On the spectral radius of nonnegative matrices*

Zhou Bo

Department of Mathematics
South China Normal University
Guangzhou 510631C, P. R. China
E-mail: zhoubo@hsut.scnu.edu.cn

Abstract

We give lower bounds for the spectral radius of nonnegative matrices and nonnegative symmetric matrices, and prove necessary and sufficient conditions to achieve these bounds.

1 Introduction and Preliminaries

In this note, we will be concerned with nonnegative matrices. Let A be an $n \times n$ nonnegative matrix. The spectral radius of A is denoted by $\rho(A)$. Due to the Perron-Frobenius theorem, $\rho(A)$ is an eigenvalue, also known as the Perron root of A. For a matrix X, X^t denotes the transpose of X.

A nonnegative matrix is row-regular if all of its row sums are equal. A matrix A is row-semiregular if there is a permutation matrix P such that $P^tAP = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}$ where both B and C are row-regular. Column-regular and column-semiregular are defined similarly. The matrix A is regular if A is both row-regular and column-regular. Semiregular is defined similarly.

An $n \times n$ nonnegative matrix A all of whose row sums d_1, \ldots, d_n are positive is almost row-regular if $a_{ij} > 0$ implies that d_id_j is a constant. Almost column-regular is defined similarly. A is almost regular if A is both almost row-regular and almost column-regular.

In this paper, we give lower bounds for the spectral radius of nonnegative matrices and nonnegative symmetric matrices, and prove necessary and sufficient conditions to achieve these bounds.

Lemma 1.1 Let $A = (a_{ij})$ be an $n \times n$ nonnegative irreducible matrix with positive row sums d_1, d_2, \ldots, d_n. Then the following are equivalent:

1. A is almost row-regular;

*Project supported by Guangdong Provincial Natural Science Foundation of China (990447).

(2) A is row-regular or row-semiregular;

(3) for each $1 \leq i \leq n$ and any number $a \neq 0$, \[
\sum_{j=1}^{n} a_{ij} (d_i d_j)^a \frac{i=1}{d_i} \text{ is a constant.}
\]

Proof. Note that (2) \Rightarrow (1) and (1) \Rightarrow (3) are obvious. We need only to prove (3) \Rightarrow (2).

Suppose for each $1 \leq i \leq n$ and any number $a \neq 0$, \[
\sum_{j=1}^{n} a_{ij} (d_i d_j)^a \frac{i=1}{d_i} = r. \]
If all the d_i are equal, then A is row-regular. Otherwise set $\delta = \min_{1 \leq i \leq n} d_i$ and $\Delta = \max_{1 \leq i \leq n} d_i$.

Note that A is irreducible. Choose u and v such that $d_u = \delta$ and $d_v = \Delta$. Suppose without loss of generality that $a > 0$. Then we have

\[
r = \sum_{j=1}^{n} a_{uj} (\delta d_j)^a \frac{j=1}{\delta} \leq (\delta \Delta)^a
\]

and

\[
r = \sum_{j=1}^{n} a_{vj} (\Delta d_j)^a \frac{j=1}{\Delta} \geq (\delta \Delta)^a.
\]
It follows that $r = (\delta \Delta)^a$, and whenever $a_{ij} > 0$, then $d_i = \delta$ and $d_j = \Delta$ or vice versa. Note that $\delta < \Delta$. Then $d_i = d_j$ implies that $a_{ij} = 0$. Set $\alpha = \{i : d_i = \delta\}$ and $\beta = \{i : d_i = \Delta\}$. Then $\alpha \cap \beta = \emptyset$, $\alpha \cup \beta = \{1, \ldots, n\}$, $A[\alpha, \alpha] = 0$, and $A[\beta, \beta] = 0$.

Hence there is a permutation matrix P such that $P^t AP = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}$ where each row sum of B is δ and each row sum of C is Δ. We conclude that A is row-semiregular.

The proof is now completed. \qed

For a nonnegative symmetric matrix, the same argument as in the proof of Lemma 1.1 will apply to all irreducible components of A. Hence we have the following.

Lemma 1.2 Let $A = (a_{ij})$ be an $n \times n$ nonnegative symmetric matrix with positive row sums d_1, d_2, \ldots, d_n. Then the following are equivalent:

(1) A is almost regular;

(2) A is regular or semiregular;

(3) for each $1 \leq i \leq n$ and any number $a \neq 0$, \[
\sum_{j=1}^{n} a_{ij} (d_i d_j)^a \frac{j=1}{d_i} \text{ is a constant.}
\]

2 Nonnegative matrices and digraphs

The following Lemma is contained in [1].

Lemma 2.1 Let A be an $n \times n$ nonnegative matrix. Then

\[
\rho(A) \geq \min \frac{(Ax)_i}{x_i}. \tag{2.1}
\]

302
If \(A \) is irreducible, then equality holds in (2.1) if and only if \(x \) is an eigenvector corresponding to \(\rho(A) \).

Theorem 2.2 Let \(A = (a_{ij}) \) be an \(n \times n \) nonnegative matrix with positive row sums \(d_1, d_2, \ldots, d_n \). Then

\[
\rho(A) \geq \min_{1 \leq i \leq n} \left(\sum_{j=1}^{n} a_{ij}d_j \right).
\]

If \(A \) is reducible, then equality holds in (2.2) if and only if \(A \) is row-regular or row-semi-regular.

Proof. Let \(A^2 = B = (b_{ij}) \). On setting \(x = (1, \ldots, 1)^t \), by Lemma 2.1 we obtain

\[
\rho(B) \geq \min_{1 \leq i \leq n} \left(\frac{(Bx)_i}{x_i} \right) = \min_{1 \leq i \leq n} \sum_{s=1}^{n} a_{is} = \min_{1 \leq i \leq n} \sum_{j=1}^{n} a_{ij}d_j.
\]

Observe that \(\rho(A) = \sqrt{\rho(B)} \). From (2.3) we have (2.2), as desired.

Suppose that \(A \) is irreducible. Now we are going to prove the second part of Theorem 2.2.

First suppose that \(A \) is row-regular or row-semi-regular. By Lemma 1.1, for each \(1 \leq i \leq n \), \(\sum_{j=1}^{n} a_{ij}d_j \) is a constant. Then for some constant \(r \) and each \(i \),

\[
\sum_{s=1}^{n} b_{is} = \sum_{s=1}^{n} a_{is}a_{js} = \sum_{j=1}^{n} a_{ij}d_j = r.
\]

It follows from (2.4) that \(r \) is an eigenvalue of \(B \) corresponding to \(x = (1, \ldots, 1)^t \), which implies that \(\rho(B) = r \). It follows that

\[
\rho(A) = \sqrt{\rho(B)} = \sqrt{\sum_{j=1}^{n} a_{ij}d_j}.
\]

Conversely, suppose equality in (2.2) holds. Then by Lemma 2.1,

\[
B(1, \ldots, 1)^t = \rho(B)(1, \ldots, 1)^t.
\]

Hence

\[
\sum_{j=1}^{n} a_{ij}d_j = \sum_{s=1}^{n} b_{is} = \rho(B) = \rho(A)^2
\]

is a constant for each \(i \). By Lemma 1.1 (let \(a=1 \)), \(A \) is row-regular or row-semi-regular. This completes the proof of Theorem 2.2. \(\Box \)

Let \(D = (V, E) \) be a directed graph with vertex set \(V = \{1, 2, \ldots, n\} \) and arc set \(E \). The adjacency matrix of \(D \) is the \(n \times n \) (0-1) matrix \(A = (a_{ij}) \) in which \(a_{ij} = 1 \) if and only if vertex \(i \) is adjacent to vertex \(j \) (that is, there is an arc from vertex \(i \)}

303
to vertex \(j \)). Then the \(i \)-th row sum \(d_i \) of \(A \) is just the out-degree of vertex \(i \) in \(D \). The directed graph \(D \) is out-regular (out-semiregular) if the adjacency matrix is row-
regular (row-semiregular). Clearly \(G \) is out-semiregular if and only \(D \) is bipartite, and each vertex in the same part of the bipartition has the same out-degree. The
spectral radius of \(D \), denoted by \(\rho(G) \), is defined to be the spectral radius of its adjacency matrix \(A \). An immediate corollary of Theorem 2.2 is given as follows.

Corollary 2.3 Let \(G \) be a directed graph of order \(n \) with positive out-degree sequence \(d_1, d_2, \ldots, d_n \). Then

\[
\rho(G) \geq \min_{1 \leq i \leq n} \sqrt{\sum_{(i,j) \in E} d_j}.
\]

If \(G \) is strongly connected, then equality holds in (2.6) if and only if \(D \) is out-regular or out-semiregular.

3 Symmetric matrices and graphs

We need the following lemma.

Lemma 3.1 Let \(A \) be an \(n \times n \) nonnegative symmetric matrix. Then

\[
\rho(A) \geq \frac{x^t(Ax)}{x^tx}
\]

with equality if and only if \(x \) is an eigenvector corresponding to \(\rho(A) \).

The proof of Lemma 3.1 is a routine exercise in linear algebra.
We are now ready to prove the main result of this section.

Theorem 3.2 Let \(A = (a_{ij}) \) be an \(n \times n \) nonnegative symmetric matrix with positive row sums \(d_1, d_2, \ldots, d_n \). Then

\[
\rho(A) \geq \sqrt{\frac{\sum_{i=1}^n d_i^2}{n}}
\]

with equality if and only if \(A \) is regular or semiregular.

Proof. Let \(A^2 = B = (b_{ij}) \). On setting \(x = (1, \ldots, 1)^t \), by Lemma 3.1 we obtain

\[
\rho(B) \geq \frac{x^tBx}{x^tx} = \frac{\sum_{i=1}^n \sum_{s=1}^n a_{ji}a_{is}}{n} = \frac{\sum_{i=1}^n a_{ij} \sum_{s=1}^n a_{is}}{n} = \frac{\sum_{i=1}^n d_i^2}{n}.
\]

Note that \(\rho(A) = \sqrt{\rho(B)} \). We have (3.2).
Now we are going to prove the second part of Theorem 3.2.
First suppose that A is regular or semiregular. Then by Lemma 1.2 (let $a=1$), for some constant r and each j,

$$\sum_{s=1}^{n} b_{js} = \sum_{i=1}^{n} a_{ji} \sum_{s=1}^{n} a_{is} = \sum_{i=1}^{n} a_{ji} d_i = r. \tag{3.3}$$

Hence $\rho(B) = r$. On the other hand, by (3.3) we also have $\sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} d_i = nr$,

i.e., $\frac{\sum_{i=1}^{n} d_i}{n} = r$. Hence

$$\rho(A) = \sqrt{\rho(B)} = \sqrt{r} = \sqrt{\frac{\sum_{i=1}^{n} d_i}{n}}.$$

Conversely suppose equality in (3.2) holds. Then by Lemma 3.1, $(1, \ldots, 1)^t$ is an eigenvector of B corresponding to $\rho(B)$. Hence for each i $\sum_{j=1}^{n} a_{ij} d_j = \frac{\sum_{s=1}^{n} b_{is}}{n} = \rho(B) = \rho(A)^2$. By Lemma 1.2 (let $a=1$), A is regular or semiregular. This completes the proof of Theorem 3.2. \hfill \Box

Let $G = (V, E)$ be an undirected simple graph with vertex set $V = \{1, 2, \ldots, n\}$ and edge set E. The adjacency matrix of G is the $n \times n$ (0-1) symmetric matrix $A = (a_{ij})$ in which $a_{ij} = 1$ if and only if vertex i is adjacent to vertex j (that is, there is an edge between vertices i and j). Then the i-th row sum d_i of A is just the degree of vertex i in G. The graph G is regular (semiregular) if the adjacency matrix is regular (semiregular). Clearly G is semiregular if and only G is bipartite, and each vertex in the same part of bipartition has the same degree. The spectral radius of G, denoted by $\rho(G)$, is defined to be the spectral radius of its adjacency matrix A. An immediate corollary of Theorem 3.2 is given as follows.

Corollary 3.3 Let G be an undirected simple graph of order n with positive degree sequence d_1, d_2, \ldots, d_n. Then

$$\rho(G) \geq \sqrt{\frac{\sum_{i=1}^{n} d_i}{n}} \tag{3.4}$$

with equality if and only if G is regular or semiregular.

Let A be an $n \times n$ nonnegative symmetric matrix with positive row sums d_1, \ldots, d_n. Hoffman, Wolfe and Hofmeister [3] have proved that

$$\rho(A) \geq \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \sqrt{d_i d_j}}{\sum_{i=1}^{n} d_i} \tag{3.5}.$$

By Lemma 1.2 and the result in [3], equality holds in (3.5) if and only if A is regular or semiregular.
It is natural to wonder how (3.2) compares with (3.5); the examples below shows that (3.2) is sharper than (3.5) in many cases.

First, for any $n \geq 4$, let A be the $n \times n$ matrix with $a_{1,i} = 1$ for $2 \leq i \leq n$, $a_{i,i+1} = a_{i+1,i} = a_{2,n} = a_{n,2} = 1$ for $2 \leq i \leq n-1$ and all other entries 0. Note that A is the adjacency matrix of a wheel of order n, and $d_1 = n - 1$, $d_2 = \ldots = d_{n-1} = 3$. The right hand side of (3.2) is \(\sqrt{\frac{(n-1)(n+8)}{n}} \). The right hand side of (3.5) is $\sqrt{\frac{3(n-1)+3}{2}}$. Since

$$\lim_{n \to \infty} \frac{\sqrt{\frac{(n-1)(n+8)}{n}}}{\sqrt{\frac{3(n-1)+3}{2}}} = \frac{2}{\sqrt{3}} > 1,$$

for the matrix A, (3.2) is a sharper bound than (3.5) if n is sufficiently large.

Next, we give another example. For $n \geq 5$, Let A be the $n \times n$ matrix with $a_{1,i} = a_{2,i} = 1$ for $3 \leq i \leq n$, $a_{i,i+1} = a_{i+1,i} = 1$ for $3 \leq i \leq n$ and all other entries 0. Then $d_1 = d_2 = n - 2$, $d_3 = d_4 = 3$, $d_5 = \ldots = d_n = 4$. The right hand side of (3.2) is \(\sqrt{\frac{2(n-2)^2+16(n-4)+9}{n}} \). However, the right hand side of (3.5) is

$$\frac{2(n-4)\sqrt{4(n-2)+4\sqrt{3(n-2)+4(n-5)+4\sqrt{3}}}}{3n-7}.$$

Note that

$$\lim_{n \to \infty} \frac{\sqrt{\frac{2(n-2)^2+16(n-4)+9}{n}}}{\frac{2(n-4)\sqrt{4(n-2)+4\sqrt{3(n-2)+4(n-5)+4\sqrt{3}}}}{3n-7}} = \frac{3\sqrt{2}}{4} > 1.$$

We see that for A, (3.2) is sharper than (3.5) again if n is sufficiently large.

References

(Received 14/1/2000)

306