Improvements on inequalities for non-negative matrices*

Zhou Bo

Department of Mathematics, South China Normal University,
Guangzhou 510631, P. R. China

Abstract

We prove that there is an integer \(k \leq (n^2 - 2n + 4)/2 \) such that the diagonal entries of \(A^k \) are all positive for any non-negative irreducible \(n \times n \) matrix \(A \), and that there are integers \(i, j \) with \(0 \leq i < j \leq 3^{n/2} \) such that \(A^i \leq A^j \) for any non-negative \(n \times n \) matrix \(A \) with no entry in \((0,1)\) and \(n \geq 2 \). The results of Wang and Shallit [Linear Algebra Appl. 290 (1999) 135-144] are thus improved.

1. Introduction

In this paper we will be concerned with matrices and vectors with non-negative entries. For a matrix \(A = (a_{ij}) \) and scalar \(c \), by the inequality \(A > c \) we mean that \(a_{ij} > c \) for all \(i, j \), and similarly for the relations \(A \geq c \) and \(A = c \). For matrices \(A \) and \(B \) of the same dimensions, by \(A \geq B \) we mean the inequality holds entrywise. We adopt similar conventions for vectors.

For an \(n \times n \) matrix \(A \), by \(\text{diag}(A) \) we mean the vector containing the diagonal entries of \(A \). Let \(I \) denote the identity matrix.

A square matrix \(A \) is said to be reducible if there is a permutation matrix \(P \) such that

\[
P^T A P = \begin{pmatrix} B & 0 \\ D & C \end{pmatrix},
\]

where the diagonal blocks \(B \) and \(C \) are square matrices. \(A \) is irreducible if it is not reducible.

For an irreducible matrix \(A \), let \(\beta(A) \) be the least integer \(k \geq 1 \) such that \(\text{diag}(A^k) > 0 \). Define \(\beta(n) = \sup \beta(A) \), where the supremum is over all irreducible \(n \times n \) matrices. Recently Wang and Shallit [1] proved that \(\beta(n) \leq n(n-1) \) for \(n \geq 2 \). They posed the problem of determining a more precise upper bound for \(\beta(n) \).

*Project supported by the Guangdong Provincial Natural Science Foundation of China (990447).

For a non-negative $n \times n$ matrix A with no entry in $(0, 1)$, let $\alpha(A)$ be the least positive integer j such that there exists an integer i with $0 \leq i < j$ such that $A^i \leq A^j$. Define $\alpha(n) = \sup \alpha(A)$, where the supremum is over all non-negative matrices A with no entry in $(0, 1)$. Wang and Shallit [1] have proved that $\alpha(n) \leq 2^n$. As is remarked in [1], this inequality is almost surely not best possible.

In this paper we prove more precise bounds for $\beta(n)$ and $\alpha(n)$.

2. Bound for $\beta(n)$

The graph of an $n \times n$ matrix $A = (a_{ij})$ is the directed graph on vertices v_1, v_2, \cdots, v_n such that there is an arc from v_i to v_j if and only if $a_{ij} > 0$. We denote the graph of A by $G(A)$. An s-cycle is a (directed) cycle of length s.

An irreducible matrix A is primitive if there is a positive integer l such that $A^l > 0$. The least such l is called the exponent of A and is denoted $\gamma(A)$.

For an irreducible matrix A, the greatest common divisor of all cycle lengths of $G(A)$ is called the index of imprimitivity of A and is denoted $d(A)$. It is well known (see, e.g., [4]) that a matrix A is irreducible if and only if $G(A)$ is strongly connected and that an irreducible matrix A is primitive if and only if $d(A) = 1$.

We first introduce the following lemmas, which we will use to estimate $\beta(A)$ for an irreducible matrix A.

Lemma 1 [3]. If A is an $n \times n$ primitive matrix whose graph has at least three distinct cycle lengths, then $\gamma(A) \leq \lfloor (n^2 - 2n + 4)/2 \rfloor$.

Lemma 2 [2]. Suppose X and Y are $r \times t$ and $t \times r$ non-negative matrices and neither has a zero row or column. Then XY is primitive if and only if YX is, and if XY and YX are primitive, then $\gamma(YX) - 1 \leq \gamma(XY) \leq \gamma(YX) + 1$.

Lemma 3 [5]. If A is an $n \times n$ primitive matrix, then $\gamma(A) \leq (n - 1)^2 + 1$.

Our first theorem refines the bound for $\beta(n)$ obtained in [1].

Theorem 1. Let

$$f(n) = \left\lfloor \frac{n^2 - 2n + 4}{2} \right\rfloor.$$

Then $\beta(n) \leq f(n)$.

Proof. Let A be an irreducible $n \times n$ matrix with $G = G(A)$. Denote by $L(G)$ the set of cycle lengths of G. If G contains an n-cycle, then $\beta(A) \leq n \leq f(n)$. Suppose in the following that G contains no n-cycle. There are two cases to consider, based on the primitivity of A.

Case 1: A is primitive.

Case 1.1: $|L(G)| = 2$. Suppose $L(G) = \{p, q\}$ with $p < q \leq n - 1$. If $p + q \geq n + 1$, then every p-cycle intersects every q-cycle, and hence $\beta(A) \leq p + q \leq (n - 2) + (n - 1) = 2n - 3 \leq f(n)$, while if $p + q \leq n$, then $\beta(A) \leq pq \leq ((p + q)/2)^2 \leq n^2/4 \leq f(n)$.

Case 1.2: $|L(G)| \geq 3$. In this case, we have $n \geq 4$. By Lemma 1 we have $\beta(A) \leq \gamma(A) \leq \lfloor (n^2 - 2n + 4)/2 \rfloor = f(n)$.
Case 2: A is not primitive. Suppose $d(A) = d \geq 2$. By classical results on
imprimitive matrices (see [4, pp.71-73]), there is a permutation matrix P such that

$$P^TAP = \begin{pmatrix}
0 & A_1 & 0 & \cdots & 0 \\
0 & 0 & A_2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{d-1} \\
A_d & 0 & 0 & \cdots & 0
\end{pmatrix}$$

where the diagonal zero blocks are square and each block A_i has no zero row or
column; furthermore, if A_i is of dimension $n_i \times n_{i+1}$ ($n_{d+1} = n_1$), and we put $B_i = A_iA_{i+1} \cdots A_dA_1 \cdots A_{i-1}$, then

$$P^T A_d P = \begin{pmatrix}
B_1 & 0 & \cdots & 0 \\
0 & B_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B_d
\end{pmatrix},$$

where B_i is an $n_i \times n_i$ primitive matrix for each i with $1 \leq i \leq d$.

If $d = n$, then clearly $\beta(A) = n \leq f(n)$. If $n = 3$ and $d = 2$, then $\beta(A) = 2 \leq f(3) = 3$. Suppose $2 \leq d \leq n-1$ and $n \geq 4$.

Let $n_m = \min_{1 \leq m \leq d} n_i$ where $1 \leq m \leq d$ and $\gamma(B_t) = \max_{1 \leq t \leq d} \gamma(B_t)$ where $1 \leq t \leq d$.

We claim that $\gamma(B_t) \leq \gamma(B_m) + 1$. This is obvious if $t = m$. Suppose without
loss of generality that $1 \leq t < m \leq d$. Let $X = A_tA_{t+1} \cdots A_{m-1}$ and $Y = A_mA_{m+1} \cdots A_dA_1 \cdots A_{t-1}$. Then $B_t = XY$ and $B_m = YX$. By Lemma 2, we have

$$\gamma(B_t) = \gamma(XY) \leq \gamma(YX) + 1 = \gamma(B_m) + 1,$$

as desired.

Note that $n_1 + n_2 + \cdots + n_d = n$. We have $n_m \leq n/d$. It follows from Lemma 3
that

$$\max_{1 \leq i \leq d} \gamma(B_i) = \gamma(B_t) \leq \gamma(B_m) + 1$$

$$\leq (n_m - 1)^2 + 1 + 1$$

$$\leq \left(\frac{n}{d} - 1\right)^2 + 2.$$

Hence

$$\beta(A) \leq d \max_{1 \leq i \leq d} \gamma(B_i)$$

$$\leq d \left(\frac{n}{d} - 1\right)^2 + 2d$$

$$= \frac{(n-d)^2}{d} + 2d.$$

The function $h(d) = (n-d)^2/d + 2d$ is a decreasing function of d in $[2, n/\sqrt{3}]$ and
an increasing function in $[n/\sqrt{3}, n-1]$. Hence it assumes its largest value either for
$d = 2$ or $d = n - 1$. We have

$$h(2) = (n-2)^2/2 + 2, \quad h(n-1) = 2(n-1) + 1/(n-1).$$

It is easy to see that $|h(n-1)| \leq |h(2)| \leq f(n)$ for $n \geq 6$, and $|h(2)| \leq |h(n-1)| \leq f(n)$ for $n = 4$ or 5. Hence

$$\beta(A) \leq h(d) \leq \max\{|h(2)|, |h(n-1)|\} \leq f(n).$$
3. Bound for $\alpha(n)$

For a non-negative $n \times n$ matrix A with no entry in $(0,1)$, Wang and Shallit [1] proved that $\alpha(n) \leq 2^n$ for all $n \geq 1$, and this bound cannot be replaced by $e^{\sqrt{n \log n}}$. We are going to improve this result. First we give a lemma that will be used.

Lemma 4 [1]. Suppose $A \geq 0$ is an $n \times n$ matrix of the form

$$A = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix},$$

where B, D are square matrices with $D \geq I$. For integers $l \geq 0$, define the matrices C_l by

$$A^l = \begin{pmatrix} B^l & 0 \\ C_l & D^l \end{pmatrix}.$$

Then for all $l \geq 0$, we have $C_l \leq C_{l+1}$ and $D^l \leq D^{l+1}$.

An easily verified fact is that $f(n) = [(n^2 - 2n + 4)/2] \leq 3^{n/2}$ for all $n \geq 2$.

Theorem 2. For all $n \geq 2$, we have $\alpha(n) \leq 3^{n/2}$.

Proof. Let A be a non-negative $n \times n$ matrix with no entry in $(0,1)$. We use induction on n to prove the theorem. For $n = 2$, if A is irreducible, then clearly $A^0 = I \leq A^2$, while if A is reducible, then we have either $A = A^2$ or $A^2 = A^3 = 0$. Hence $\alpha(A) \leq 3$ for $n = 2$.

Assume $n \geq 3$ and the result holds for all m with $2 \leq m < n$. The proof is now divided into the following two cases.

Case 1: A is irreducible. By Theorem 1, there is an integer k, $1 \leq k \leq f(n)$, such that $\text{diag}(A^k) > 0$. Note that every positive diagonal entry of A^k is ≥ 1. We have $I = A^0 \leq A^k$. Hence $\alpha(A) \leq k \leq f(n) \leq 3^{n/2}$.

Case 2: A is reducible. There is a permutation matrix P such that

$$P^T A P = \begin{pmatrix} A_{11} & 0 & \cdots & 0 \\ A_{21} & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_{t1} & A_{t2} & \cdots & A_{tt} \end{pmatrix},$$

where $A_{11}, A_{22}, \cdots, A_{tt}$ are square matrices that are either 0 or irreducible.

Case 2.1: $A_{tt} = 0$. The last column of A is 0. We write

$$A = \begin{pmatrix} B & 0 \\ x & 0 \end{pmatrix},$$

where x is a vector of dimension $n - 1$. Note that $n - 1 \geq 2$. By induction, $\alpha(B) \leq 3^{(n-1)/2}$, i.e., there are integers i,j with $0 \leq i < j \leq 3^{(n-1)/2}$ such that $B^i \leq B^j$. It follows that

$$A^{i+1} = \begin{pmatrix} B^{i+1} & 0 \\ xB^i & 0 \end{pmatrix} \leq \begin{pmatrix} B^{j+1} & 0 \\ xB^j & 0 \end{pmatrix} = A^{j+1},$$

254
and \(1 \leq i + 1 < j + 1 \leq 3^{(n-1)/2} + 1 \leq 3^{n/2}\). Hence \(\alpha(A) \leq 3^{n/2}\).

Case 2.2: \(A_{tt}\) is irreducible. Suppose \(A_{tt}\) is of dimension \(m \times m\) with \(1 \leq m \leq n-1\). By Theorem 1, there is an integer \(k\) with \(1 \leq k \leq f(m) \leq 3^{m/2}\) such that \(A_{tt}^k \geq I\). We write

\[
A = \begin{pmatrix} B & 0 \\ C & A_{tt} \end{pmatrix}.
\]

Case 2.2.1: \(B\) is 0 of dimension \(1 \times 1\). Then \(C\) is a column vector of dimension \(n - 1\). By similar arguments as in Case 2.1, we have

\[
A^{i+1} = \begin{pmatrix} 0 & 0 \\ A_{tt}^i C & A_{tt}^{i+1} \end{pmatrix} \leq \begin{pmatrix} 0 & 0 \\ A_{tt}^i & A_{tt}^{i+1} \end{pmatrix} = A^{i+1},
\]

and \(1 \leq i + 1 < j + 1 \leq 3^{(n-1)/2} + 1 \leq 3^{n/2}\). Hence \(\alpha(A) \leq 3^{n/2}\).

Case 2.2.2: \(B\) is not 0 of dimension \(1 \times 1\). Then we have either \(m \leq n - 2\) or \(B\) is of dimension \(1 \times 1\) but not 0. In the former case, we know by the induction hypothesis applied to \(B^k\) that there are integers \(i, j\) with \(0 \leq i < j \leq 3^{(n-m)/2}\) such that \((B^k)^i \leq (B^k)^j\), while in the latter case we have \((B^k)^i \leq (B^k)^j\) where \(i = 0\) and \(j = 1\). Note that

\[
A^k = \begin{pmatrix} B^k & 0 \\ C_k & A_{tt}^k \end{pmatrix}
\]

for some \(C_k\). By Lemma 4, \((A^k)^i \leq (A^k)^j\) and \(0 \leq ki < kj \leq 3^{m/2}3^{(n-m)/2} = 3^{n/2}\). Hence \(\alpha(A) \leq 3^{n/2}\).

The proof is now completed. \(\square\)

References

(Received 20/7/99; revised 8/10/99)

255