The number of \(h \)-strongly connected digraphs with small diameter

Ioan Tomescu

Faculty of Mathematics, University of Bucharest, Str. Academiei, 14, R-70109 Bucharest, Romania
e-mail: ioan@math.math.unibuc.ro

Abstract

Let \(D_s(n; h, d = k) \) denote the number of \(h \)-strongly connected digraphs of order \(n \) and diameter equal to \(k \). In this paper it is shown that:

i) \(D_s(n; h, d = 3) = 4^{\binom{n}{2}} (3/4 + o(1))^n \) for every fixed \(h \geq 1 \);

ii) \(D_s(n; h, d = 4) = 4^{\binom{n}{2}} (2^{-h-2} + 2^{-2} + o(1))^n \) for every fixed \(h \geq 2 \);

iii) \(D_s(n; h, d = k) = 4^{\binom{n}{2}} ((2^{k+1} - 1)2^{-kh+3h-2} + o(1))^n \) for every fixed \(h \geq 1 \) and \(k \geq 5 \).

Similar asymptotic formulas hold for the number of \(h \)-connected digraphs of order \(n \) and diameter equal to \(k \) when \(n \to \infty \). This extends the corresponding results for \(h \)-connected graphs given in a recent paper by the author.

1 Notation and preliminary results

All digraphs in this paper are finite, labeled, without loops or parallel directed edges. By \(K^*_n \) we denote the complete digraph of order \(n \) such that any two distinct vertices \(x \) and \(y \) are joined by two directed edges \((x, y)\) and \((y, x)\). For a digraph \(G \) the outdegree \(d^+(x) \) of a vertex \(x \) is the number of vertices of \(G \) that are adjacent from \(x \) and the indegree \(d^-(x) \) is the number of vertices of \(G \) adjacent to \(x \). For \(h \geq 2 \), we say that a digraph \(G \) is \(h \)-connected (resp. \(h \)-strongly connected) if either \(G \) is a complete digraph \(K^*_{h+1} \) or else it has at least \(h + 2 \) vertices and for any set of vertices \(X \subset V(G) \), \(|X| = h - 1 \), the digraph \(G - X \) is connected (resp. strongly connected). A connected (resp. strongly connected) digraph is also said to be 1-connected (resp. 1-strongly connected). For a strongly connected digraph \(G \) the distance \(d(x, y) \) from vertex \(x \) to vertex \(y \) is the length of a shortest path of the form \((x, \ldots, y)\). The eccentricity of a vertex \(x \) is \(\text{ecc}(x) = \max_{y \in V(G)} d(x, y) \). The diameter of \(G \), denoted
\(d(G)\) is equal to \(\max_{x,y \in V(G)} d(x, y)\) if \(G\) is strongly connected and \(\infty\) otherwise. By \(D_s(n; h, d = k)\) and \(D_s(n; h, d \geq k)\) (resp. \(D(n; h, d = k)\) and \(D(n; h, d \geq k)\)) we denote the number of \(h\)-strongly connected (resp. \(h\)-connected) digraphs \(G\) of order \(n\) and diameter \(d(G) = k\) and \(d(G) \geq k\), respectively.

It is well known [1, p. 131] that almost all digraphs have diameter two and for every fixed integer \(h \geq 1\) almost all graphs are \(h\)-connected. Also in [2] it was proved that for every fixed integer \(h \geq 1\) almost all digraphs are \(h\)-strongly connected. Hence for every \(h \geq 1\) we have:

\[
D_s(n; h, d = 2) = 4^{\binom{2}{h}}(1 + o(1)) \quad \text{and} \quad D(n; h, d = 2) = 4^{\binom{2}{h}}(1 + o(1)).
\]

If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1\) we denote this by \(f(n) \sim g(n)\), or \(f(n) = g(n)(1 + o(1))\). The following results will be useful in the proofs of the theorems given in the next section.

Lemma 1.1 ([4]). The number of bipartite digraphs \(G\) whose partite sets are \(A, B\) \((A \cap B = \emptyset, \ | A | = p, \ | B | = q)\) such that \(d^-(x) \geq 1\) for every \(x \in B\) and all edges are directed from \(A\) towards \(B\) is equal to \((2^p - 1)^q\).

Lemma 1.2 ([4]). We have

\[
D_s(n; 1, d = 3) = 4^{\binom{3}{h}}(3/4 + o(1))^n.
\]

Also we need an asymptotic evaluation of the maximum of an arithmetical function. Let

\[
f(n, h; n_1, \ldots, n_k) = \binom{n}{n_1, \ldots, n_k} 2^{\sum_{i=1}^k \binom{n_i}{2}} \prod_{i=1}^{k-1} (2^{n_i} - 1)^{n_{i+1}}
\]

where \(n_1 + \ldots + n_k = n\), \(n_i \geq h\) for every \(1 \leq i \leq k - 1\) and \(n_k \geq 1\). Let us denote

\[
f(n, k) = \max_D f(n, h; n_1, \ldots, n_k),
\]

where \(D\) is defined by: \(n_1 + \ldots + n_k = n\); \(n_i \geq h\) for every \(1 \leq i \leq k - 1\) and \(n_k \geq 1\).

Theorem 1.3 ([5]). The following equalities hold:

\[
f(n, h, 4) = 2^{\binom{4}{h}}(2^{-h-1} + 2^{-1} + o(1))^n \quad (1)
\]

for every \(h \geq 2\);

\[
f(n, h, k) = 2^{\binom{k}{h}}((2^{h+1} - 1)2^{-kh+3h-1} + o(1))^n \quad (2)
\]

for every \(h \geq 2\) and \(k \geq 5\).

Note that (2) also holds for \(h = 1\) [3]. Moreover, for \(k = 4\), \(f(n, h; n_1, \ldots, n_4)\) can be maximum only if \(n_1 = \alpha_1(n, h, 4)\), \(n_2 = \beta_1(n, h, 4)\), \(n_3 = h\) and \(n_4 = 1\), where

\[
\alpha_1(n, h, 4) = (n - h)\frac{1}{2^{h+1}} - \gamma,
\]

\[
\beta_1(n, h, 4) = (n - h)\frac{2^h}{2^h + 1} - 1 + \gamma,
\]

306
and \(0 \leq \gamma \leq 1 \).
For \(k \geq 5 \), \(f(n, h, k) = f(n, h; h, \ldots, h, \alpha_0, \beta_0, h, \ldots, h, 1) \), where
\[
\alpha_0(n, h, k) = (n - kh + 3h) \frac{2^h - 1}{2^{h+1} - 1} - \gamma;
\]
\[
\beta_0(n, h, k) = (n - kh + 3h) \frac{2^h}{2^{h+1} - 1} - 1 + \gamma,
\]
and \(0 \leq \gamma \leq 1 \).

Notice that for \(h = 1 \) the explanation of the asymptotic behavior of the critical function \(f(n, h, k) \), denoted by \(f(n, k) \) was made by a careful analysis in [3].

Lemma 1.4 (i) If \(G \) is an \(h \)-strongly connected digraph, \(x \notin V(G) \) and \(x \) is joined by directed edges in both directions \((x, y)\) and \((y, x)\) with at least \(h \) distinct vertices \(y \) in \(G \), the resulting digraph is \(h \)-strongly connected.

(ii) If \(E \) and \(F \) are two \(h \)-strongly connected digraphs such that \(V(E) \cap V(F) = \emptyset \), joined by directed edges in both directions \((x_i, y_i)\) and \((y_i, x_i)\) \((1 \leq i \leq h)\) which join \(h \) distinct vertices \(x_i \) in \(E \) \((1 \leq i \leq h)\) with \(h \) distinct vertices \(y_j \) in \(F \) \((1 \leq j \leq h)\), the resulting digraph is \(h \)-strongly connected. The property holds even if \(E \) or \(F \) is isomorphic to \(K_h^* \).

Note that this lemma holds if \(h \)-strongly connectedness is replaced by \(h \)-connectedness.

2 Main results

We will deduce an estimation for \(D_s(n; h, d = k) \) for every fixed \(h \geq 2 \) and \(k \geq 3 \) as \(n \to \infty \), by considering first the case \(k = 3 \), when this does not depend on \(h \).

Theorem 2.1 We have
\[
D_s(n; h, d = 3) = 4^{(3)} (3/4 + o(1))^n
\]
for every fixed \(h \geq 1 \).

Proof: For \(h = 1 \) this property was shown in [4]. If \(D(n; d \geq k) \) denotes the number of digraphs \(G \) of order \(n \) and diameter \(d(G) \geq k \), from the proof of Lemma 1.3 of [4] it follows that \(D(n; d \geq 4) < (n^2 - n)2^{(3)} + (n^2 - 2)^2 + (5/2)^n - 3 = 4^{(3)} (5/8 + o(1))^n \). Since \(D_s(n; h, d \geq 4) \leq D(n; d \geq 4) \) one gets
\[
D_s(n; h, d \geq 4) < 4^{(3)} (5/8 + o(1))^n. \tag{5}
\]
Let \(A_{ij}^{(k)} \), respectively \(H_{ij}^{(k)} \), denote the set of digraphs (respectively \(h \)-strongly connected digraphs) having vertex set \(\{1, \ldots, n\} \) such that \(d(i, j) \geq k \). In [4] it was shown that \(|A_{ij}^{(3)}| = 3^{n-2} \cdot 2^{(3)} + (n^2) \). Since \(|H_{ij}^{(3)}| \leq |A_{ij}^{(3)}| \) we get
\[
|H_{ij}^{(3)}| \leq 4^{(3)} (3/4 + o(1))^n. \tag{6}
\]
Now a sufficiently large subset of $H_{ij}^{(3)}$ can be constructed as follows: Consider an h-strongly connected digraph F with vertex set $\{1, \ldots, n\}\setminus\{i, j\}$ and nonadjacent vertices i and j such that the sets of neighbors $N(i), N(j) \subset V(F)$ satisfy: $|N(i)| = |N(j)| = h$ and $N(i) \cap N(j) = \emptyset$. Vertices i and j are joined by directed edges in both directions with all vertices in $N(i)$ and $N(j)$, respectively. For every vertex $k \in V(F) \setminus \{N(i) \cup N(j)\}$ we suppose that the condition: $(i, k) \in E(G)$ implies $(k, j) \notin E(G)$ is fulfilled, where G denotes the digraph obtained on this way. By Lemma 1.4, G is h-strongly connected and the distance $d(i, j) \geq 3$. This implies that for every fixed choice of the subdigraph induced by $\{i, j\}$, for every $k \in V(F) \setminus \{N(i) \cup N(j)\}$ the subdigraph induced by $\{i, j, k\}$ can be chosen in exactly 12 ways. Hence $|H_{i,j}^{(3)}| \geq 12^{n-2h-2}D_s(n - 2, h)$, where $D_s(n, h)$ denotes the number of h-strongly connected digraphs of order n. Since almost all digraphs of order n are h-strongly connected as $n \to \infty$, it follows that $D_s(n - 2, h) \sim 4^{(n-2)}$, which implies $|H_{i,j}^{(3)}| \geq 4^{(n \over 2)}(3/4 + o(1))^n$. Consequently,

$$|H_{i,j}^{(3)}| = 4^{(n \over 2)}(3/4 + o(1))^n$$

for every $1 \leq i, j \leq n$ and $i \neq j$. Because $D_s(n; h, d \geq 3) = |\bigcup_{1 \leq i, j \leq n, i \neq j} H_{i,j}^{(3)}|$ and

$$|H_{i_0,j_0}^{(3)}| \leq \bigcup_{1 \leq i, j \leq n, i \neq j} H_{i,j}^{(3)}| \leq (n^2 - n)|H_{i_0,j_0}^{(3)}|$$

one deduces that

$$D_s(n, h, d \geq 3) = 4^{(n \over 2)}(3/4 + o(1))^n.$$ \hfill (7)

Since $D_s(n; h, d = 3) = D_s(n; h, d \geq 3) - D_s(n; h, d \geq 4)$, the conclusion follows from (5) and (7). \hfill \Box

Because any h-strongly connected digraph is also h-connected, we get:

Corollary 2.2 The following equality holds for every fixed $h \geq 1$:

$$D(n; h, d = 3) = 4^{(n \over 2)}(3/4 + o(1))^n$$

Theorem 2.3 We have:

(i) $D_s(n; h, d = 4) = 4^{(n \over 2)}(2^{-h-2} + 2^{-2} + o(1))^n$

for every fixed $h \geq 2$;

(ii) $D_s(n; h, d = k) = 4^{(n \over 2)}((2^{h+1} - 1)2^{-kh+3h-2} + o(1))^n$

for every fixed $h \geq 1$ and $k \geq 5$.

308
Proof: For $h = 1$, (ii) was proved in [4]. Let $h \geq 2$, $k \geq 4$ and G be an h-strongly connected digraph of order n. If $x \in V(G)$ has $\text{ecc}(x) = k$, then

$$V_1(x) \cup \ldots \cup V_k(x)$$

is a partition of $V(G) \setminus \{x\}$, where $V_i(x) = \{y \mid y \in V(G) \text{ and } d(x, y) = i\}$ for $1 \leq i \leq k$. It follows that there are directed edges from x towards all vertices of $V_1(x)$ and for every $2 \leq i \leq k$ and any vertex $z \in V_i(x)$ there exists a directed edge (t, z), where $t \in V_{i-1}(x)$. Also the h-strongly connectedness of G implies that $|V_i(x)| \geq h$ for every $i = 1, \ldots, k - 1$. Let n_i be the number of vertices in $V_i(x)$, $1 \leq i \leq k$. By Lemma 1.1 one deduces

$$\sum_{n_1, \ldots, n_{i-1} \geq h} \binom{n-1}{n_1, \ldots, n_k} 4 \sum_{i=1}^{k-1} \prod_{i=1}^{k-1} (2^{n_i} - 1)^{n_{i+1}} \prod_{i=1}^k 2^{n_i(n_{i-1} + \ldots + 1)}$$

$$= 2^{\binom{k}{2}} \sum_{n_1, \ldots, n_k \geq 1} f(n - 1; n_1, \ldots, n_k)$$

because

$$2 \sum_{i=1}^{k} \binom{n}{i} \prod_{i=1}^{k} 2^{n_i(n_{i-1} + \ldots + 1)} = 2^{\binom{k}{2}}. \tag{8}$$

Furthermore

$$\sum_{n_1, \ldots, n_k \geq h} f(n - 1; n_1, \ldots, n_k) \leq \binom{n-2}{k-1} f(n - 1, k)$$

since the number of compositions $n - 1 = n_1 + \ldots + n_k$ having k positive terms equals $\binom{n-2}{k-1}$. Hence $D_s(n; h, d = k) \leq \left| \bigcup_{x \in V(G)} \{G \mid G \text{ is } h \text{-strongly connected, } V(G) = \{1, \ldots, n\} \text{ and } \text{ecc}(x) = k\} \right|$ $\leq n 2^{\binom{n}{2}} \binom{n-2}{k-1} f(n - 1, h, k)$ and this expression equals $4^{\binom{k}{2}} (2^{-h-2} + 2^{-2} + o(1))^n$ for $k = 4$ and $4^{\binom{k}{2}} ((2^{h+1} - 1)2^{-kh+3h-2} + o(1))^n$ for $k \geq 5$ by Theorem 1.3. The proof of the theorem is by double inequality. We shall consider two cases: I $k \geq 5$ and II $k = 4$.

Case I. In order to produce a suitable lower bound for $D(n; h, d = k)$ in the case $k \geq 5$ we shall generate a large class of h-strongly connected digraphs of order n and diameter equal to k as follows: Let $x \in \{1, \ldots, n\}$ be a fixed vertex and $X_1 \cup \ldots \cup X_k$ be a partition of $\{1, \ldots, n\} \setminus \{x\}$ such that $|X_1| = |X_2| = \ldots = |X_{k-4}| = h, |X_{k-3}| = \alpha_0, |X_{k-2}| = \beta_0, |X_{k-1}| = h$ and $|X_k| = 1$, where $\alpha_0 = \alpha_0(n - 1, h, k)$ and $\beta_0 = \beta_0(n - 1, h, k)$ are given by (4). Vertex x is joined by directed edges in both directions with all vertices of X_1 and the unique vertex of X_k is joined by directed edges in both directions with all vertices of X_{k-1}. Let us denote $X_i = \{x_i^1, \ldots, x_i^h\}$ for every $1 \leq i \leq k - 4$ and $i = k - 1$. We choose an h-element subset $Y_{k-3} = \{x_{k-3}^1, \ldots, x_{k-3}^h\} \subset X_{k-3}$ and an h-element subset $\{x_{k-2}^1, \ldots, x_{k-2}^h\} \subset X_{k-2}$. Now for every $1 \leq i \leq k - 2$ we join vertex x_i^j with x_{i+1}^j by directed edges (x_i^j, x_{i+1}^j) and (x_{i+1}^j, x_i^j) for every $j = 1, \ldots, h$. Every $X_1, X_2, \ldots, X_{k-4}$ and X_{k-1} induces a subdigraph isomorphic to K^*_h and subdigraphs induced by X_{k-3} and X_{k-2} are h-strongly connected and have diameter equal to two. Also for any vertex $u \in X_{k-3}$
there exists at least one directed edge \((s, u)\), where \(s \in X_{k-4}\) and for any vertex \(v \in X_{k-2}\) there exists at least one directed edge \((t, v)\), where \(t \in X_{k-3}\). If \(G\) denotes a digraph generated by this procedure, it is easy to see that \(|V(G)| = n\), ecc\((x) = k\) and \(d(G) = k\); by Lemma 1.4 it follows that \(G\) is \(h\)-strongly connected. The number of directed edges oriented from classes \(X_j\) towards classes \(X_i\) where \(i < j\) is a function \(\varphi(k, h)\) which does not depend on \(n\).

The number of digraphs generated in this way is greater than or equal to
\[
\binom{n-1}{\alpha_0} \binom{n-1}{\beta_0} \cdot \binom{\binom{n}{2} - \varphi(k, h) - \binom{\alpha_0}{2} - \binom{\beta_0}{2}}{2} \cdot D_s(\alpha_0; h, d = 2) \cdot D_s(\beta_0; h, d = 2) (2^h - 1) \cdot \frac{\alpha_0 - h (2^{\alpha_0 - 1} \beta_0 - h 2^{h - 1} 2^{h (\alpha_0 - 1)} 2^{h (\beta_0 - 1)}))}{2} \cdot \text{ by Lemma 1.1 and (8)}.
\]
Indeed, each vertex \(z \in X_{k-3} \setminus \{x^1_{k-3}, \ldots, x^h_{k-3}\}\) must have at least one incoming edge from some vertex in \(X_{k-4}\), hence there are \(2^h - 1\) choices for the set of incoming edges to any such vertex. If \(z = x^i_{k-3}\) (\(1 \leq i \leq h\)), there exists the directed edge \((x^i_{k-4}, x^i_{k-3})\); hence there are \(2^{i-1}\) choices for the set of incoming edges to any vertex in \(\{x^1_{k-3}, \ldots, x^h_{k-3}\}\). So the number of choices for the set of incoming edges to \(X_{k-3}\) is equal to \((2^h - 1)^{\alpha_0 - h 2^{h - 1}}\). In a similar way we find the number of choices for the set of incoming edges to \(X_{k-2}\) and \(X_{k-1}\). Since \(D_s(\alpha; h, d = 2) \sim 4^{\binom{n}{2}}\) as \(h \to \infty\), this expression is equal to
\[
2^{(\frac{n}{2})} f(n - 1, h, k)(1 + o(1))^n = 4^{\binom{n}{2}} ((2^{h+1} - 1) 2^{-kh + 3h - 2} + o(1))^n
\]
by Theorem 1.3. Hence \(D_s(n; h, d = k) \geq 4^{\binom{n}{2}} ((2^{h+1} - 1) 2^{-kh + 3h - 2} + o(1))^n\) and the proof is complete in this case.

Case II. If \(k = 4\) the construction is somewhat similar to the case \(k \geq 5\):
We consider a partition \(X_1 \cup X_2 \cup X_3 \cup X_4\) of \(\{1, \ldots, n\}\) such that \(|X_1| = \alpha_1(n - 1, h, 4), \ |X_2| = \beta_1(n - 1, h, 4)\) (given by (3)), \(|X_3| = h\) and \(|X_4| = 1\). Let \(X_4 = \{w\}\).
We choose any vertex \(t \in X_2\) and join \(t\) with \(x\) by a directed edge \((t, x)\). By choosing \(Y_1 \subset X_1\) and \(Y_2 \subset X_2\) the remaining adjacencies are defined as for the case \(k \geq 5\).
Let us denote the set of \(h\)-strongly connected digraphs of order \(n\) produced in this way by \(G\). If \(G \in \mathcal{G}\), we have \(d(x, w) = 4\); also \(d(u, v) \leq 4\) for every \(u, v \in V(G)\) unless \(u \in X_1\) and \(v = w\), when we have only \(d(u, w) \leq 5\). If \(G \in \mathcal{G}\) has \(d(G) = 5\) we define the digraph \(\varphi(G)\) deduced from \(G\) by deleting directed edges joining \(w\) in both directions with vertices of \(X_3\) and replacing them by directed edges joining \(w\) in both directions with the \(h\) vertices of \(Y_2 \subset X_2\). We have \(d\varphi(G)(x, w) = 3\). If \(u \in X_1\) has \(d_G(u, w) = 5\) then \(d_G(u, Y_2) = 3\), which implies \(d\varphi(G) = 4\), hence \(\varphi(G)\) has diameter equal to four. If the vertex \(w\) in \(X_4\) is fixed, the ordered partition \(X_1 \cup X_2 \cup X_3\) can be generated in
\[
\binom{n}{\alpha_1} \binom{n-2}{\beta_1} = \frac{(n-1)!}{\alpha_1! \beta_1!} (1 + o(1))^n
\]
ways. In this case \(\varphi\) is injective and for every \(F, G \in \mathcal{G}\) we have \(\varphi(G) \neq F\) since \(d_F(x, w) = 4\) but \(d\varphi(G)(x, w) = 3\).
Hence we can generate a class consisting of \(|\mathcal{G}| \ h\)-strongly connected digraphs of order \(n\) and diameter equal to four as follows: we choose a digraph \(G \in \mathcal{G}\) if \(d(G) = 4\); otherwise we choose the digraph \(\varphi(G)\).
It follows that the number of digraphs generated in this way is equal to
\[|G| = \frac{(n-1)!}{\alpha_1!\beta_1!} 2^{\binom{n}{2}} - \varphi(h) - \binom{n}{2} - (\binom{\beta}{2}) \]
\[D_s(\alpha_1; h, d = 2) D_s(\beta_1; h, d = 2)(2^{\alpha_1 - 1})^{\beta_1 - h} 2^{h(\alpha_1 - 1)}(1 + o(1))^n, \]
where \(\varphi(k, h) \) was defined in the case \(k \geq 5 \). As for the case I
the last expression equal to
\[2^{\binom{n}{2}} f(n - 1, h, 4)(1 + o(1))^n = 4^{\binom{n}{2}} (2^{-h} + 2^{-2} + o(1))^n \]
which concludes the proof. \(\square \)

Corollary 2.4 Equalities (i) and (ii) also hold for the numbers \(D(n; h, d = 4) \) and
\(D(n; h, d = k) \) of \(h \)-connected digraphs \(G \) of order \(n \) and diameter \(d(G) = 4 \), respecti-
vively \(d(G) = k \geq 5 \).

Corollary 2.5 For every fixed \(h \geq 1 \) and \(k \geq 2 \) we have
\[\lim_{n \to \infty} \frac{D_s(n; h, d = k)}{D_s(n; h, d = k + 1)} = \lim_{n \to \infty} \frac{D(n; h, d = k)}{D(n; h, d = k + 1)} = \infty. \]

Corollary 2.6 The following equalities
\[\lim_{n \to \infty} \frac{D_s(n; h, d = k)}{D_s(n; h + 1, d = k)} = \lim_{n \to \infty} \frac{D(n; h, d = k)}{D(n; h + 1, d = k)} = \infty \]
hold for every fixed \(h \geq 1 \) and \(k \geq 4 \).

References

(Received 16/11/2000)