1) . \quad\left(\operatorname{In}\right.$ fact $\left.q_{1}=d\binom{k}{2} /\left(\left(c^{d}-1\right) /(c-1)\right).\right)$

Proof. By Lemma 3.1, $\quad q_{i}=\binom{d}{i}(c-1)^{i-1} q_{1} / d$ and $\binom{k}{2}=\sum_{i=1}^{d} q_{1}=q_{1}\left(\sum_{i=1}^{d}\binom{d}{i}(c-1)^{i}\right) /(c-1) d=q_{1}\left(c^{d}-1\right) /(c-1) d$.

Thus d $\binom{k}{2}$ is divisible by $\left(c^{d}-1\right) /(c-1)$.

It may be helpful to use the language of coding theory to describe the situation here. If the set Y is taken as the set \mathbb{Z}_{c} of integers modulo c then $\{x, y\} \in Q_{i}$ if and only if $x-y$ has weight i, that is has exactly i nonzero entries. Thus B contains q_{i} unordered pairs $\{x, y\}$ with $x-y$ of weight i for $i=1, \ldots, d$. Since G is transitive on X we may assume that $\underline{\sim}=(0, \ldots, 0) \in B$. Then, if $\left(X, B^{G}\right)$ is a flag-transitive 2 -design,
there are $2 q_{i} / k$ pairs $\{\underline{0}, y)$ in B with $y=y-\underline{0}$ of weight i, that is there are $2 q_{i} / k$ elements of $B-\{\underline{0}\}$ of weight i.

Theorem 3.6. Let $G=S_{c}$ wr $S_{d} \leq \operatorname{Sym}(X)$ where $X=\mathbb{Z}_{c}^{d}$, and let B be a k-element subset of X containing $\underline{0}=(0, \ldots, 0)$. Then (X, B^{G}) is a flag-transitive 2 -design if and only if
(i) the setwise stabilizer G_{B} of B is transitive on B, and
(ii) for each $1 \leq i \leq d$ there are $2 q_{i} / k$ elements of $B-(\underline{O})$ of weight i, where $q_{i}=\binom{d}{i}(c-1)^{i-1} q_{1} / d$ $=\binom{k}{2}\binom{d}{i}(c-1)^{i} /\left(c^{d}-1\right)$.

Proof. If $\left(X, B^{G}\right)$ is a flag-transitive 2 -design then G_{B} is transitive on B, and, by Lemma 3.1 and Corollary 3.5, the parameters q_{1} are as in (ii). So, by the discussion above (ii) is true.
Conversely if (i) and (ii) are true then B contains q_{i} pairs in Q_{i} with q_{i} as in Lemma 3.1. Hence $\left(X, B^{G}\right)$ is a 2-design, and, as G_{B} is transitive on $B,\left(X, B^{G}\right)$ is a flag-transitive design.

The conditions for a flag-transitive 2 -design in this case are very restrictive: by Corollary $3.5, k-1=\left(\frac{2 q_{1}}{k}\right) \cdot\left(\frac{c^{d}-1}{c-1}\right) \cdot \frac{1}{d}$ $\geq\left(c^{d}-1\right) / d(c-1)$, that is the block size is very large.

Question 3.7. Are there any flag-transitive (or even block-transitive) $\overline{2-}\left(c^{d}, k, \lambda\right)$ designs admitting S_{c} wr S_{d} with $d \geq 3$?
4. The simple diagonal case

Let $G=T^{\ell}$. (Out $T \times S_{\ell}$) $\leq \operatorname{Sym}(X)$ act on X in its diagonal action, where T is a nonabelian simple group and $\ell \geq 2$. Let $N=T^{\ell}<G$, and let $D=\{\underline{t}=(t, \ldots, t) \mid t \in T\}$ be the natural diagonal subgroup of N. Then X can be identified with the set of right cosets of D in N with N acting by right multiplication. If $\alpha=\mathrm{D}$ is the trivial coset then ${ }_{\alpha}=A u t \mathrm{~T} \times \mathrm{S}_{\ell}$ and $\mathrm{G}=\mathrm{NG}{ }_{\alpha}$. Elements of Aut T act on X by conjugation and elements of S_{ℓ} act by permuting the entries of coset representatives \underline{x} of cosets $D \underline{x}$.

It is very unlikely that there will be any interesting 2 -designs arising from this family of groups as G acting on pairs of points has many orbits in general. Perhaps it is worth saying a little about the simplest case, namely the case $\ell=2$. Here each coset of D in N has a unique representative with first entry 1_{T} and so we may identify X with T. With this identification, $\alpha=1_{T}$, and for $\mathrm{x} \in \mathrm{X}=\mathrm{T}$, elements $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \in \mathrm{N}, \sigma \in$ Aut $\mathrm{T} \leq \mathrm{G}_{\alpha}$, and $\tau=(12) \in \mathrm{S}_{2} \leq \mathrm{G}_{\boldsymbol{\alpha}}$ act as follows.

$$
\begin{aligned}
\left(t_{1}, t_{2}\right) & : \mathrm{x} \longrightarrow \mathrm{t}_{1}^{-1} \mathrm{x} \mathrm{t}_{2} \\
\sigma & : \mathrm{x} \longrightarrow \mathrm{x}^{\sigma} \\
\tau & : \mathrm{x} \longrightarrow \mathrm{x}^{-1}
\end{aligned}
$$

The orbits of G on unordered pairs from X correspond to "fusion" classes of elements of T, where the fusion class $\mathscr{F}(x)$ of x is $\mathscr{F}(\mathrm{x})=\left\{(\mathrm{x})^{\epsilon \sigma} \mid \sigma \in\right.$ Aut $\left.\mathrm{T}, \epsilon= \pm 1\right\}:\{\mathrm{x}, \mathrm{y}\}$ and $\left\{\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right\}$ are in the same orbit on pairs if and only if $x^{-1} y$ and $\left(x^{\prime}\right)^{-1} y^{\prime}$ are in the same fusion class. Let the fusion classes be $F_{1}=\left\{1_{T}\right\}, \ldots, F_{s}$, let B be a k-element subset of T and let f_{i}, be the number of unordered pairs of elements of B lying in F_{i}, for $i=1, \ldots, s$. Then by $[2$, Proposition 1.3], (X, B^{G}) is a 2 -design if and only if $f_{i} /\left|F_{i}\right|=E$ is independent of i (for $i=1, \ldots, s$). Note that $\binom{k}{2}=\Sigma f_{i}=E \Sigma\left|F_{i}\right|=E(|T|-1)$, so that k cannot be much smaller than $|T|^{1 / 2}$. Suppose now that G acts flag-transitively on $\left(X, B^{G}\right)$. Then k divides $|G|$, and hence $(|T|-1) / y$ divides $k-1$ where y is the greatest common division of $|T|-1$ and $|G|$. Since $k<v=|T|$ it follows that $y>1$. Now $y=(|T|-1, \mid$ out $T \mid)$ and it follows that T is a group of Lie type over a field of order p^{a} for some prime p and positive integer a, and y divides the odd part a^{\prime} of a. Thus we have $k=1+z$ $(|T|-1) / y$ for some $1 \leq z<y$. This means, on the one hand, that $k>|T| / a^{\prime}$, and on the other hand that $(k,|T|)$ divides ($z-y,|T|$), whence $(k,|G|)$ divides $2(z-y)^{2} \mid$ out $T \mid$. Since k divides $|G|$ it follows that $|T| / a^{\prime}<k<2\left(a^{\prime}\right)^{2} \mid$ out $T \mid$. Thus $|T|<2\left(a^{\prime}\right)^{3}$ |out $T \mid$, and the only group satisfying this inequality is $T=\operatorname{PSL}(2,8)$, but for this group $y=1$. Thus G is never flag-transitive on (X, B^{G}).

Theorem 4.1. If $G=T^{2}$ (Out $T \times S_{2}$) $\leq \operatorname{Sym}(T)$ in simple diagonal action, where T is a nonabelian simple group, then G does not act flag-transitively on any nontrivial 2 -design with point set T.

Question 4.2. Can $G=T^{2}$ (Out $T \times S_{2}$) act block-transitively on a nontrivial 2 -design with point set T ?
5. The almost simple Case.

This case is the most difficult to discuss as the maximal almost simple subgroups of Sym (X) are only very loosely classified in [4]. There may be interesting classes of block-transitive 2-designs admitting primitive almost simple groups of small rank $\ell \geq 3$. For example in the rank 3 case we have:

Lemma 5.1. Let $G \leq \operatorname{Sym}(X)$ be a primitive rank 3 group of degree v such that, for $x \in X, G_{x}$ has a self-paired orbit $\Gamma(x)$ in $X-\{x\}$ of length m. Let B be a k-element subset of X and let q be the number of unordered pairs (x, y) of points of B such that $y \in \Gamma(x)$ (or equivalently $x \in \Gamma(y)$). Then $\left(X, B^{G}\right)$ is a block-transitive 2 -design if and only if $q=\binom{k}{2} \mathrm{~m} /(v-1)$.

In [2, Example 1.4] a construction of 2-designs was given based on the rank 3 groups $G=S_{n}$ acting on $v=\binom{n}{2}$ unordered pairs from a set Y of size n. In this case the set B can be interpreted as the edge set of a graph with vertex set Y having k edges. A 2 -design was obtained if and only if the number of (unordered) pairs of edges of (Y, B) sharing a common vertex was $2 k(k-1) /(n+1)$, and the design was flag-transitive if and only if the automorphism group of (Y, B) was edge-transitive.

Other classes of rank 3 groups may give similar constructions. For example the groups $G=\operatorname{PrL}(n, q), n \geq 4$, induce a primitive rank 3 action on the set of lines of the projective geometry $\operatorname{PG}(\mathrm{n}-1, q)$.

Theorem 5.2. Let $G=\operatorname{PrL}(\mathrm{n}, \mathrm{q}), \mathrm{n} \geq 4$, act on the set X of lines of $\operatorname{PG}(n-1, q)$, and let B be a k-element subset of X. Then (X, B^{G}) is a block-transitive 2-design if and only if the number of
unordered pairs of intersecting lines in B is $\binom{k}{2}(q+1)^{2}(q-1) /$ $\left(q^{n}+q^{2}-q-1\right)$.

Proof. Now $v=|X|=\left(q^{n}-1\right)\left(q^{n-1}-1\right) /\left(q^{2}-1\right)(q-1)$ so $v-1=q\left(q^{n-2}-1\right)\left(q^{n}+q^{2}-q-1\right) /\left(q^{2}-1\right)(q-1)$. Also the number of lines intersecting a given line is $m=q\left(q^{n-2}-1\right)(q+1) /(q-1)$. The result now follows from Lemma 5.1.

When considering primitive groups of rank greater than 3 the number of conditions to be satisfied increases and the problem of finding 2 -designs becomes more difficult. We give just one example.

Theorem 5.3. Let $G=S_{n}$, the symmetric group on a set Y of size n and consider the primitive rank $s+1$ action of G on the set X of $v=\binom{n}{s} s$-element subsets of Y where $3 \leq s \leq n / 2$. Let B be a k-element subset of X. Then $\left(X, B^{G}\right)$ is a block-transitive 2-design if and only if, for each $i=1, \ldots, s-1$, the number q_{i} of unordered pairs of elements of B which intersect in exactly i elements of Y is

$$
q_{i}=\frac{k(k-1)\binom{s}{i}\binom{n-s}{s-i}}{2\left(\binom{n}{s}-1\right)}
$$

Proof The group G has s orbits Q_{0}, \ldots, Q_{S-1} on unordered pairs of s-subsets of Y, namely Q_{i} consists of pairs which intersect in exactly i points of Y, for $0 \leq i \leq s-1$. By [2, Proposition 1.3], (X, B^{G}) is a block-transitive 2 -design if and only if $q_{0} /\left|Q_{0}\right|=\ldots=q_{s-1} /\left|Q_{s-1}\right|=x$ say. \quad Then $\binom{k}{2}=\Sigma q_{i}=x \Sigma\left|Q_{i}\right|=x\binom{v}{2}$ and so these equations are equivalent to the equations $q_{i}=x\left|Q_{i}\right|=\binom{k}{2}\left|Q_{i}\right| /\binom{v}{2}$ for each $i=1, \ldots, s-1$, (since q_{0} is determined by $\left.\binom{k}{2}=\Sigma q_{i}\right)$. This yields the result since $\left|Q_{i}\right|=v\binom{s}{i}\binom{n-s}{s-i} / 2$ for $i=0,1, \ldots, s-1$.

Example 5.4 Taking $s=3$, we may interpret X as the set of triangles (cycles of length 3) of the complete graph with vertex set
Y, and we may interpret B as the set of triangles of a graph with vertex set Y having k triangles. Then, by Theorem 5.3, (X, B^{G}) is a 2-design if and only if the number q_{2} of points of triangles in B sharing an edge is $3 k(k-1)(n-3) / 2(v-1)=9 k(k-1) /\left(n^{2}+2\right)$ and the number q_{1} of pairs of triangles in B with a single vertex in common is $3 k(k-1)\binom{n-3}{2} / 2(v-1)=9 k(k-1)(n-4) / 2\left(n^{2}+2\right)$.

On the other hand if G is 2 -transitive then we should be looking for t-designs with $t \geq 3$. We do this for the projective linear groups below.

Theorem 5.5 Consider $G=\operatorname{PrL}(n, q), n \geq 3$, acting on the set X of $v=\left(q^{n}-1\right) /(q-1)$ points of the projective geometry $P G(n-1, q)$, and let B be a k-elelment subset of X. Then $\left(X, B^{G}\right)$ is a block-transitive 3 -design if and only if the number of (unordered) collinear triples of points in B is
$k(k-1)(k-2)(q-1)^{2} / 6\left(q^{n}-2 q+1\right)$
$=k(k-1)(k-2)(q-1) / 6(v-2)$.

Proof The group G has two orbits on unordered triples of distinct points, namely on collinear triples and non-collinear triples and there are $m=v(v-1)(q-1) / 6$ collinear triples. By [2, Proposition 1.3] the condition for a 3-design is that the number of collinear triples in B is $\binom{k}{3} m /\binom{v}{3}$.

Example 5.6 If $G=\operatorname{PGL}(3,7)$ then the number of collinear triples in B is $c=k(k-1)(k-2) / 55$ and so k is $11,12,22,35,45$, or 46 . An example with $k=11$ can be constructed as follows: Note that B must contain $c=18$ collinear triples in this case. Let 0 be an oval in $P G(2,7)$, that is a set of 8 points with no three collinear. Let $\alpha_{1}, \alpha_{2} \in 0$, let ℓ be the line through α_{1} and α_{2}, and let $\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$ be four distinct points on $\ell-\left\{\alpha_{1}, \alpha_{2}\right\}$. Set $B=\left\{\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\} \cup\left(0-\left(\alpha_{1}\right)\right)$. Then $|B|=11$. The only collinear triples in B containing at least two points of $B-0$ are triples
from $\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\} \subseteq \ell$ and there are 10 of these. The only other collinear triples in B contain one point of $B-0$ and two points of 0 (that is they are on secant lines to 0 different from ℓ and passing through one of $\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$), and there are 8 of these, two containing each of $\alpha_{3}, \alpha_{4}, \alpha_{5}$ and α_{6}. Thus (X, B^{G}) is a block-transitive $3-(57,11, \lambda)$ design, for some λ, admitting G.

Similarly there is an example with $k=12$ and $c=24$
constructed as follows. Let β be a point not on 0 or ℓ such that the lines through β and α_{1} and through β and α_{2} are both secant lines to 0 (see Figure 1). Choose α_{3} and α_{4} on ℓ such that the lines through β and α_{3} and through β and α_{4} are both tangent lines to 0 . Finally choose α_{5} such that the line through β and α_{5} is a secant line to 0 and choose α_{6} such that the line through β and α_{6} is an external line to 0 .

Figure 1

Let $B=\left\{\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \beta\right) \cup\left(0-\left(\alpha_{1}\right)\right)$. Then $|B|=12$. There are 10 collinear triples in B containing 3 points of ℓ. There are 7 collinear triples in B containing β, namely each of $\alpha_{2}, \alpha_{3}, \alpha_{4}$ lies in one such triple and there are 4 triples in B on the line through β and α_{5}. The remaining triples lie on secant lines to 0 not on β, and contain two points of $0-\ell$ and one pointof $\ell-0$: each of α_{3}, α_{4} and α_{6} lie on two such triples, and α_{5} lies on one such triple. Thus B contains 24 collinear triples and so $\left(X, B^{G}\right)$ is a block-transitive $3-(57,12, \lambda)$ design, for some λ, admitting G.

References

1. R.E. Block, On the orbits of collineation groups, Math. Zeit., 96(1967), 33-49.
2. P.J. Cameron and C.E. Praeger, Block-transitive designs. I: pointimprimitive designs, Discrete Math. (submitted).
3. P.J. Cameron, C. O'Keefe, C.E. Praeger, and T. Penttila, in preparation.
4. M.W. Liebeck, C.E. Praeger and J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra 111(1987), 365-383.
5. M.W. Liebeck, C.E. Praeger and J. Saxl, On the O'Nan-Scott Theorem for finite primitive permutation groups, J. Austral. Math. Soc(A) 44(1988), 389-396.
6. D.K. Ray-Chaudhuri and R.M. Wilson, On t-designs, Osaka J. Math. 12(1975), 737-744.
