A reduction theorem for circulant weighing matrices

K.T. Arasu*

Department of Mathematics and Statistics
Wright State University
Dayton, OH 45435, U.S.A.

Abstract
Circulant weighing matrices of order \(n \) with weight \(k \), denoted by \(WC(n,k) \), are investigated. Under some conditions, we show that the existence of \(WC(n,k) \) implies that of \(WC(\frac{n}{2}, \frac{k}{4}) \). Our results establish the nonexistence of \(WC(n,k) \) for the pairs \((n,k) = (125,25), (44,36), (64,36), (66,36), (80,36), (72,36), (118,36), (128,36), (136,36), (128,100), (144,100), (152,100), (88,36), (132,36), (160,36), (166,36), (176,36), (198,36), (200,36), (200,100) \). All these cases were previously open.

1 Introduction
A weighing matrix \(W(n,k) = W \) of order \(n \) with weight \(k \) is a square matrix of order \(n \) with entries from \(\{0, -1, +1\} \) such that

\[
WW^t = kI_n,
\]

where \(I_n \) is the \(n \times n \) identity matrix and \(W^t \) is the transpose of \(W \).

A circulant weighing matrix of order \(n \) with weight \(k \), denoted by \(W = WC(n,k) \) is a weighing matrix in which each row (except the first) is obtained from its preceding row by a right cyclic shift. We label the columns of \(W \) by a cyclic group \(G \) of order \(n \), say generated by \(g \).

Define

\[
P = \{g^i \mid W(1,i) = 1, i = 0,1,\ldots,(n-1)\}
\]

and

\[
N = \{g^i \mid W(1,i) = -1, i = 0,1,\ldots,(n-1)\}.
\]

Obviously, \(|P| + |N| = k \). It is well known that \(k \) is a perfect square, say \(k = s^2 \). It can be shown that \(|P|, |N| = \left\{\frac{s^2 \pm s}{2}\right\} \) (see [7], for instance).

For recent constructions and nonexistence results, refer to [1, 2, 3, 4, 5, and 8]. In this paper, we state and prove a reduction theorem for \(WC(n,k) \) using which nonexistence of several previously open \(WC(n,k) \) is established.

*Research partially supported by AFOSR grant F49620-96-1-0328 and NSA grant MDA 904-97-1-0012.

2 Preliminaries

Let G be a multiplicatively written group and $\mathbb{Z}G$ be the group ring of G over \mathbb{Z}. We will only consider cyclic groups G here. A character χ of G is a homomorphism from G to the multiplicative group of nonzero complex numbers. We can extend χ linearly to $\mathbb{Z}G$, obtaining a homomorphism χ from $\mathbb{Z}G$ to the field \mathbb{C} of complex numbers. For each subset S of G we let S denote the element $S = \sum x$ of $\mathbb{Z}G$. For

$$A = \sum_{\substack{g \in \mathbb{Z}G \text{ and } t \in \mathbb{Z},}} a_g g^t.$$

The following theorem is well known (see [1] or [8], for instance).

Theorem 1. $A WC(n, s^2)$ exists if and only if there exist disjoint subsets P and N of \mathbb{Z}_n (\mathbb{Z}_n written multiplicatively) such that

$$(P - N)(P - N)^{-1} = s^2. \quad (1)$$

We also require two further results.

Theorem 2. (Turyn [9]). Let p be a prime and $G = H \times P$, an abelian group, where P is the Sylow p-subgroup of G. Assume that there exists an integer f such that $p^f \equiv -1 \pmod{\exp H}$. Let χ be a nonprincipal character of G and let α be a positive integer. Suppose $A \in \mathbb{Z}G$ satisfies $\chi(A) \bar{\chi}(A) \equiv 0 \pmod{p^{2\alpha}}$. Then $\chi(A) \equiv 0 \pmod{p^\alpha}$.

Theorem 3. (Ma[6]) Let p be a prime and G an Abelian group with a cyclic Sylow p-subgroup. If $A \in \mathbb{Z}G$ satisfies $\chi(A) \equiv 0 \pmod{p^\alpha}$ for all nonprincipal characters χ of G, then there exist $x_1, x_2 \in \mathbb{Z}G$ such that

$$A = p^\alpha x_1 + Qx_2$$

where Q is the unique subgroup of G of order p.

3 Main result

We now state and prove our reduction theorem for $WC(n, k)$

Theorem 4. Suppose that a $WC(p^a.m, p^{2b}.u^2)$ exists where p is a prime, a, b, m, u are positive integers satisfying $(p, m) = (p, u) = 1$. Assume that there exists an integer f such that $p^f \equiv -1 \pmod{m}$.

Then

(i) $p = 2$ and $b = 1$

and

(ii) there exists a $WC(p^{a-1}.m = 2^{a-1}.m; p^{2b-2}u^2 = u^2)$.

112
Proof: By (1), there exist disjoint subsets \(P \) and \(N \) of \(G = \langle g \rangle \), \(\sigma(g) = p^a \cdot m \), such that
\[
(P - N)(P - N)^{(-1)} = p^{2b} \cdot u^2.
\] (2)

For each nonprincipal character \(\chi \) of \(G \), from (2), we have
\[
\chi(P - N) \chi(P - N) \equiv 0 \pmod{p^{2b}}.
\] (3)

Applying Theorem 2, we get
\[
\chi(P - N) \equiv 0 \pmod{p^b}.
\] (4)

Theorem (3) now yields:
\[
P - N = p^b x_1 + Q x_2
\] (5)

where \(Q = \langle h \rangle \) is the unique subgroup of \(G \) of order \(p \).

From (5), we obtain
\[
(P - N)(1 - h) \equiv 0 \pmod{p^b}
\] (6)

Since the coefficients of \(P - N \) lie in \([-1, 1]\) it follows that the coefficients of \((P - N)(1 - h) \) lie in \([-2, 2]\). Then (6) implies that \(p^b \leq 2 \). (Note that \((P - N)(1 - h) \) is nonzero, because there exists some character \(\chi \) of \(G \) such that \(\chi(h) \neq 1 \). We can now conclude that \(p = 2 \) and \(b = 1 \), proving (i).

Hence (6) becomes:
\[
(P - N)(1 - h) \equiv 0 \pmod{2}
\] (7)

where \(\sigma(h) = 2 \).

Let \(\sigma \) denote the canonical homomorphism from \(G \) to \(G/\langle h \rangle \). Then \(\sigma \) extends linearly to a ring homomorphism from \(\mathbb{Z}G \) to \(\mathbb{Z} \left[G/\langle h \rangle \right] \). From (7) we see that \((P - N)^\sigma \) has coefficients 0, 2, or \(-2\). Hence \(\frac{1}{2} (P - N)^\sigma \) has coefficients 0, 1 or \(-1\).

We now use (2) and obtain
\[
\frac{1}{2} (P - N)^\sigma \frac{1}{2} ((P - N)^\sigma)^{(-1)} = 2^{2b - 2} \cdot u^2 = u^2.
\] (8)

shows that \(\frac{1}{2} (P - N)^\sigma \) defines a \(WC(2^{a-1}m, u^2) \), completing the proof of Theorem 4.

4 Applications

Proposition 1: \(WC(n,k) \) does not exist for the following pairs \((n,k)\) : (i) (125, 25), (ii) (44, 36), (iii) (64, 36), (iv) (66, 36), (v) (80,36), (vi) (72,36), (vii) (118, 36), (viii) (128, 36), (ix) (136, 36), (x) (128, 100), (xi) (144, 100), (xii) (152, 100), (xiii) (88,36), (xiv) (132,36), (xv) (160,36), (xvi) (166,36), (xvii) (176,36), (xviii) (198, 36), (xix) (200, 36), (xx) (200,100).

Proof: The case (125, 25) follows from (i) of Theorem 4. For the remaining pairs, we apply Theorem 4, Part (ii), noting that \(WC(\frac{n}{2}, \frac{k}{4}) \) does not exist in each of the remaining 19 cases. The nonexistence of these smaller order (and smaller weight) circulant weighing matrices follows from methods of [2].
References

(Received 11/8/97)