On the maximal number of vertices covered by disjoint cycles

Hong Wang*

Department of Mathematics
The University of Idaho
Moscow, Idaho 83844, USA

Abstract

Let \(k, t \) and \(n \) be three integers with \(t \geq 2, k \geq 2t \) and \(n \geq 3t \). We conjecture that if \(G \) is a graph of order \(n \) with minimum degree at least \(k \), then \(G \) contains \(t \) vertex-disjoint cycles covering at least \(\min(2k, n) \) vertices of \(G \). We will show the conjecture to be true for \(t = 2 \).

1 Introduction

We discuss only finite simple graphs and use standard terminology and notation from [1] except as indicated. Let \(k \) be an integer with \(k \geq 2 \). Let \(G \) be a graph of order \(n \geq 3 \). P. Erdős and T. Gallai [5] showed that if \(G \) is 2-connected and every vertex of \(G \) with at most one exception has degree at least \(k \), then \(G \) contains a cycle of length at least \(\min(2k, n) \). We wonder if \(G \) contains at least two vertex-disjoint cycles covering at least \(\min(2k, n) \) vertices of \(G \). This is certainly true if \(k \geq n/2 \) with \(k \geq 4 \) and \(n \geq 6 \) by El-Zahar’s result [4]. El-Zahar proved that if \(n = n_1 + n_2 \) is an integer partition of \(n \) with \(n_1 \geq 3 \) and \(n_2 \geq 3 \) and the minimum degree of \(G \) is at least \(\lceil n_1/2 \rceil + \lceil n_2/2 \rceil \), then \(G \) contains two vertex-disjoint cycles of lengths \(n_1 \) and \(n_2 \), respectively. Corrádi and Hajnal [2] investigated the maximum number of vertex-disjoint cycles in a graph. They proved that if \(G \) is a graph of order at least \(3t \) with minimum degree at least \(2t \), then \(G \) contains \(t \) vertex-disjoint cycles. In particular, when the order of \(G \) is exactly \(3t \), then \(G \) contains \(t \) vertex-disjoint triangles. Motivated by these results, we conjecture the following:

Conjecture A Let \(k, t \) and \(n \) be three integers with \(t \geq 2, k \geq 2t \) and \(n \geq 3t \). Suppose that \(G \) is a graph of order \(n \) with minimum degree at least \(k \). Then \(G \) contains \(t \) vertex-disjoint cycles covering at least \(\min(2k, n) \) vertices of \(G \).

Note that if this conjecture is true, then the condition on the degrees of \(G \) is sharp. This can be seen from the graph \(K_{k-1,n-k+1} \) with \(n > 2(k-1) \). By observing

*This research was supported by UIIRC SEED GRANTS–KDY932.

$K_{k,n-k}$, we also see that when $n \geq 2k$, G may not contain t vertex-disjoint cycles covering more than $2k$ vertices of G.

Erdős and Faudree [6] conjectured that if G is a graph of order $4t$ with minimum degree at least $2t$, then G contains t vertex-disjoint cycles of length 4. With respect to this conjecture, we proved [10] that G contains t vertex-disjoint cycles such that $t - 1$ of them are of length 4. It follows that G contains t vertex-disjoint cycles covering all the vertices of G such that at least $t - 2$ of them are of length 4. Thus Conjecture A is true when $n = 2k = 4t$. In this paper, we will prove the following result.

Theorem B Let k and n be two integers with $k \geq 4$ and $n \geq 6$. Let G be a graph of order n with minimum degree at least k. Then G contains two vertex-disjoint cycles covering at least $\min(2k, n)$ vertices of G.

We shall use the following terminology and notation. Let G be a graph. For a vertex $u \in V(G)$ and a subgraph H of G, $N(u, H)$ is the set of neighbors of u contained in H, i.e., $N(u, H) = N(u) \cap V(H)$. We let $d(u, H) = |N(u, H)|$. Thus $d(u, G)$ is the degree of u in G. For a subset U of $V(G)$, $G[U]$ denotes the subgraph of G induced by U. The length of a longest cycle of G is denoted by $c(G)$. We define $c_t(G)$ to be the maximal number of vertices of G covered by a set of t vertex-disjoint cycles of G. Thus $c_1(G) = c(G)$.

2 Lemmas

Let $G = (V, E)$ be a given graph in the following. Lemma 2.1 is an easy observation.

Lemma 2.1 Let C be a cycle of length s in G. Let P be a path of length at least $\lfloor s/2 \rfloor - 1$ in $G - V(C)$. Suppose that x and y are the two endvertices of P with $d(x, C) \geq 1$ and $d(y, C) \geq 1$. Then either $G[V(C \cup P)]$ contains a cycle longer than C, or $N(x, C) = N(y, C) = \{u\}$ for some $u \in V(C)$.

Lemma 2.2 Let C be a cycle of length s in G. Let P be a path of length at least 2 in $G - V(C)$. Suppose that x and y are the two endvertices of P and $d(x, C) + d(y, C) > s/2$. Then $G[V(C \cup P)]$ contains a cycle longer than C.

Proof. Let $C = u_1u_2 \ldots u_su_1$. The subscripts of the u_i's will be reduced modulo s in the following. Clearly, we have

$$2(d(x, C) + d(y, C)) = \sum_{i=1}^{s}(d(x, u_\i+1) + d(y, u_\i+2u_\i+3)) > s.$$

This implies that there exists $i \in \{1, 2, \ldots, s\}$ such that $d(x, u_\i+1) + d(y, u_\i+2u_\i+3) \geq 2$. The lemma follows.

Lemma 2.3 [5] Let $C = u_1u_2 \ldots u_su_1$ be a cycle of G. Let $i, j \in \{1, 2, \ldots, s\}$ with $i \neq j$. Suppose that $d(u_i, C) + d(u_j, C) \geq s + 1$. Then for each $\varepsilon \in \{-1, 1\}$, G has a path P from $u_{i+\varepsilon}$ to $u_{j+\varepsilon}$ such that $V(P) = V(C)$, where the subscripts are reduced modulo s.
Lemma 2.4 [5] Let $s \geq 2$ be an integer. Suppose that G is 2-connected and every vertex of G with at most one exception has degree at least s. Then G contains a cycle of length at least $\min(2s, n)$.

3 Proof of Theorem B

Let k and n be two integers with $k \geq 4$ and $n \geq 6$. Let $G = (V, E)$ be a graph of order n with $\delta(G) > k$. Suppose, for a contradiction, that G does not contain two vertex-disjoint cycles covering at least $\min(2k, n)$ vertices of G, i.e., $c_2(G) < \min(2k, n)$. By El-Zahar's result, $n > 2k$. Hence $c_2(G) < 2k$. Let C_0 be a smallest cycle of G; and subject to this, we choose C_0 such that the length of a longest cycle of $G - V(C_0)$ is maximal. Let C_1 be a longest cycle of $G - V(C_0)$. Subject to the choice of C_0 and C_1, we choose C_0 and C_1 such that the length of a longest path of $G - V(C_0 \cup C_1)$ is maximal. Set $H = G - V(C_0)$ and $D = H - V(C_1)$. Let P_0 be a longest path in D and set $D_0 = G[V(P_0)]$. We say that a block of H is an endblock if either the block contains exactly one cut-vertex of H or the block is a component of H.

We claim that C_0 is a triangle. If this is not true, then $d(x, C_0) \leq 2$ for all $x \in V(H)$ for otherwise G contains a smaller cycle than C_0. Hence $\delta(H) \geq k - 2$. Let $P = y_1 y_2 \ldots y_m$ be a longest path in H. Then $d(y_1, P) \geq k - 2$. As H does not contain a triangle, there exists y_i with $i \geq 2(k - 2)$ such that $y_1 y_i \in E$. Hence $c(H) \geq 2(k - 2)$ and therefore $c_2(G) \geq 2k$, a contradiction. Hence C_0 is a triangle. Then it is easy to see that C_1 exists.

Let $C_0 = u_1 u_2 u_3 u_1$. We divide our proof into the following two cases: $k = 4$ or $k \geq 5$.

Case 1. $k = 4$.

In this case, $c_2(G) \leq 7$. We break into the following two subcases according to whether H is 2-connected.

Case 1.1. H is 2-connected.

Clearly, $c(H) \geq 4$ as $|V(H)| = n - 3 > 4$. Thus $c_2(G) = 7$ and C_1 is of length 4. Let $C_1 = x_1 x_2 x_3 x_4 x_1$. As H is 2-connected, for each $x \in V(D)$, there exist two paths from x to two distinct vertices of C_1 such that x is the only common vertex of the two paths. Then we see that for each $x \in V(D)$, either $N(x, C_1) = \{x_3, x_4\}$ or $N(x, C_1) = \{x_2, x_4\}$ for otherwise $c(H) \geq 5$. Furthermore, D does not contain any edges. Let $x_0 \in V(D)$. Then $d(x_0, C_0) \geq 2$ and so $C_0 + x_0$ is hamiltonian. Consequently, $c_2(G) \geq 8$, a contradiction.

Case 1.2. H is not 2-connected.

Let H_1 and H_2 be two endblocks. Moreover, we choose H_1 and H_2 such that if H has a cut-vertex, then H_1 and H_2 are in the same component of H. For each $i \in \{1, 2\}$, let $x_i \in V(H_i)$ be such that if H_i contains a cut-vertex of H then it is x_i. We break into the following two situations.

Case 1.2(a). There exists $y_1 \in V(H_1 - x_1)$ such that $d(y_1, C_0) \geq 2$. Then $C_0 + y_1$ is hamiltonian. Hence $c(H_2) \leq 3$. This implies that $H_2 - x_2$ contains a vertex z_1 such
that $d(z_1, C_0) \geq 2$. Therefore $c(H_1) \leq 3$. It follows that $H_i \cong K_2$ or K_3 for each $i \in \{1, 2\}$.

First, suppose that either $H_1 \cong K_2$ or $H_2 \cong K_2$. Say w.l.o.g. that $H_1 \cong K_2$. Then $d(y_1, C_0) = 3$. Assume that H has a third endblock H_3. Then we also have that $H_3 \cong K_2$ or K_3. Let $w_1 \in V(H_3)$ be such that w_1 is not a cut-vertex of H. Thus $d(w_1, C_0) \geq 2$ and $C_0 + y_1 + w_1$ is hamiltonian. Therefore any block of H other than H_1 and H_3 is of order 2. In particular, $H_2 \cong K_2$. Similarly, we can readily show that $H_3 \cong K_2$. If H_1 and H_2 are not in the same component of H, then by the choice of H_1 and H_2, H must consist of independent edges only, and we see that $c_2(G) \geq 9$ as $e(C_0, H_1 \cup H_2 \cup H_3) = 18$, a contradiction. Therefore H_1 and H_2 are in the same component of H. Notice that $d(w_1, C_0) = d(z_1, C_0) = 3$ where $H_2 = x_2z_1$. As $C_0 - u_1 + w_1$ is a triangle in G, it follows that $x_1 = x_2$ for otherwise $c(H - w_1 + u_1) \geq 5$. If H_3 is in a component D' of H which does not contain H_1, then we see that either $D' = H_3$ and so $G[V(H_3) \cup \{u_2, u_3\}] \cong K_4$, or $G[V(D' + u_2)]$ contains a cycle of length at least 4 by applying the above argument to H_3 and H_4 where H_4 is another endblock of D'. Thus $c_2(G) \geq 8$, a contradiction. This argument allows us to see that H is connected and conclude that $H \cong K_{1,n-4}$ with $d(x_1, H) = n - 4$. It follows that $d(x, C_0) = 3$ for all $x \in V(H) - \{x_1\}$, and consequently, we readily see that $c_2(G) \geq 8$. Therefore H does not have a third endblock. Then it is easy to see that H is a path and $c_2(G) \geq 8$.

Therefore $H_1 \cong K_3$. Similarly, $H_2 \cong K_3$. Let $H_1 = x_1y_1y_2x_1$. Then we see that $C_0 + y_1 + y_2$ is hamiltonian and so $c_2(G) \geq 8$, a contradiction.

Case 1.2(b). For each $y \in V(H_1 - x_1)$, $d(y, C_0) \leq 1$.

Similarly, we must have that $d(z, C_0) \leq 1$ for all $z \in V(H_2 - x_2)$. Thus for each $i \in \{1, 2\}$, $d(v, H_i) \geq 3$ for all $v \in V(H_i - x_i)$. Clearly, $c(H_1) \geq 4$ and $c(H_2) \geq 4$. On the other hand, we must have $c(H) \leq 4$ and so $c(H_1) = c(H_2) = 4$. Thus $x_1 = x_2$. Let $P = v_1v_2\ldots v_m$ be a longest path of H_1 with $v_1 \neq x_1$. Then $N(v_1, H_1) = \{v_2, v_3, v_4\}$ and $d(v_1, C_0) = 1$. It is easy to see that $H_1 \cong K_4$ for otherwise we readily see that either $c(H_1) \geq 5$ or H_1 has a path longer than P. Similarly, $H_2 \cong K_4$. Clearly, $G[V(C_0 \cup H_1 - x_1)]$ contains a cycle of length at least 4. We obtain that $c_2(G) \geq 8$, a contradiction.

Case 2. $k \geq 5$.

Let $C_1 = x_1x_2\ldots x_{s-1}$. Then $s \leq 2k - 4$. We break into the following two cases: $s \geq 2k - 6$ or $s \leq 2k - 7$.

Case 2.1. $s \geq 2k - 6$.

Thus $s \in \{2k - 6, 2k - 5, 2k - 4\}$. Let $P_0 = y_1y_2\ldots y_r$. As $s = c(H)$, we clearly have

$$d(y, C_1) \leq \lfloor s/2 \rfloor \text{ for all } y \in V(D).$$ \hspace{1cm} (1)

We claim

$$r \geq 4.$$ \hspace{1cm} (2)

Proof of (2). On the contrary, suppose $r \leq 3$. First, assume $r = 1$. Then by (1), $d(y, C_0) \geq 2$ for all $y \in V(D)$. Thus $C_0 + y_1$ is hamiltonian and so $s \leq 2k - 5$. Then
by (1) again, \(d(y, C_0) \geq 3 \) for all \(y \in V(D) \). Clearly, adding any three vertices of \(D \) to \(C_0 \) will result in a hamiltonian subgraph of \(G \). Consequently, \(c_2(G) \geq 2k \), a contradiction.

Next, assume \(r = 2 \). If \(d(y_1, C_0) + d(y_2, C_0) \leq 2 \), then \(d(y_1, C_1) + d(y_2, C_1) \geq 2k - 4 \). By (1), we must have that \(d(y_1, C_1) = d(y_2, C_1) = k - 2 \). It is easy to see that \(C_1 + y_1 + y_2 \) contains a cycle of length \(s + 1 \) or \(s + 2 \), a contradiction. Hence \(d(y_1, C_0) + d(y_2, C_0) \geq 3 \). Thus \(C_0 + y_1 + y_2 \) contains a cycle of length at least \(4 \), and so \(s \leq 2k - 5 \). If \(d(y_1, C_0) + d(y_2, C_0) = 3 \), then \(d(y_1, C_1) + d(y_2, C_1) \geq 2k - 5 \), and consequently, either \(d(y_1, C_1) \geq k - 2 \) or \(d(y_2, C_1) \geq k - 2 \), contradicting (1). So \(d(y_1, C_0) + d(y_2, C_0) \geq 4 \). Thus \(C_0 + y_1 + y_2 \) is hamiltonian, and so \(s = 2k - 6 \). If \(d(y_1, C_0) + d(y_2, C_0) = 4 \), then we have, by (1), that \(d(y_1, C_1) = d(y_2, C_1) = k - 3 \). Again, we readily see that \(C_1 + y_1 + y_2 \) contains a cycle longer than \(C \), a contradiction. Hence \(d(y_1, C_0) + d(y_2, C_0) \geq 5 \). Let \(y' \) be a third vertex of \(D \). Then \(d(y', D) \leq 1 \) as \(r = 2 \). Thus \(d(y', C_0) \geq 2 \) by (1), and consequently, \(C_0 + y_1 + y_2 + y' \) is hamiltonian. It follows that \(c_2(G) \geq 2k \).

Finally, we assume that \(r = 3 \). By Lemma 2.2, \(d(y_1, C_1) + d(y_3, C_1) \leq \lfloor s/2 \rfloor \). We must have that \(d(y_1, C_0) + d(y_3, C_0) \leq 3 \) for otherwise \(C_0 + y_1 + y_2 + y_3 \) is hamiltonian. This implies that \(d(y_1) + d(y_3) \leq \lfloor s/2 \rfloor + 3 + 4 \). Furthermore, if \(d(y_1, C_0) + d(y_3, C_0) = 3 \), then \(C_0 + y_1 + y_3 \) contains a cycle of length at least \(4 \), and so we must have that \(s \leq 2k - 5 \). It follows that \(d(y_1) + d(y_3) < 2k \), a contradiction. So (2) holds.

By (2) and Lemma 2.2, we obtain

\[
d(y_1, C_0) + d(y_r, C_0) \leq 3 \text{ and } d(y_1, C_1) + d(y_r, C_1) \leq \lfloor s/2 \rfloor.
\] (3)

Note that if \(\max(d(y_1, C_0), d(y_r, C_0)) \geq 2 \), then \(C_0 + y_1 + y_r \) contains a cycle of length at least \(4 \) and so \(s \leq 2k - 5 \). Together with (3), we obtain

\[
d(y_1, P_0) + d(y_r, P_0) \geq k.
\] (4)

By (4), we see that either \(d(y_1, P_0) \geq \lceil k/2 \rceil \) or \(d(y_r, P_0) \geq \lceil k/2 \rceil \), and so \(c(D_0) \geq \lceil k/2 \rceil + 1 \). As \(c_2(H) < 2k \), \(4 \leq \lceil k/2 \rceil + 1 \leq 5 \). It follows

\[
k \in \{5, 6, 7, 8\} \text{ and } s \in \{2k - 6, 2k - 5\}.
\] (5)

We now break into the following two situations.

Case 2.1(a): \(s = 2k - 5 \).

Then \(c(G - V(C_1)) \leq 4 \). W.l.o.g., say \(d(y_1, P_0) \geq d(y_r, P_0) \). Then we must have that \(k \in \{5, 6\} \) and \(N(y_1, P_0) = \{y_2, y_3, y_4\} \). Then \(D_0 \) has a hamiltonian path from \(y_1 \) to \(y_r \) for each \(i \in \{1, 2, 3\} \). By Lemma 2.2, \(d(y_1, C_1) + d(y_3, C_1) \leq k - 3 \). First, suppose that \(d(y_r, C_0) \geq 1 \). Then we must have that \(d(y_1, C_0) = 0 \) for each \(i \in \{1, 2, 3\} \). Consequently, \(d(y_1, P_0) + d(y_3, P_0) \geq k + 3 \). It follows that \(c(D_0) \geq 5 \), a contradiction. Therefore, we must have that \(d(y_r, C_0) = 0 \). By (1), \(d(y_r, C_1) \leq k - 3 \) and so \(d(y_r, P_0) = 3 \), too. Similarly, we can readily show that \(d(y_1, C_0) = 0 \), \(d(y_1, P_0) + d(y_r, P_0) \geq k + 3 \) and \(c(D_0) \geq 5 \), a contradiction.
Case 2.1(b). \(s = 2k - 6 \).

Note that \(4 \leq s \leq 10 \) by (5). First, suppose that \(d(y_1, C_0) \geq 1 \) and \(d(y_r, C_0) \geq 1 \). Then we must have that \(N(y_1, C_0) = N(y_r, C_0) = \{u_i\} \) for some \(i \in \{1, 2, 3\} \) and \(r = 4 \) for otherwise \(c(G[V(C_0 \cup P_0)]) \geq 6 \). If \(d(y_1, C_1) = 0 \), then \(d(y_1, P_0) \geq k - 1 \geq 4 \) and so \(r \geq 5 \), a contradiction. Hence \(d(y_1, C_1) \geq 1 \), and similarly, \(d(y_r, C_1) \geq 1 \). Then we see that \(c(H) \geq 5 \) and so \(k \geq 6 \) by the maximality of \(s \). It is easy to see that if either \(\max(d(y_1, C_1), d(y_r, C_1)) \geq 2 \) or \(N(y_1, C_1) \neq N(y_r, C_1) \), then \(k = 8 \) and \(\max(d(y_1, C_1), d(y_r, C_1)) \leq 2 \) for otherwise \(c(H) > s \). Hence \(d(y_1, C_1) = 1 \) for otherwise \(d(y_1, P_0) \geq 5 \) and so \(c(D_0) \geq 6 \), a contradiction. It follows that \(d(y_1, P_0) \geq k - 2 \geq 4 \) and so \(r \geq 5 \), a contradiction.

Therefore we may assume w.l.o.g. that \(d(y_r, C_0) = 0 \). Then \(d(y_r, C_1) \geq 1 \) for otherwise we readily see that \(D_0 \geq 6 \). We claim that \(d(y_1, C_1) = 0 \). If this is not true, then \(c(H) \geq 5 \) and so \(k \geq 6 \). As \(c(D_0) \leq 5 \), \(d(y_r, P_0) \leq 4 \) and so \(d(y_r, C_1) \geq 2 \). Then again, we must have that \(k = 8 \) and \(d(y_r, C_1) = 2 \) for otherwise \(c(H) > s \). Hence \(d(y_r, P_0) \geq 6 \) and so \(c(D_0) \geq 7 \), a contradiction. So \(d(y_1, C_1) = 0 \). Hence \(d(y_1, C_0) \geq 1 \) for otherwise \(c(D_0) \geq 6 \).

As \(k \geq 5 \) and \(d(y_1, C_1) = 0 \), \(d(y_1, P_0) \geq 2 \). Let \(j + 1 \) be the greatest integer in \(\{2, 3, \ldots, r\} \) such that \(y_iy_{i+1} \in E \). Then \(D_0 \) has a Hamiltonian path from \(y_j \) to \(y_r \). Similarly, we must have that \(d(y_j, C_1) = 0 \) and \(d(y_j, C_0) \geq 1 \). As \(y_iy_{i+1}y_j \) is a path of \(G \), we see that \(d(y_1, C_0) = d(y_j, C_0) = 1 \) for otherwise \(c(G[V(C_0 \cup D_0)]) \geq 6 \). This yields that \(d(y_1, P_0) + d(y_j, P_0) \geq 2k - 2 \), and consequently, \(c(D_0) \geq k \). It follows that \(k = 5 \). But then \(s = 4 \), contradicting the maximality of \(s \).

Case 2.2. \(s \leq 2k - 7 \).

Clearly, we have that \(\delta(H) \geq k - 3 \). If \(H \) is 2-connected, then \(c(H) \geq 2k - 6 \) by Lemma 2.4, a contradiction. Hence \(H \) is not 2-connected. Let \(H_1 \) and \(H_2 \) be two arbitrary endblocks of \(H \). Set \(n_1 = |V(H_1)| \) and \(n_2 = |V(H_2)| \). As \(\delta(H) \geq k - 3 \) and by Lemma 2.4, we must have

\[
k - 2 \leq n_1 \leq 2k - 7 \quad \text{and} \quad k - 2 \leq n_2 \leq 2k - 7.
\]

By Lemma 2.4, both \(H_1 \) and \(H_2 \) are Hamiltonian. Let \(Q_1 = z_1z_2 \ldots z_{n_1}z_1 \) and \(Q_2 = y_1y_2 \ldots y_{n_2}y_1 \) be two Hamiltonian cycles of \(H_1 \) and \(H_2 \), respectively such that every \(v \in V(H_1 \cup H_2) - \{z_1, y_1\} \) is not a cut-vertex of \(H \).

First, suppose that for each \(i \in \{1, 2\} \), \(G \) does not have two independent edges between \(C_0 \) and \(H_i \). As \(\delta(G) \geq k \), this implies that \(n_1 \geq k \) and \(n_2 \geq k \). Therefore we must have that \(z_1 = y_1 \) for otherwise \(c_2(H) \geq 2k \). As \(2k - 7 \geq n_1 \geq k \), \(k \geq 7 \). As \(\delta(H) \geq k - 3 \), we have that \(\delta(H_i - z_i) \geq k - 4 \geq (n_i - 1)/2 \) for each \(i \in \{1, 2\} \). Therefore both \(H_1 - z_1 \) and \(H_2 - z_1 \) are Hamiltonian. Hence we must have that \(n_1 = n_2 = k \) for otherwise \(c_2(H) \geq 2k \). Therefore \(d(z_i, C_0) \geq 1 \) for all \(i \in \{2, 3, \ldots, k\} \). As there exist no two independent edges between \(C_0 \) and \(H_1 \), we obtain that \(d(z_i, C_0) = 1 \) and \(d(z_i, H_1) = k - 1 \) for all \(i \in \{2, 3, \ldots, k\} \). Consequently, \(H_1 \cong K_2 \), and we readily see that \(c(G[V(C_0 \cup H_1 - z_1)]) \geq k \), and so \(c_2(G) \geq 2k \), a contradiction.

Therefore we may assume w.l.o.g. that there exist two independent edges between \(C_0 \) and \(H_1 \). Say \(\{u_1z_i, u_2z_j\} \subseteq E \) for some \(1 \leq i < j \leq n_1 \). If \(\{z_i, z_j\} = \{z_2, z_{n_1}\} \),

184
then \(c(G[V(C_0 \cup H_1 - z_1)]) \geq k \). Then \(n_2 \leq k - 1 \) for otherwise \(c_2(G) \geq 2k \). Hence \(d(y_i, C_0) \geq 2 \) for all \(i \in \{2, 3, \ldots, n_2\} \). As \(\delta(H) \geq k - 3 \) and \(n_2 \leq 2k - 7 \), it is easy to prove that \(H_2 \) contains a triangle. Therefore \(2k - 7 \geq k \) by the maximality of \(s \), and so \(k \geq 7 \). It follows that there are two independent edges between \(C_0 \) and \(H_2 \) which are not incident with any of \(y_2 \) and \(y_{n_2} \). Therefore by abusing notation, we may assume in the first place that \(\{z_i, z_j\} \neq \{z_2, z_{n_1}\} \). Then either \(z_1 \notin \{z_i, z_{i-1}\} \) or \(z_1 \notin \{z_{i+1}, z_{j+1}\} \) where the subscripts are taken modulo \(n_1 \). We show \(k \geq 7 \) as follows. As \(\delta(H) \geq k - 3 \), \(n_1 \leq 2k - 7 \) and by Lemma 2.3, \(H_1 \) has a hamiltonian path from \(z_i \) to \(z_j \) and so \(c(G[V(C_0 \cup H_1)]) \geq k + 1 \). As before, we readily see that if \(H_2 - y_1 \) contains a triangle, then \(k \geq 8 \). If \(H_2 - y_1 \) does not contain a triangle, then we must have that \(d(y_2, C_0) = d(y_3, C_0) = 3 \) and therefore \(u_3y_2y_3u_3 \) is a triangle. Clearly, \(c(H_1 + u_1 + u_2) \geq k \). Then we obtain \(k \geq 7 \) as \(2k - 7 \geq k \) by the maximality of \(s \).

Suppose \(z_1 \neq y_1 \). Then we must have \(n_2 = k - 2 \) by (6) for otherwise \(c_2(G) \geq 2k \). Consequently, we see that \(H_2 \cong K_{k-2} \) and \(d(y_i, C_0) = 3 \) for each \(i \in \{2, 3, \ldots, k-2\} \). Similarly, we must have that \(H_1 \cong K_{k-2} \) and \(d(z_i, C_0) = 3 \) for all \(i \in \{2, 3, \ldots, k-2\} \). Then we see that \(H \) does not have a path of length at least 2 from \(z_1 \) to \(y_1 \) for otherwise \(c_2(G) \geq 2k \). Thus \(H \) must have a third endblock \(H_3 \). Then we may assume that \(H_1 \cap H_3 = \emptyset \) and repeat the above argument with \(H_3 \) replacing the role of \(H_2 \). Clearly, we see that \(c_2(G) \geq 3(k-2) + 2 > 2k \), a contradiction.

Therefore \(z_1 = y_1 \). As \(n > 2k \), \(H \) has a third endblock \(H_3 \), too. Set \(n_3 = |V(H_3)| \). Similarly, we can show that \(z_1 \in V(H_3), k-2 \leq n_3 \leq k-1 \) and \(H_3 - z_1 \) is hamiltonian. Clearly, \(d(y_2, C_2) \geq 2 \). As before, using Lemma 2.3, we see that \(H_1 \) has a hamiltonian path from \(z_1 \) to each \(z \in V(H_1) - \{z_1\} \). In particular, \(H_1 \) has a hamiltonian path from \(z_1 \) to a vertex \(z' \in \{z_i, z_j\} \). Then we see that \(G[V(C_0 \cup H_1 \cup H_2)] \) is hamiltonian. Hence \(c_2(G) \geq 3k - 5 > 2k \), a contradiction. This proves the theorem.

4 References

[10] H. Wang, On quadrilaterals in a graph, manuscript.

(Received 4/5/99)