An easy bijective proof of the Matrix-Forest Theorem

Kimmo Eriksson
Dept. of Mathematics, SU, S-106 09 Stockholm, Sweden
kimmo@nada.kth.se

Abstract

The Matrix-Forest Theorem says that for a subset \(I \) of vertices of a digraph, the number of \(I \)-rooted spanning forests is the determinant of the submatrix obtained from the Laplacian by deleting all rows and columns corresponding to nodes in \(I \). We give an easy bijective proof of this fact.

The rather well-known Matrix-Tree Theorem gives the number of spanning trees of a graph as a minor of the Laplacian of the graph. This note will give an easy bijective proof of what one might call the "Matrix-Forest Theorem", which is a slightly less general version of the "All Minors Matrix-Tree Theorem" of Chen [2] and Chaiken [3], while containing the ordinary Matrix-Tree Theorem, see Biggs [1] or Goulden-Jackson [4]. This new proof should be good for education purposes, taking the theorem down to a bijective interpretation of the expansion of the determinant.

Let \(G = (V, E) \) be a finite directed graph. Between any pair of nodes there may be arbitrarily many edges, and they are distinguishable. Let \(d_{ij} \) denote the number of edges directed from node \(i \) to node \(j \) in \(G \). Let \(d_{i}^+ = \sum_{j \neq i} d_{ij} \), the total number of edges that are directed from \(i \) to any other node; loops are disregarded. The Laplacian of \(G \) is the square matrix \(L \in \mathbb{R}^{V \times V} \) where the element in place \((i, j)\) is \(d_{ij}^+ \) if \(i = j \) and \(-d_{ij}\) if \(i \neq j \). The row sums of \(L \) are zero, so \(L \) is singular.

A \(J \)-cycle in \(G \), for \(J \subseteq V \), is a directed cycle visiting each of the nodes in \(J \) once.

For any node \(i \), by an \(i \)-rooted tree in \(G \) we mean a tree where every node has exactly one outgoing edge except \(i \) which has none. In other words, for any node \(j \) in the tree, the path between \(j \) and \(i \) in the tree is directed towards \(i \). (Such a tree is sometimes called an "in-directed arborescence".) If the tree reaches all the nodes in \(V \), it is an \(i \)-rooted spanning tree.

For any node set \(I \subseteq V \), by an \(I \)-rooted spanning forest in \(G \) we mean a collection of \(i \)-rooted trees, one for each \(i \in I \), such that every node in \(V \) is in exactly one of

the components. For example, an \(\{i\}\)-rooted spanning forest is simply an \(i \)-rooted spanning tree; there exists no \(\emptyset \)-rooted spanning forest.

Theorem 1 (Matrix-Forest Theorem) If \(G = (V, E) \) is a digraph with Laplacian \(L \) and \(I \subseteq V \), then the number of \(I \)-rooted spanning forests in \(G \) is

\[
\text{spanf}_G(I) = \det L_I,
\]

where \(L_I \) denotes the submatrix obtained by deleting the \(i \)-th row and column for all \(i \in I \).

The theorem will follow from this lemma:

Lemma 1 \(\text{spanf}_G(I) \) can be determined recursively by

\[
\text{spanf}_G(I) = d_x^+ \cdot \text{spanf}_G(I \cup \{x\}) - \sum_{x \in J \subseteq V \setminus I \atop |J| \geq 2} \# J\text{-cycles} \cdot \text{spanf}_G(I \cup J),
\]

where \(x \) is any node in \(V \setminus I \).

Proof. The first term on the righthand side counts pairs consisting of one edge directed from \(x \) and one \((I \cup \{x\}) \)-rooted spanning forest. When adding an edge \(e \) directed from \(x \) to some node \(y \) to a \((I \cup \{x\}) \)-rooted spanning forest, we get one of two cases, depending on which of the trees in the forest that contains \(y \):

Case 1: \(y \) is a node in a tree rooted in \(i \in I \). Then by adding \(e \) the \(x \)-rooted tree becomes a part of the \(i \)-rooted tree, and what remains is an \(I \)-rooted spanning forest.

Case 2: \(y \) is a node in the \(x \)-rooted tree. Then by adding \(e \) we get some directed cycle \(C = (xy \cdots) \). Say that \(J \) is the set of nodes in \(C \), so \(C \) is a \(J \)-cycle. Erase the edges in this cycle. Then all the nodes in \(J \) become roots, so we obtain an \(I \cup J \)-rooted spanning forest.

It is easily seen that the steps above are invertible. Hence we have described a bijection that establishes the identity

\[
d_x^+ \cdot \text{spanf}_G(I \cup \{x\}) = \text{spanf}_G(I) + \sum_{x \in J \subseteq V \setminus I \atop |J| \geq 2} \# J\text{-cycles} \cdot \text{spanf}_G(I \cup J),
\]

which is equivalent to the desired formula. □

We shall now relate the number of \(I \)-rooted spanning forests of \(G \) to determinants of certain submatrices of the Laplacian \(G \). Let us adopt the following conventions: The determinant of an empty submatrix is 1; \(S_V \) is the set of permutations on the set \(V \); \(C_V \subset S_V \) is the set of cyclic permutations on \(V \).

We shall prove the theorem by expanding the determinant in the cycles containing a certain element. An alternative form of the basic expansion of the determinant of a matrix \(A \in \mathbb{R}^{V \times V} \) with \(x \in V \) is

\[
\det A = a_{xx} \det A_{\{x\}} - \sum_{x \in J \subseteq V} \sum_{x \in C_J} \prod_{j \in J} (-a_{i,j}) \det A_J.
\] \hspace{1cm} (1)

302
This can be obtained as follows from the basic expansion,
\[\det A = \sum_{\pi \in \mathcal{S}_V} \text{sgn } \pi \prod_{j \in V} a_{j, \pi(j)}. \]

Split the sum into two parts according to whether \(x \) is a fixpoint of \(\pi \) or not. If \(x \) is not a fixpoint, let \(\tau \) be the cycle that contains \(x \) in the cycle decomposition of \(\pi \), and let \(J \) be the set of elements in the cycle. Thus we have \(x \in J, \tau \in \mathcal{C}_J \) and, because \(x \) was not a fixpoint, \(|J| \geq 2 \).

\[\det A = a_{xx} \sum_{\pi' \in \mathcal{S}_{V \setminus \{x\}}} \text{sgn } \pi' \prod_{j \in V \setminus \{x\}} a_{j, \pi'(j)} + \sum_{x \in J \subseteq V} \sum_{\tau \in \mathcal{C}_J, |J| \geq 2} \text{sgn } \tau \prod_{j \in J} a_{j, \tau(j)} \sum_{\sigma \in \mathcal{S}_{V \setminus J}} \text{sgn } \sigma \prod_{k \in V \setminus J} a_{k, \sigma(k)}. \]

Since \(\tau \) is a cycle on \(J \), the sign of \(\tau \) is \(\text{sgn } \tau = (-1)^{|J|+1} \). Hence we can multiply each \(a_{j, \tau(j)} \) by a \((-1)\) and still have one \((-1)\) left. By using the basic expansion of the determinant again, twice, we get equation (1).

The theorem is now proved by induction on \(|V \setminus I| \), the size of submatrix \(L_I \). If \(|V \setminus I| = 0 \), i.e. if \(V = I \), then \(L_I \) is the empty matrix. Since there is only one \(V \)-rooted spanning forest and \(\det L_I = 1 \), the statement is true. Suppose it is true whenever \(|V \setminus I| \leq p \) and consider a subset \(I \subseteq V \) with \(|V \setminus I| = p + 1 > 0 \). Choose some \(x \in V \setminus I \). Equation 1, with \(A = L_I, a_{xx} = d^+_x \) and \(-a_{ij} = d_{ij} \) when \(i \neq j \), gives:

\[\det L_I = d^+_x \cdot \det L_{I \cup \{x\}} - \sum_{x \in J \subseteq V \setminus I} \sum_{\tau \in \mathcal{C}_J, |J| \geq 2} \prod_{j \in J} d_{j, \tau(j)} \det L_{I \cup J}. \]

Now, thanks to the induction hypothesis, \(\det L_{I \cup \{x\}} \) is equal to the number of \(\{I \cup \{x\}\}\)-rooted spanning forests in \(G \); also, \(\det L_{I \cup J} \) is the number of \(\{I \cup J\}\)-rooted spanning forests. The sum \(\sum_{\tau \in \mathcal{C}_J} \prod_{j \in J} d_{j, \tau(j)} \) is clearly the number of \(J \)-cycles in \(G \). Hence we have proved that

\[\det L_I = d^+_x \cdot \text{span}_{G}(I \cup \{x\}) - \sum_{x \in J \subseteq V \setminus I} |J| \text{-cycles} \cdot \text{span}_{G}(I \cup J) = \text{span}_{G}(I) \]

by the lemma. The theorem follows by induction. \(\square \)

References

(Received 11/4/95)