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ABSTRACT 

We consider the problem of determining for which integers k and n can 

a minimum k-perfect covering on n points be embedded in the real projective 

plane. 

1. Introduction 

A pairwise balanced design (PBD) is a pair ,B) X is set of 

points and B is a collection of subsets of (called that 

given any unordered pair x,y of distinct points there is exactly one block 

that contains them both. A PBD with n points in which max( Ibl :bEB} = k<n 

is called a k-perfect covering of n points. A k-perfect covering (X,B) on 

n points is called minimum if ·for any k-perfect covering (X, B') we have 

I B I :c; I B' I; the number I B I is denoted by g (k) (1,2 ;n), or sometimes j\,lst 

g(k) (n) 

A collection X of n points in the real plane determines (in the 

obvious way) a PBD: the members of B are the lines (called connecting 

lines) determined by all pairs of points from X. We will call such a 

system a plane PBD. A pairwise balanced design (X,B) will be called planar 

if there is point-to-point incidence preserving bijection a: (X,B)-+(X' ,B') 

where (X', B') is a plane PBD. The problem with which we are herein 
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concerned is the following: for which k and n does there exist a minimum 

k-perfect covering on n points which is planar? 

The study of systems of connecting lines in the plane has a long 

history (see e.g. [6J). Early geometers were particularly interested in 

determining the number of ordinary lines, i.e. connecting lines containing 

exactly two points of the system, that must be present. In 1893 Sylvester 

conj ectured that there must be at least one such line; it took half a 

century before Gallai finally settled the conjecture in the affirmative. 

The best result to date is due to Hansen (see Moser [6]): 

Theorem 1.1 Given n points in the plane, not all collinear, where 

1 
n ~ 7,13, there are at least i n ordinary lines among the connecting lines 

determined by the points. 

Indeed, Hansen's result is best possible when n is even, for B6r6czky 

had produced configurations containing exactly ~ n ordinary lines (see 

Crowe and McKee [3]). 

Hansen's theorem is of fundamental importance to us here, for it 

implies: 

Corollary 1.2 If (X,B) is a planar PBD on n points, IBI > 1 and n ~ 

1 7,13, then there are at least in blocks each of which contains exactly 

two points of X. 

A considerable amount of work has been done on determining the 

behavior of the function g(k)(n) (see e.g. [12], [10), [11]). We will 

make reference to specific results as the need arises. 

Before proceeding, we'll motivate our study with a simple example. 

It is known that g(3)(7) = 7; the (unique) design achieving this bound is 

the plane of order 2: 
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Blocks: 1 2 4 
2 3 5 
3 4 6 
4 5 7 
5 6 1 
6 
7 1 3 

Figure 1 

Every block in this design contains three points , and so this design 

cannot be planar. If we dismantle the block 672 into its constituent 

pairs we do get a planar design: 

Lines: 1 2 4 
2 5 
3 4 6 
4 7 
5 6 1 
7 1 3 

26,67,72 

Figure 2 

This raises an additional problem: let l(k,n) denote the minimum number 

of connecting lines in a plane PBD on n points, where we require that k of 

the points be collinear but no more than k are collinear. If there is no 

planar minimum k-perfect covering on n points (i.e. if l(k,n) ;o<! g(k)(n» 

then how much larger than g(k)(n) is l(k,n)? The above example shows that 

1(3,7) 9. (Among 7 points there are 21 pairs to be covered. A triple 

covers pairs, and so the number of ordinary lines must be a multiple of 

3.) 
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2. Some cases where there exist planar minimum k-perfect coverings. 

Theorem 2.1 If k = 2, or if ¥ ~ k ~ n-l, then there is a planar minimum 

k-perfect covering of n points, i.e. l(k,n) = g(k)(n). 

(2)() n(n-l) The case k = 2 is trivial; g n = --2-- , and any 2-perfect 

covering is planar--one merely has to generate n points in the plane, no 

three of which are collinear. 

n Now suppose that 2 ~ k ~ n-1 where k ~ 3 (whence n ~ 4). It is known 

that gCk)(n) = 1 +! Cn-k)(3k-n+1), and that any minimum covering consists 

of the one block of size k, and every other block has size 2 or 3 and 

intersects the block of size k (see [8] or [14]). 

Let n-k = t. The cases where t=l or 2 are quite simple; we 

illustrate solutions in Figure 3. 

/ 

Figure 3 
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Now let t ~ 3, and take as our point set the vertices of a regular 

t-gon (in the affine plane) together with any k-subset of the projective 

line Leo which contains the t points determined by the directions of the 

t-gon. (In a plane PBD the directions are the slopes of its lines.) This 

can be done since k ~ t. It is readily verified that the number of 

connecting lines determined by these t+k n points is 

t· + 1 J + (n - 2 t) • t + 1 if tis 0 dd ,or 

~ t • ~ t + ~ t • (~t + 1) + (n-2t)·t + 1 if t is even. 

Recalling that t - n-k 1 we have in alII + 2(n-k) (3k-n+l) lines, i.e. we 

have a (plane) minimum k-perfect covering. 

The configurations constructed above contain (n-k) (2k-n+l) ordinary 

lines; in particular when n = 2k we get k ordinary lines. These are 

exactly the configurations of Boroczky referred to in the introduction. 

Theorem 2.1 gives us a specific class of planar k-perfect coverings 

on n points for the range ¥ ~ k ~ n-l; it is not true in general that 

any minimum covering with these parameters is planar, however. For 

example, there are four non-isomorphic covers for g(6)(lO), corresponding 

to the four different ways of properly edge-coloring the complete graph K4 

with (at most) six colors: 

a,b,c,d,e,f 

a,1,2 b,1,3 c,1,'4 d,l e,l f,l 
a,3,4 b,2,4 c,2,3 d,2 e,2 f,2 

d,3 e,3 f,3 
d,4 e,4 f,4 

Cover I 
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a,b,c,d,e,f 

a,1,2 b,1,3 c,1,4 
a,3,4 b,2,4 c,2 

c,3 

a,b,c,d,e,f 

a,1,2 b,l,3 c,2,4 
a,3,4 b,2 c,l 

b,4 c,3 

a,b,c,d,e,f 

a,1,2 b,3,4 c,1,3 
a,3 b,l c,2 
a,4 b,2 c,4 

d,2,3 
d,l 
d,4 

Cover II 

d,1,4 
d,2 
d,3 

Cover III 

d,2,4 
d,l 
d,3 

Cover IV 

e,l 
e,2 
e,3 
e,4 

e,2,3 
e,l 
e,4 

e,l,4 
e,2 
e,3 

f,l 
f,2 
f,3 
f,4 

f,l 
f,2 
f,3 
f,4 

f,2,3 
f,l 
f,4 

Each of covers II, III and IV is planar (see figure 4). On the other 

hand, cover 1 is not planar since by deleting the points d, e and f from 

this cover we obtain the plane of order 2. In figure 4, and in all 

subsequent figures, we will use a filled circle (.) to denote an affine 

point and a hollow circle (0) to denote a point on the proj ective line 

L 
co 
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Figure 4 

In contrast to Theorem 2.1, consider now the case n = 2k + 1, k ~ 3. 

Theorem 2.2 If n = 2k + 1, k ~ 3 then nQ minimum k-perfect covering is 

planar, i.e., 1(k,2k+l) > g(k)(2k+l). 

If k is odd then g(k)(2k+l) = 1+ ~ (k+l)k (see [8] or [14J) and 

any minimum covering consists of the one block of size k, and every other 

block has size 3 and intersects the block of size k. (Such coverings 

admit to a simple description. Take a one-factorization of the complete 
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graph ~+l and adj oin a new point to the pairs of each of the k 

one-factors; the block of size k is then taken to be the set of new 

points.) Since such a covering contains no blocks of size 2 it cannot be 

planar. 

If k is even then g(k) (2k+l) - 1 + ~ (k+l)k + r~ 1 (see [7]), and 

any minimum covering contains exactly 3r ~ 1 blocks of size 2. Now since 

k 
k ~ 4 we have 2(3r 4 1) < 2k + 1, so that by corollary 1.2 such a covering 

cannot be planar except possibly when k ~ 6. We consider the g(6) (13) 

covers. Any such cover must contain the block of size 6, six blocks of 

size 2, two blocks of size 4 and fifteen blocks of size 3; moreover, 

every block intersects the block of size 6. There are (at least) three 

non-isomorphic covers, which we give below: 

a,b,c,d,e,f 

a,0,1,2 b,O c,0,3,4 d,O e,2 f,3 
8.,3,6 b,2,3 c,2,5 d,l e,S,O f,6,0 
a,4,5 b,1,4 c,1,6 d,4 e,1,3 f,l,S 

b,S,6 d,2,6 e,4,6 f,2,4 
d,3,5 

Cover I (Mullin et al. [7 ]) 

a,b,c,d,e,f 

a,0,l,2 b,O c,O,3,4 d,2 e,O f,l 
a,3,5 b,1,4 c,1,6 d,3 e,1,3 f,2,4 
a,4,6 b 2,3 c,2,5 d,4 e,2,6 f,3,6 

b 5,6 d,l,S e,4,5 f,O,S 
d,0,6 

Cover II (Zhang [16] ) 

a,b,c,d,e,f 

a,O b,0,1,4 c,4 d,4 e,2 f,3 
a,l b,2,6 c,0,2 d,O,6 e,4,5 f,4,6 
a,2,3,4 b,3,5 c,l,S d,l,3 e,0,3 f,O,S 
a,5,6 c,3,6 d,2,5 e,1,6 f,1,2 

Cover III 
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Each of Covers I and II contain exactly one point (namely 0) which is 

contained in exactly two blocks of size Cover III contains two such 

points (a and 4). It is not difficult to show that a cover for g(6)(13) 

~ contain more than two such points. On the other hand, a 

fundamental inequality from Kelly and Moser [5, Theorem 3. 1 implies that 

in .ill:lY 13-point configuration with six ordinary lines there must be at 

least three points, each of which is contained in exactly two ordinary 

lines. Therefore no minimum 6-perfect cover on 13 points can be planar. 

iii 

We remark here that Crowe and McKee [ 1 have produced a l3-point 

configuration containing exactly six ordinary lines. We reproduce their 

design below, for we will refer to it 3. 

Figure 5 

135 



We close this section by remarking that a result analogous to theorem 

2.2 can be proven for n = 2k+2, 2k+3 or 2k+4 and k ~ 4. The covering 

numbers g (k) (n) were determined for all such k and n by Rees in [9]. In 

all cases the minimum covers (necessarily) have insufficiently many blocks 

of size two to be planar. 

3. The cases k 3 and 4 

The covering numbers g(4)(n) were determined for all n ~ 17,18,19 by 

Stanton and Stinson [15]. When n 11 their covers contain at most one 

block of size two. Specifically, when n ~ 2,5,8 or 11 (mod 12) there are 

no blocks of size two, while when n = ,5,8 or 11 (mod 12) there is one 

block of size two. It is not the case that £DY minimum covering has these 

properties however (for example when n 5 or 8 (mod 12) one can see from 

lemma 3.3 in [lSJthat minimum coverings with four blocks of size two can 

be constructed). 

size four) Q(n) 

If one considers the number of quadruples (blocks of 

in the covers one finds that in all cases 

Q(n) ~ D(2,4,n)-L £ J, where D(2,4,n) denotes the maximum number of 

quadruples that can be constructed on n points so that no pair of points 

appears in more than one quadruple (see (1). 

Suppose that we wish to increase the number of blocks of size two 

without increasing the total number of blocks in the cover. Then we 

clearly must also increase the number of blocks of size four, and so 

decrease the number of blocks of size three. The specific conditions 

involved are 

where ~bi denotes the change in the number of blocks of size i (note that 
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we are taking all ~bi to be non-negative). From these equations we get 

whence admissible vectors (~b2' ~b4' ~b3) look like (0,0,0), (3,2,5), 

(6,4,10), etc. But from the preceding discussion it must be that 

~b4 :s L £ J 
whence equation (3.1) gives 

3 L n J 3 ~b2 ~ 2 4 ~ 8 n . 

Therefore any minimum cover will contain at most 1 + ~ n < ~ n blocks of 

size two. 

Values of n ~ 9 are handled in section 2. For n = 10,13 we have 

g(4) (10) = 12 and g(4) (13) = 13 and in each case the (unique) minimum 

cover has no blocks of size two (see [13]). With corollary 1.2 in hand we 

can now summarize the above: 

Theorem 3.1 Let n;?:: 5, n ~ 17,18,19. There is a planar 4-perfect 

covering of n points if and only if n = 5,6,7 or 8; thus if n ;?:: 9 then 

1(4,n) > g(4)(n). 

We now discuss the most challenging case, namely k = The covering 

numbers g(3) (n) have been determined for all n by Stanton, Allston and 

Cowan [14]. We list these values in table 1. An STS(n) (Steiner Triple 

System) is a PBD on n points in which all blocks have size 3; it is 

well-known that there is a STS(n) if and only if n ~ 1 or 3 (mod 6), By an 

FHS(n) we will mean a PBD on n points in which all but four blocks have 

size 3, where these four blocks each have size 2 and form a cycle, i.e. 

are of the form a,b b,c c,d d,a ; such systems were constructed for all 

n = 5 (mod 6) by Fort and Hedlund [4], 
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n g(3)(n) Characteristics of # blocks of size two 
any minimum cover in any minimum cover 

n 1,3 mod 6 
n(n-l) 

STS(n) 0 -6-

n ... 5 mod 6 
n(n-l)+16 

FHS(n) 4 
6 

0,2 mod 6 
(n+l)n 

STS(n+l) with 
1 

n --6- in 
one point deleted 

n 4 mod 6 (n+l)n+4 
FHS(n+l); delete l:.n+l 

6 
one of the points 2 

contained in two 
blocks of size two 

Table 1 

Remark: In each case a minimum cover contains exactly D(2,3,n) 

triples, where D(2,3,n) is defined analogously to the quantity D(2,4,n) 

referred to in the k=4 case. 

~~en n is odd, n ~ 7 it is clear that no minimum cover can be planar. 

When n is even, however, we can no longer use corollary 1.2 to rule out 

planarity. 

A considerable amount of work has been done on a very closely related 

problem, namely the 'orchard', or 'three-in-a-row' problem. This asks for 

the maximum number t(n) of collinear triples possible in any arrangement 

of n points in the plane, a collinear triple meaning here a line 

containing exactly three points. For a comprehensive survey of this 

problem we refer the reader to Burr, Grunbaum and Sloane [2]. The best 

general upper bound on t(n) corresponds to the packing numbers D(2,3,n) 

when n is even, i.e. 

138 



t(n) s { 

n(n-2) 
--6-

n(n-2)-2 
6 

if n 0,2 mod 6 

if n 4 mod 6. 

When n is odd, the best general upper bound on ten) corresponds to 

subtracting from the packing numbers D(2, 3, n) a quantity sufficient to 

allow for Hansen's theorem (Corollary 1.2): 

ten) 

Thus for all 

n(n-l) 
--6-

n(n-l)-8 
6 

n 
6 

if n 1, 3 mod 6 
Cn> 3, n ~ 7,13) 

ifn 5 mod 6 

, n ~ ,13, we have ten) On the other 

hand, one of the main results of Burr et al. was to prove that for all 

n ~ 3, we have (n) ~ 1 + , a remarkably close approximation to 

the upper for ten). Their constructions involved selecting special 

sets of points from of cubic curves. For our purposes 

it is important to notice that, in their constructions, no connecting 

line contains more than three points. The following result then is a 

direct consequence of the foregoing. 

Theorem U For each n > 3, n ~ 7, 13, 

J :5 1 (3, n) :5 [ ~ ) 

In particular, if n the lower bound for 1 (3, n) coincides with 

g(3)(n) from Table 1. It remains a challenging open problem to determine 

Exact 

answers to this question are known only up to n=16. 

Table 2 summarizes the behavior of g(3)(n) and 1(3,n) for 7 ~ n ~ 20. 

The lower and upper bounds on 1(3,n) are from theorem 3.2, and values for 

ten) are taken from Burr et al. [2]. Values for g(3)(n) are as in table 1. 
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Then, in figures 6 through 11, we illustrate configurations on n 

points having 1(3,n) lines for n = 8,9,10,11,12 and 16 (figure 2 

illustrates the unique such configuration for n=7). The ordinary lines 

are indicated by broken lines. The first configuration in each figure is 

taken from Burr et al. (see their Figs. 1 and 6). Note that in each case 

(except for n=12) we have configurations whose lines can be considered as 

being obtained from the blocks of a minimum 3-perfect covering on n points 

by 'dismantling' some triples (in the sense illustrated by figures 1 and 

2). The 16-point configuration is of particular interest since it shows 

1(3,16) g(3) (16). 

n g(3)(n) lower bound upper bound ten) l(3,n 
on 1(3,n) on 1 (3, n) 

7 7 - - 6 9 
8 12 12 14 7 14 
9 12 16 16 10 16 

10 19 19 21 12 21 
11 21 23 25 16 23 
12 26 26 28 19 28 
13 26 - - 22-24 30-34 
14 35 35 39 26-27 37-39 
15 35 41 43 31-32 41-43 
16 46 46 50 37 46 
17 48 52 56 40-42 52-56 
18 57 57 61 46-48 57-61 
19 57 65 69 52-53 65-67 
20 70 70 76 57-60 70-76 

Table 2 

Remark: For values of n > 20 the best known estimates on 1(3,n) are given 

by theorem 3.2. It is worth noting that Burr, Grunbaum and Sloane have 

conjectured that for n ~ 20 their constructions on cubic curves actually 

maximize the number of collinear triples possible on n points, i.e. that 

ten) = 1 + L n(~-3)J. If true, this would imply that 1(3,n) is given by 

the upper bound in theorem 3.2. 
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Figure 6 

Figure 7 
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4. Conclusion. 

Our observations here suggest that planar minimum k-perfect coverings 

n on n points exist only if k is very large (i.e. k ~ 2' ) or very small 

(i.e. k=2 and some cases with k=3). Determining for which n it is true 

that 1(3,n) = g(3)(n) remains an interesting open problem. 
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