The intersection problem for small G-designs

ELIZABETH J. BILLINGTON*
Centre for Combinatorics, Department of Mathematics,
The University of Queensland, Queensland 4072, AUSTRALIA

DONALD L. KREHER
Department of Mathematical Sciences, Michigan Technological University,
Houghton, Michigan, U.S.A. 49931-1295

Abstract

A G-design of order n is a pair (P, B) where P is the vertex set of the complete graph K_n and B is an edge-disjoint decomposition of K_n into isomorphic copies of the simple graph G. Following design terminology, we call these copies "blocks". Given a particular graph G, the intersection problem asks for which k is it possible to find two G-designs (P, B_1) and (P, B_2) of order n, with $|B_1 \cap B_2| = k$, that is, with precisely k common blocks. Here we complete the solution of this intersection problem for several G-designs where G is "small", so that now it is solved for all connected graphs G with at most four vertices or at most four edges.

1 Introduction and preliminaries

Let G be a simple graph which is some subgraph of K_n, the complete undirected graph on n vertices. A G-design of order n is a pair (V, B) where V is the vertex set of K_n and B is an edge-disjoint decomposition of K_n into copies of the simple graph G. Following design terminology, we refer to these copies of G as blocks. Thus, for example, a Steiner triple system is a K_3-design and a balanced incomplete block design with block size four and index $\lambda = 1$ is a K_4-design. The number of blocks, $|B|$, is $\binom{n}{2}/|E(G)|$ where $E(G)$ is the edge-set of G; this number clearly must be an integer.

*Research supported by the Australian Research Council.
The intersection problem for G-designs asks for what values of k is it possible to find two G-designs (V, B_1) and (V, B_2), of the same order $|V|$ and based on the same set V, with $|B_1 \cap B_2| = k$; that is, having precisely k common blocks. This problem was first considered for Steiner triple systems or K_3-designs (see [8]), and since then the intersection problem has been considered for many different types of combinatorial structures; see [3] for a recent survey.

A (p, q) graph is one with p vertices and q edges. We list below all non-trivial connected simple (p, q) graphs with $\min(p, q) \leq 4$.

$q = 1$ $\longrightarrow K_2$

$q = 2$ $\longrightarrow P_3$

$q = 3$ $\longrightarrow K_3$, $\longrightarrow S_3$, $\longrightarrow P_4$

$q = 4$ $\longrightarrow C_4$, $\longrightarrow S_4$, $\longrightarrow D$, $\longrightarrow Y$, $\longrightarrow P_5$

$q = 5$ $\longrightarrow K_4 - e$

$q = 6$ $\longrightarrow K_4$

Clearly a K_2-design is unique; each block is an edge! And so for this design we cannot find two distinct designs, let alone a pair of designs intersecting in a specified number of blocks! So we leave this trivial case.

As mentioned above, the intersection problem for K_3-designs was dealt with in [8]. The intersection problem for C_4-designs appears in [4], for $(K_4 - e)$-designs in [5] and for K_4-designs (with a few exceptions) in [6].

The remaining cases, namely the graphs P_3, P_4, P_5, S_3, S_4, D and Y, we deal with below. We use the notation of [2] for names of these graphs, and the following diagram shows how we label the blocks.

\[D \]
\[a \]
\[b \]
\[c \]
\[d \]

$(a, b, c) \rightarrow d$ or $(b, a, c) \rightarrow d$

\[Y \]
\[a \]
\[b \]
\[c \]
\[e \]
\[d \]

$(a, b, c; d, e)$ or $(a, b, c; e, d)$

\[P_n \]
\[a_1 \]
\[a_2 \]
\[\ldots \]
\[a_n \]

(a_1, a_2, \ldots, a_n) or $(a_n, a_{n-1}, \ldots, a_1)$

240
In what follows we let $IG(n)$ denote the set of integers k for which there exist two G-designs (P, B_1) and (P, B_2) with $|P| = n$ and $|B_1 \cap B_2| = k$. Also if G is a graph with q edges, let

$$JG(n) = \begin{cases} \{0, 1, 2, \ldots, \frac{1}{q} \binom{n}{2} - 2, \frac{1}{q} \binom{n}{2}\} & \text{if } q \mid \binom{n}{2}; \\ \emptyset & \text{otherwise}. \end{cases}$$

In other words, $JG(n)$ denotes the intersection numbers one expects to achieve with a G-design of order n.

We also modify this notation slightly and let $IG(H)$ and $JG(H)$ denote respectively the achievable and expected intersection numbers for a G-decomposition of the graph H.

We also need the following definition. If S is a set of positive integers and h is some positive integer, then $h \ast S$ denotes the set of all integers which can be obtained by adding any h elements of S together (repetitions of elements of S allowed). For example, $2 \ast \{0, 1, 3\} = \{0, 1, 2, 3, 4, 6\}$.

Subsequently we shall need to decompose certain bipartite and tripartite graphs into edge-disjoint copies of the graphs G. Consider the following example.

Example 1.1 Decompositions of $K_{4,4}$ into copies of P_5.

Let $K_{4,4}$ have vertex set $\{1_1, 2_1, 3_1, 4_1\} \cup \{1_2, 2_2, 3_2, 4_2\}$, and let $P = \{A, B, C, D\}$ where

- $A = (1_2, 1_1, 2_2, 2_1, 3_2)$,
- $B = (1_2, 4_1, 4_2, 3_1, 3_2)$,
- $C = (1_1, 3_2, 4_1, 2_2, 3_1)$,
- $D = (1_1, 4_2, 2_1, 1_2, 3_1)$.

These cover the 16 edges of $K_{4,4}$, and so form a P_5-decomposition of $K_{4,4}$.

Now C and D cover the same edges as

- $C' = (1_2, 2_1, 4_2, 1_1, 3_2)$, $D' = (1_2, 3_1, 2_2, 4_1, 3_2)$,

while B, C and D together cover the same edges as

- $\hat{B} = (2_2, 4_1, 3_2, 1_1, 4_2)$, $\hat{C} = (1_2, 2_1, 4_2, 3_1, 3_2)$, $\hat{D} = (2_2, 3_1, 1_2, 4_1, 4_2)$.

Moreover, the permutation $(1\ 2)$ applied to the subscripts of blocks A, B, C and D yields a different P_5-decomposition of $K_{4,4}$ having no blocks in common with P; call these blocks \overline{P}.

Thus we see that $|P \cap \overline{P}| = 0$, $|P \cap \{A, \hat{B}, \hat{C}, \hat{D}\}| = 1$, $|P \cap \{A, B, C', D'\}| = 2$, $|P \cap \overline{P}| = 4$. (Clearly it is not possible to have two decompositions which have all but one block in common.) We record these intersection numbers for P_5-decompositions of $K_{4,4}$ as

$$IP_5(K_{4,4}) = \{0, 1, 2, 4\}.$$
More generally, if K is a collection of graphs, then a K-decomposition of the graph H, (V, B), is an edge-disjoint decomposition of H with vertex set V into a set of subgraphs B, with each subgraph isomorphic to some graph in K. If $K = \{G\}$, then we call this a G-decomposition of H, and if also $H = K_n$, then it is a G-design of order n.

The following lemma will be most useful in the rest of this paper.

Lemma 1.1 Let G be a graph with q edges and suppose (V, B) is a $\{K_m, H\}$-decomposition of K_n, with $\alpha > 0$ blocks isomorphic to K_m. If $IG(m) = JG(m)$ and $IG(H) \supseteq \{0, r\}$ with $|E(H)| = qr$ and $q(r + 1) \leq \alpha \left(\frac{m}{2}\right)$, then $IG(n) = JG(n)$.

Proof. First a G-design of order n can be constructed by replacing each of the blocks $B \in B$ that is isomorphic to K_m by a G-design of order m, and replacing each of the blocks $B \in B$ that is isomorphic to H by a G-decomposition of H.

Secondly, if $q \left(\frac{m}{2}\right)$, then for any positive integer x,

$$x \ast JG(m) = \left\{0, 1, 2, \ldots, \frac{x}{q} \left(\frac{m}{2}\right) - 2, \frac{x}{q} \left(\frac{m}{2}\right)\right\},$$

and for all $x \geq r + 1$,

$$\{0, 1, 2, \ldots, x - 2, x\} \cup \{0, r\} = \{0, 1, 2, \ldots, x + r - 2, x + r\}.$$

Thus if B contains α blocks isomorphic to K_m and β blocks isomorphic to H, then

$$IG(v) \supseteq \alpha \ast JG(m) + \beta \ast \{0, r\} = \{0, 1, 2, \ldots, z - 2, z\}$$

where $z = \alpha \left(\frac{m}{2}\right) + \beta r$. But B is a decomposition of K_n so we also have $\alpha \left(\frac{m}{2}\right) + \beta qr = \binom{n}{2}$. Thus $z = \frac{1}{q} \binom{n}{2}$, as required. Hence $IG(n) = JG(n)$. \hfill \square

In what follows, the graph H in Lemma 1.1 will usually be a complete bipartite or tripartite graph.

2 Paths on 3, 4 and 5 vertices

2.1 The path P_3

Note that a P_3-design of order n contains $n(n - 1)/4$ blocks and so we must have $n \equiv 0$ or 1 (mod 4).

Example 2.1 $IP_3(K_{2,2}) = \{0, 2\}$.

Take designs (P, B_i), $i = 1, 2$, where the vertex set of $K_{2,2}$ is $P = \{a, b\} \cup \{c, d\}$, and $B_1 = \{(a, c, b), (a, d, b)\}$, $B_2 = \{c, a, d\}, (c, b, d)$). Since $|B_1 \cap B_2| = 0$ we have $IP_3(K_{2,2}) = \{0, 2\}$. \hfill \square
EXAMPLE 2.2 $IP_3(4) = \{0, 1, 3\}$.

We use designs (P, B_i), $i = 1, 2, 3$, where $P = \{a, b, c, d\}$ and

\[
B_1 = \{(a, b, c), (a, c, d), (a, d, b)\}, \\
B_2 = \{(a, b, c), (d, a, c), (b, d, c)\}, \\
B_3 = \{(a, b, d), (a, d, c), (a, c, b)\}.
\]

Here $|B_1 \cap B_2| = 1$, $|B_1 \cap B_3| = 0$ and of course $|B_1 \cap B_1| = 3$. The result follows. □

EXAMPLE 2.3 $IP_3(K_{1, 2n}) = \{0, 1, 2, \ldots, n - 2, n\}$.

The verification of this is immediate. □

Now let $n = 4m$, and take the vertex set of K_n to be $\{(i, j) \mid 1 \leq i \leq 2m, \ j = 1, 2\}$. Take K_4 blocks $\{(2i - 1, j), (2i, j) \mid j = 1, 2\}$, for $1 \leq i \leq m$, and $K_{2, 2}$ blocks $\{(a, 1), (a, 2)\} \cup \{(b, 1), (b, 2)\}$ where $1 \leq a < b \leq 2m$ and $\{a, b\} \neq \{2i - 1, 2i\}$ for $1 \leq i \leq m$. The result is a $\{K_4, K_{2, 2}\}$-decomposition of K_{4m} and consequently by Lemma 1.1 we have $IP_3(4m) = JP_3(4m)$.

Now let $n = 4m + 1$, and let the vertex set of K_n be $\{1, 2, \ldots, 4m, \infty\}$. We may use P_3-designs of order $4m$ on $\{1, 2, \ldots, 4m\}$ and use Example 2.3 to find P_3-decompositions of $K_{1, 4m}$ on $\{\infty\} \cup \{1, 2, \ldots, 4m\}$. Thus

\[
IP_3(4m + 1) \supseteq IP_3(4m) + IP_3(K_{1, 4m}) = \{0, 1, 2, \ldots, m(4m + 1) - 2, m(4m + 1)\} = JP_3(4m + 1).
\]

We have now proved

Theorem 2.1 The intersection numbers for P_3-designs are given by $IP_3(n) = JP_3(n) = \{0, 1, \ldots, b - 2, b\}$ where $b = n(n - 1)/4$, the total number of blocks in a P_3-design of order n. □

2.2 The path P_4

A P_4-design of order n contains $n(n - 1)/6$ blocks so that $n \equiv 0$ or $1 \pmod{3}$, $n \geq 4$. So let $n = 3m$ or $3m + 1$. First we give some necessary examples.

Example 2.4 $IP_4(4) = \{0, 2\}$.

Let $V = \{1, 2, 3, 4\}$, $B_1 = \{(1, 2, 3, 4), (2, 4, 1, 3)\}$, $B_2 = \{(1, 4, 3, 2), (3, 1, 2, 4)\}$. Then (V, B_1), (V, B_2) are both P_4-designs, and $|B_1 \cap B_2| = 0$; the result follows. □

Example 2.5 $IP_4(K_{3, 3}) \supseteq \{0, 3\}$.

Let $K_{3, 3}$ have vertex set $V = \{1, 2, 3\} \cup \{4, 5, 6\}$. Two disjoint decompositions are $B_1 = \{(1, 4, 2, 5), (2, 6, 3, 4), (3, 5, 1, 6)\}$, $B_2 = \{(2, 5, 3, 6), (3, 4, 1, 5), (1, 6, 2, 4)\}$. The result follows. □
Example 2.6 $IP_4(6) = \{0, 1, 2, 3, 5\}$.

Let K_6 have vertex set $V = \{0, 1, 2, 3, 4, 5\}$, and let $A = \{(0, 1, 2, 3), (3, 0, 5, 2), (0, 4, 3, 1)\}$, $B = \{(0, 2, 4, 5), (3, 5, 1, 4)\}$, and $C = \{(0, 4, 3, 1), (3, 5, 1, 4)\}$. Then $(V, A \cup B)$ is one P_4-design of order 6. Note that the blocks A trade with $A' = \{(1, 0, 5, 2), (4, 0, 3, 2), (4, 3, 1, 2)\}$, and the blocks C trade with $C' = \{(0, 4, 1, 3), (1, 5, 3, 4)\}$. Let $X = A \cup B$, and let α denote the permutation $(14)(35)$ and β the permutation $(15)(34)$. The following table lists intersection numbers.

<table>
<thead>
<tr>
<th>blocks</th>
<th>intersection size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X, \ X\alpha$</td>
<td>0</td>
</tr>
<tr>
<td>$X, \ X\beta$</td>
<td>1</td>
</tr>
<tr>
<td>$X, {A', B}$</td>
<td>2</td>
</tr>
<tr>
<td>$X, ((X \setminus C) \cup C')$</td>
<td>3</td>
</tr>
<tr>
<td>$X, \ X$</td>
<td>5</td>
</tr>
</tbody>
</table>

Example 2.7 $IP_4(7) = \{0, 1, 2, 3, 4, 5, 7\}$.

Let K_7 have vertex set $V = \{0, 1, 2, 3, 4, 5, 6\}$. Let $A = \{(0, 1, 3, 6), (1, 2, 4, 0)\}$, $B = \{(2, 3, 5, 1), (3, 4, 6, 2), (4, 5, 0, 3)\}$ and $C = \{(5, 6, 1, 4), (6, 0, 2, 5)\}$. Then (V, X), where $X = (A \cup B \cup C)$, is a P_4-design of order 7. Moreover, A, B and C trade with $A' = \{(2, 1, 3, 6), (1, 0, 4, 2)\}$, $B' = \{(1, 5, 0, 3), (6, 4, 5, 3), (6, 2, 3, 4)\}$ and $C' = \{(4, 1, 6, 0), (0, 2, 5, 6)\}$ respectively. Let α denote the permutation $(06)(13)$. The following table lists intersection numbers.

<table>
<thead>
<tr>
<th>blocks</th>
<th>intersection size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X, A' \cup B' \cup C'$</td>
<td>0</td>
</tr>
<tr>
<td>$X, \ X\alpha$</td>
<td>1</td>
</tr>
<tr>
<td>$X, A \cup B' \cup C'$</td>
<td>2</td>
</tr>
<tr>
<td>$X, A' \cup B \cup C'$</td>
<td>3</td>
</tr>
<tr>
<td>$X, A \cup B' \cup C$</td>
<td>4</td>
</tr>
<tr>
<td>$X, A' \cup B \cup C$</td>
<td>5</td>
</tr>
<tr>
<td>$X, \ X$</td>
<td>7</td>
</tr>
</tbody>
</table>

Example 2.8 $IP_4(9) = \{0, 1, 2, \ldots, 9, 10, 12\}$.

Take a P_4-design of order 6, on $\{0, 1, 2, 3, 4, 5\}$, and adjoin elements H, J and K, and also the blocks

$$X = \{(0, H, 1, J), (2, H, 3, J), (4, H, 5, J), (1, K, 0, J), (3, K, 2, J), (5, K, J, H), (H, K, 4, J)\}.$$

Now using $IP_4(6)$ we have $\{7, 8, 9, 10, 12\} \subseteq IP_4(9)$. Also applying the permutation (HJ) to the set X changes all the blocks in X, so again using $IP_4(6)$ we have $\{0, 1, 2, 3, 5\} \subseteq IP_4(9)$.

244
Thus it remains to show that 4 and 6 are in $IP_4(9)$. To do this, let D denote the
design with blocks $X \cup A \cup B$ where A and B are as in Example 2.6 above. Then
$|D \cap D\gamma| = 4$ where γ is the permutation $(0,3)(1,2)$. Finally, let
\[T = \{(0, 2, 4, 5), (3, 0, 5, 2), (0, 4, 3, 1), (3, 5, 1, 4)\} \]
which has trade
\[T' = \{(3, 1, 4, 5), (0, 3, 5, 1), (3, 4, 2, 0), (4, 0, 5, 2)\}. \]
Then $|D\gamma \cap ((D \setminus T) \cup T')| = 6$, which completes the intersection numbers for designs of order 9.

Now let $n = 3m + 1$ and let the vertex set of K_n be $V = \{(i, j) \mid 1 \leq i \leq m, j = 1, 2, 3\} \cup \{\infty\}$. There is a $\{K_7, K_4, K_{3,3}\}$-decomposition of K_n with: one K_7
block $\{\infty\} \cup \{(i, j) \mid i = 1, 2; j = 1, 2, 3\}$; K_4 blocks $\{\infty\} \cup \{(i, j) \mid j = 1, 2, 3\}$,
for $3 \leq i \leq m$; $K_{3,3}$ blocks $\{(i, j) \mid j = 1, 2, 3\} \cup \{(i', j) \mid j = 1, 2, 3\}$, for all
$1 \leq i < i' \leq m$, excluding $\{i, i'\} = \{1, 2\}$. Then using Examples 2.7, 2.4, 2.5 and
a slight generalization of Lemma 1.1, it follows that $IP_4(3m + 1) = JP_4(3m + 1) =
\{0, 1, 2, \ldots, t - 2, t\}$ where $t = m(3m + 1)/2$, the total number of blocks in a P_4-design of order $3m + 1$.

Next let $n = 3m$. The cases m even and m odd are treated separately. When m
is even let $n = 6M$ and let the vertex set of K_n be $\{(i, j) \mid 1 \leq i \leq 2M; j = 1, 2, 3\}$. There is a $\{K_8, K_{3,3}\}$-decomposition of K_n with K_8
blocks $\{(2i - 1, j), (2i, j) \mid j = 1, 2, 3\}$ for $1 \leq i \leq M$ and $K_{3,3}$ blocks $\{(i_1, j) \mid j = 1, 2, 3\} \cup \{(i_2, j) \mid j = 1, 2, 3\}$ for
all $1 \leq i_1 < i_2 \leq 2M$ excluding $\{i_1, i_2\} = \{2i - 1, 2i\}, 1 \leq i \leq M$.

The result $IP_4(6M) = JP_4(6M)$ then follows from Examples 2.6, 2.5 and Lemma 1.1.

When m is odd let $n = 6M + 3$, and let the vertex set of K_n be $\{(i, j) \mid 1 \leq i \leq 2M + 1, j = 1, 2, 3\}$. There is a $\{K_9, K_6, K_{3,3}\}$-decomposition of K_n with: one K_9
block $\{(i, j) \mid i, j = 1, 2, 3\}$; K_6 blocks $\{(2i, j), (2i + 1, j) \mid j = 1, 2, 3\}$ for $i = 2, \ldots, M$;
$K_{3,3}$ blocks $\{(a, j) \mid j = 1, 2, 3\} \cup \{(b, j) \mid j = 1, 2, 3\}$ for all pairs (a, b) with $a \neq b$
and with a and b not both in $\{1, 2, 3\}$ or in $\{2i, 2i + 1\}, 2 \leq i \leq M$.

Then from Examples 2.8, 2.6, 2.5 and Lemma 1.1, we have $IP_4(6M + 3) =
JP_4(6M + 3)$.

We have now proved

Theorem 2.2 The intersection numbers for P_4-designs are given by $IP_4(n) =
\{0, 1, \ldots, b - 2, b\}$ where $b = n(n - 1)/6$. \square

2.3 The path P_5

The graph P_5 has 4 edges, and so a suitable decomposition of K_n will contain
$n(n - 1)/8$ blocks; consequently we must have $n \equiv 0$ or 1 (mod 8). The only ingredients needed are decompositions of $K_{4,4}$, K_8 and K_9, and of course their intersection numbers too.
Now let the vertex set of K_n be $V = \{(i, j) \mid 1 \leq i \leq 2m, 1 \leq j \leq 4\}$ or $V \cup \{\infty\}$, according as $n = 8m$ or $8m + 1$.

In the former case there is a $\{K_8, K_{4,4}\}$-decomposition of K_n with K_8 blocks $\{(2i - 1, j), (2i, j) \mid 1 \leq j \leq 4\}$ for $1 \leq i \leq m$, and $K_{4,4}$ blocks $\{(a, j) \mid 1 \leq j \leq 4\} \cup \{(b, j) \mid 1 \leq j \leq 4\}$ for all $1 \leq a < b \leq 2m$ and $\{a, b\} \neq \{2i - 1, 2i\}$ for $1 \leq i \leq m$. In the latter case there is a $\{K_9, K_{4,4}\}$-decomposition of K_n; the K_9 blocks have $\{\infty\}$ adjoined to each of the K_8 blocks above, otherwise blocks are the same as when $n = 8m$.

In Example 1.1 we showed that $IP_5(K_{4,4}) = \{0, 1, 2, 4\}$. We also need the following two examples.

Example 2.9 $IP_5(8) = \{0, 1, 2, 3, 4, 5, 7\}$.

On the vertex set $\mathbb{Z}_7 \cup \{\infty\}$, developing the base block $\beta = (\infty, 0, 1, 3, 6)$ modulo 7 generates a P_5-decomposition of K_7. For each $i \in \mathbb{Z}_7$ the blocks $A_i = \{\beta + i, \beta + i + 1\}$ trade with $A_i' = \{(6, 3, 1, 0, 4) + i, (0, \infty, 1, 2, 4) + i\}$, and $B = \{\beta + 4, \beta + 5, \beta + 6\}$ trades with $B' = \{(3, 0, 5, \infty, 4), (\infty, 6, 5, 2, 0), (0, 6, 1, 4, 5)\}$. We observe that A_0, A_2 and A_4 are mutually disjoint and that B is disjoint from A_0 and A_2. Consequently $IP_5(8) = \{0, 1, 2, 3, 4, 5, 7\}$. \square

Example 2.10 $IP_5(9) = \{0, 1, 2, 3, 4, 5, 6, 7, 9\}$.

On the vertex set \mathbb{Z}_9, a P_5-design is generated by developing the base block $\beta = (0, 1, 3, 7, 4)$ (modulo 9). For each $i \in \mathbb{Z}_9$ the blocks $A_i = \{\beta + i, \beta + i + 2\}$ trade with $A_i' = \{(0, 5, 3, 7, 4) + i, (2, 3, 1, 0, 6) + i\}$ and the blocks $B_i = \{\beta + i, \beta + i + 1, \beta + i + 2\}$ trade with $B_i' = \{(0, 1, 2, 3, 5) + i, (1, 3, 7, 4, 2) + i, (6, 0, 5, 8, 4) + i\}$.

Moreover, the blocks $C = \{\beta + 5, \beta + 7, \beta + 8\}$ trade with the blocks $C' = \{(7, 8, 3, 6, 5), (3, 0, 8, 6, 2), (8, 1, 5, 2, 0)\}$. The following table lists the disjoint trades which may be used in order to achieve the required intersection values.

<table>
<thead>
<tr>
<th>trades</th>
<th>intersection achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0, B_3, B_6</td>
<td>0</td>
</tr>
<tr>
<td>A_0, A_1, A_4, A_5</td>
<td>1</td>
</tr>
<tr>
<td>C, A_0, A_1</td>
<td>2</td>
</tr>
<tr>
<td>B_0, B_3</td>
<td>3</td>
</tr>
<tr>
<td>A_0, B_6</td>
<td>4</td>
</tr>
<tr>
<td>A_0, A_1</td>
<td>5</td>
</tr>
<tr>
<td>B_0</td>
<td>6</td>
</tr>
<tr>
<td>A_0</td>
<td>7</td>
</tr>
<tr>
<td>nothing</td>
<td>9</td>
</tr>
</tbody>
</table>

Now applying Lemma 1.1 yields the following result for P_5-designs.

Theorem 2.3 The intersection numbers for P_5-designs are given by $IP_5(n) = \{0, 1, \ldots, b - 2, b\}$ where $b = n(n - 1)/8$. \square
3 Stars with 3 and 4 edges

3.1 S_3-designs

The number of blocks in an S_3-design of order n is $n(n - 1)/6$, and so $n \equiv 0$ or 1 (mod 3), and $n \geq 6$. (S_3 involves four vertices, and it is easy to see that K_4 has no S_3-decomposition.)

We start with the following example.

Example 3.1 $IS_3(K_{3,3}) = \{0, 3\}$.

Let $K_{3,3}$ have vertex set $\{1, 2, 3\} \cup \{4, 5, 6\}$. The following two S_3-decompositions are disjoint.

\[
D_1 = \{(1 : 4, 5, 6), (2 : 4, 5, 6), (3 : 4, 5, 6)\}, \\
D_2 = \{(4 : 1, 2, 3), (5 : 1, 2, 3), (6 : 1, 2, 3)\}.
\]

Moreover, it is straightforward to see that $1 \notin IS_3(K_{3,3})$. \hfill \square

One slight difficulty in this case (and, indeed, for S_m-designs in general) is that the expected full set of intersection numbers for a design of order 6 (or $2m$ in general) cannot be achieved. In the case of S_3-designs, each block involves 4 vertices, and it is impossible to find a trade consisting of two blocks when the design is of order 6. The smallest trade involves seven vertices, such as $\{(x : a, b, c), (x : d, e, f)\}$ trading with $\{(x : a, b, d), (x : c, e, f)\}$. We do however achieve the other expected intersection numbers, as the following example shows.

Example 3.2 $IS_3(6) = \{0, 1, 2, 5\}$.

Let $V = \{0, 1, 2, 3, 4, 5\}$ and take

\[
B = \{(0 : 5, 1, 2), (1 : 5, 2, 3), (2 : 5, 3, 4), (3 : 5, 4, 0), (4 : 5, 0, 1)\}.
\]

Let $\alpha = (012)$, $\beta = (345)$ and $\gamma = (01)$ be permutations on V. The result then follows from the table below.

<table>
<thead>
<tr>
<th>blocks</th>
<th>intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \cap B\alpha$</td>
<td>0</td>
</tr>
<tr>
<td>$B \cap B\beta$</td>
<td>1</td>
</tr>
<tr>
<td>$B \cap B\gamma$</td>
<td>2</td>
</tr>
<tr>
<td>$B \cap B$</td>
<td>5</td>
</tr>
</tbody>
</table>

\hfill \square

Three more necessary examples follow.

Example 3.3 $IS_3(7) = \{0, 1, 2, 3, 4, 5, 7\}$.
Take the vertex set \(\{0, 1, 2, 3, 4, 5, 6\}\), and blocks \(B \cup \{(6 : 0, 1, 2), (6 : 3, 4, 5)\} = B \cup Y\) where \(B\) is as in Example 3.2. The permutations \(\alpha, \beta\) and \(\gamma\) of Example 3.2 fix \(Y\). Hence \(\{2, 3, 4, 7\} \subseteq IS_3(7)\). Moreover, \(Y\) trades with \(Y' = \{(6 : 0, 1, 3), (6 : 2, 4, 5)\}\), and so \(0 \in IS_3(7)\). Also \(|(B \cup Y) \cap (B\beta \cup Y')| = 1\) and \(|(B \cup Y) \cap (B \cup Y')| = 5\), so the result follows. □

Example 3.4 \(IS_3(9) = \{0, 1, \ldots, 10, 12\}\).

Let the vertex set be \(Z_9\), and take blocks \(B\) as follows.

<table>
<thead>
<tr>
<th>block</th>
<th>in subset(s)</th>
<th>block</th>
<th>in subset(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0 : 1, 3, 6))</td>
<td>(X)</td>
<td>((6 : 1, 2, 7))</td>
<td>(Y, T)</td>
</tr>
<tr>
<td>((1 : 2, 4, 7))</td>
<td>(Y)</td>
<td>((7 : 2, 0, 8))</td>
<td>(T)</td>
</tr>
<tr>
<td>((2 : 0, 5, 8))</td>
<td></td>
<td>((8 : 0, 1, 6))</td>
<td>(X, T)</td>
</tr>
<tr>
<td>((3 : 1, 4, 6))</td>
<td>(X)</td>
<td>((3 : 2, 7, 8))</td>
<td></td>
</tr>
<tr>
<td>((4 : 2, 5, 7))</td>
<td>(Y)</td>
<td>((4 : 0, 8, 6))</td>
<td>(X)</td>
</tr>
<tr>
<td>((5 : 0, 3, 8))</td>
<td>(Z)</td>
<td>((5 : 1, 6, 7))</td>
<td>(Y, Z)</td>
</tr>
</tbody>
</table>

The set \(X\) trades with \(X' = \{(1 : 0, 3, 8), (0 : 3, 4, 8), (6 : 0, 3, 8), (4 : 3, 6, 8)\}\); the set \(Y\) trades with \(Y' = \{(2 : 1, 4, 6), (1 : 4, 5, 6), (7 : 1, 4, 6), (5 : 4, 6, 7)\}\); the set \(Z\) trades with \(Z' = \{(5 : 0, 3, 7), (5 : 8, 1, 6)\}\); and the set \(T\) trades with \(T' = \{(6 : 1, 2, 8), (7 : 0, 2, 6), (8 : 0, 1, 7)\}\). Also \(Z\) and \(T\) are disjoint. The intersection values now follow from the table below, where numbers in parentheses are permutations on \(Z_9\).

<table>
<thead>
<tr>
<th>blocks</th>
<th>intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B \cap B(6 7 8))</td>
<td>0</td>
</tr>
<tr>
<td>(B \cap B(4 7 5 8))</td>
<td>1</td>
</tr>
<tr>
<td>(B \cap B(4 5)(7 8))</td>
<td>2</td>
</tr>
<tr>
<td>(B \cap B(7 8))</td>
<td>3</td>
</tr>
<tr>
<td>(B \cap ((B \setminus (X \cup Y)) \cup X' \cup Y'))</td>
<td>4</td>
</tr>
<tr>
<td>(B \cap B(4 5))</td>
<td>5</td>
</tr>
<tr>
<td>(B \cap ((B \setminus (X \cup Z)) \cup X' \cup Z'))</td>
<td>6</td>
</tr>
<tr>
<td>(B \cap ((B \setminus (X \cup T)) \cup X' \cup T'))</td>
<td>7</td>
</tr>
<tr>
<td>(B \cap ((B \setminus X) \cup X'))</td>
<td>8</td>
</tr>
<tr>
<td>(B \cap ((B \setminus T) \cup T'))</td>
<td>9</td>
</tr>
<tr>
<td>(B \cap ((B \setminus Z) \cup Z'))</td>
<td>10</td>
</tr>
<tr>
<td>(B \cap B)</td>
<td>12</td>
</tr>
</tbody>
</table>

□

Example 3.5 \(IS_3(10) = \{0, 1, \ldots, 13, 15\}\).

Take \(Z_{10}\) and blocks \(B\) of Example 3.4 above, together with \(P = \{(9 : 0, 1, 2), (9 : 3, 4, 5), (9 : 6, 7, 8)\}\). The blocks in \(P\) are fixed by the above permutations (except for \((4 7 5 8)\)) and by the trades on \(B\), so \(\{3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15\} \subseteq IS_3(10)\). Also \(P\) trades with \(P' = \{(9 : 0, 1, 3), (9 : 2, 4, 6), (9 : 5, 7, 8)\}\), and so in particular \(\{0, 1, 5\} \subseteq IS_3(10)\) also. Finally we see that \(2 \in IS_3(10)\), using \(1 \in IS_3(9)\) and the
trade \(\{9 : 0, 1, 2\}, \{9 : 3, 4, 5\} \) with \(\{9 : 0, 1, 3\}, \{9 : 2, 4, 5\} \). This completes the example. \(\square\)

In the general situation we deal with four cases: \(n = 6m \), \(n = 6m + 1 \), \(n = 6m + 3 \) and \(n = 6m + 4 \). In each case the vertex set is \(V = \{(i, j) \mid 1 \leq i \leq 2m, j = 1, 2, 3\} \), or \(V \cup \{\infty\} \), or \(V' = V \cup \{(2m + 1, j) \mid j = 1, 2, 3\} \) or \(V' \cup \{\infty\} \) (respectively).

First, when \(n = 6m + 1 \), there is a \(K_7, K_{3,3} \)-decomposition of \(K_n \) with \(K_7 \) blocks \(\{\infty\} \cup \{(2i - 1, j), (2i, j) \mid j = 1, 2, 3\} \) for \(1 \leq i \leq m \) and \(K_{3,3} \) blocks \(\{(a, j) \mid j = 1, 2, 3\} \cup \{(b, j) \mid j = 1, 2, 3\} \), for all \(1 \leq a < b \leq 2m \), excluding \(\{a, b\} = \{2i - 1, 2i\}, 1 \leq i \leq m \).

From Lemma 1.1 it follows that \(IS_3(6m + 1) = JS_3(6m + 1) \).

Secondly, when \(n = 6m + 4 \), we use a \(K_{10}, K_7, K_{3,3} \)-decomposition of \(K_n \), with one \(K_{10} \) block and \(m - 1 \) \(K_7 \) blocks. Once again Lemma 1.1 then yields \(IS_3(6m + 4) = JS_3(6m + 4) \).

Thirdly, when \(n = 6m \), in order to achieve the intersection number \(b - 2 \), with all but two blocks in common, since \(5 - 2 = 3 \not\in IS_3(6) \), we use a \(K_9, K_6, K_{3,3} \)-decomposition of \(K_n \) with two \(K_9 \) blocks and \(m - 3 \) \(K_6 \) blocks. This assumes that \(m \geq 3 \), so \(n \geq 18 \); the case of order 12, therefore, must be considered separately.

Then, for \(m \geq 3 \), as before we obtain \(IS_3(6m) = JS_3(6m) \).

Fourthly, when \(n = 6m + 3 \), we use a \(K_9, K_6, K_{3,3} \)-decomposition of \(K_n \) with one \(K_9 \) block and \(m - 1 \) \(K_6 \) blocks, and obtain \(IS_3(6m + 3) = JS_3(6m + 3) \).

It now remains to consider the case of order 12.

Example 3.6 \(IS_3(12) = \{0, 1, \ldots, 20, 22\} \).

First, all intersection numbers except 20 (that is, \(b - 2 \)) can be achieved with the following construction using two designs of order 6 and four lots of decompositions of \(K_{3,3} \). Let \(A, B, C \) and \(D \) each stand for a set of three vertices. Then on sets \(\{A, B\} \) and \(\{C, D\} \), place \(S_3 \)-designs of order 6, and on the sets \(\{A\} \cup \{C\}, \{A\} \cup \{D\}, \{B\} \cup \{C\} \), and \(\{B\} \cup \{D\} \), place \(S_3 \)-decompositions of \(K_{3,3} \). The result is an \(S_3 \)-design of order 12, and we see that

\[
IS_3(12) \supseteq 2 \cdot IS_3(6) + 4 \cdot IS_3(K_{3,3})
\]

which includes all required intersection numbers except 20.

Secondly, in order to obtain this intersection number, note that in the above construction, one of the four decompositions of \(K_{3,3} \) is on the sets \(\{A\} \cup \{C\} \) while another is on the sets \(\{A\} \cup \{D\} \); so there will be two blocks of the form \((x : u, v, w)\) and \((x : r, s, t)\). These may be traded with \((x : u, v, t)\) and \((x : r, s, w)\); so we have \(20 \in IS_3(12) \) as required. \(\square\)

The results in this subsection have shown

Theorem 3.1 \(IS_3(n) = \{0, 1, \ldots, b - 2, b\} \) where \(n \equiv 0 \) or 1 \((\mod 3) \), \(n \geq 6 \) and \(b = \frac{n(n - 1)}{6} \), except that \(3 \not\in IS_3(6) \). \(\square\)
3.2 S_4-designs

Since the number of blocks in an S_4-design of order n is $n(n-1)/8$, we must have $n \equiv 0 \text{ or } 1 \pmod{8}$. First note that once we have intersection numbers $IS_4(8m)$, we can easily obtain $IS_4(8m+1)$. For in order to construct an S_4-design of order $8m+1$ from one of order $8m$ we may simply adjoin one new vertex, say x, and $2m$ new blocks of the form \{$(x, a, b, c, d) \mid a, b, c, d \in V$\} where V is the vertex set of the design of order $8m$. Moreover, by judicious interchange of the $2m$ elements, we see that we may construct two S_4-designs of order $8m+1$ so that

$$IS_4(8m+1) \supset IS_4(8m) + \{0, 1, 2, \ldots, 2m - 2, 2m\}.$$

Now consider the following examples.

Example 3.7 $IS_4(K_{4,4}) \supset \{0, 4\}$.

Imitate the construction in Example 3.1 above, but taking four vertices rather than three in each partite set.

Example 3.8 $IS_4(8) = \{0, 1, 2, 3, 4, 7\}$.

With vertex set $\{0, 1, 2, 3, 4, 5, 6, 7\}$, let blocks B be as follows.

$$(0 : 1, 2, 3, 7), (1 : 2, 3, 4, 7), (2 : 3, 4, 5, 7), (3 : 4, 5, 6, 7), (4 : 5, 6, 0, 7), (5 : 6, 0, 1, 7), (6 : 0, 1, 2, 7).$$

The following table shows the intersection values achieved by applying the given permutations to the vertices.

<table>
<thead>
<tr>
<th>permutation</th>
<th>intersection size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 1 2 3)</td>
<td>0</td>
</tr>
<tr>
<td>(0 1 2)</td>
<td>1</td>
</tr>
<tr>
<td>(0 1 2)</td>
<td>2</td>
</tr>
<tr>
<td>(0 2)</td>
<td>3</td>
</tr>
<tr>
<td>(0 1)</td>
<td>4</td>
</tr>
<tr>
<td>identity</td>
<td>7</td>
</tr>
</tbody>
</table>

Example 3.9 $IS_4(9) = \{0, 1, 2, 3, 4, 5, 6, 7, 9\}$.

As indicated in the remark preceding Example 3.7,

$$IS_4(9) \supset IS_4(8) + \{0, 2\}$$

$$= \{0, 1, 2, 3, 4, 7\} + \{0, 2\}$$

$$= \{0, 1, 2, 3, 4, 5, 6, 7, 9\}.$$
Example 3.10 $IS_4(16) = \{0, 1, \ldots, 28, 30\}$.

First, all intersection numbers except 28 (that is, $(b - 2)$) can be achieved with the following construction using two designs of order 8 and four lots of decompositions of $K_{4,4}$. Let A, B, C and D each stand for a set of four vertices. Then on the sets $\{A, B\}$ and $\{C, D\}$, place S_4-designs of order 8, and on the sets $\{A\} \cup \{C\}$, $\{A\} \cup \{D\}$, $\{B\} \cup \{C\}$, and $\{B\} \cup \{D\}$, place S_4-decompositions of $K_{4,4}$. The result is an S_4-design of order 16, and we see that

$$IS_4(16) \supseteq 2 \cdot IS_4(8) + 4 \cdot IS_4(K_{4,4})$$

which includes all required intersection numbers except 28.

Secondly, in order to obtain this intersection number, take another design of order 16 with vertex set $\mathbb{Z}_{15} \cup \{\infty\}$ and 30 blocks as follows:

$$(i : i + 1, i + 2, i + 3, i + 4), \quad (i : i + 5, i + 6, i + 7, \infty), \quad i \in \mathbb{Z}_{15}.$$

The two blocks $(0 : 1, 2, 3, 4), (0 : 5, 6, 7, \infty)$ trade with $(0 : 5, 6, 7, 4), (0 : 1, 2, 3, \infty)$, changing just two blocks, and thus showing that $28 \in IS_4(16)$ as required.

Again, using the remark at the start of this subsection, using the above example it is easy to obtain $IS_4(17) = \{0, 1, \ldots, 32, 34\}$.

Now the general construction for order $8m$ uses a $\{K_{16}, K_8, K_{4,4}\}$-decomposition of K_{8m} with one K_{16} block and $m - 2$ K_8 blocks. Explicitly, let the vertex set be $\{(i, j) | 1 \leq i \leq 2m, 1 \leq j \leq 4\}$, and let the K_{16} block be $\{(i, j) | 1 \leq i, j \leq 4\}$, the K_8 blocks be $\{(2i - 1, j), (2i, j) | 1 \leq j \leq 4\}$ for $3 \leq i \leq m$, and the $K_{4,4}$ blocks be $\{(a, j) | 1 \leq j \leq 4\} \cup \{(b, j) | 1 \leq j \leq 4\}$ for all $a \neq b$ where a and b are not both first components of elements in the same K_{16} or K_8 blocks. Then $IS_4(8m) = JS_4(8m)$.

The only difference for order $8m + 1$ is that, since $IS_4(9)$ includes all intersection numbers expected, including "$b - 2"$, we may merely use a $\{K_9, K_{4,4}\}$-decomposition of K_{8m+1}, in order to achieve $IS_4(8m + 1) = JS_4(8m + 1)$.

We have now proved

Theorem 3.2 The intersection numbers for S_4-designs are given by $IS_4(n) = \{0, 1, \ldots, b - 2, b\}$ where $n \equiv 0$ or 1 (mod 8), except that 5 $\not\equiv IS_4(8)$.

\[\square\]

4 \hspace{1cm} D, a triangle with pendant edge

Once again, since D has four edges, we find that a D-design of order n contains $n(n - 1)/8$ blocks and so $n \equiv 0$ or 1 (mod 8). However, since D contains an odd cycle (a triangle!) there is no D-decomposition of any bipartite graph, so in this case we require a D-decomposition of a tripartite graph.

Example 4.1 $ID(K_{2,2,2}) \supseteq \{0, 3\}$, and $ID(K_{4,4,4}) \supseteq \{0, 3, 6, 9, 12\}$.
For $K_{2,2,2}$, take the vertex sets $\{1, 1'\} \cup \{2, 2'\} \cup \{3, 3'\}$. Then disjoint D-decompositions are given by $\{(1, 3', 1'), (3, 2', 1')\}$, $\{(1, 3', 2'), (3', 2, 1)\}$, $\{(1', 2, 3), (1', 2, 3')\}$. Thus $\{0, 3\} \subseteq ID(K_{2,2,2})$.

Now let the vertex sets for $K_{4,4,4}$ be $\{A, D\} \cup \{B, E\} \cup \{C, F\}$, where each letter here is itself a set of two points. Then we may take four decompositions of $K_{2,2,2}$ on the four sets $A \cup B \cup F$, $A \cup E \cup C$, $D \cup B \cup C$ and $D \cup E \cup F$, yielding 12 blocks for a D-decomposition of $K_{4,4,4}$. Then using the intersection values for $ID(K_{2,2,2})$ we obtain $ID(K_{4,4,4}) \supseteq \{0, 3, 6, 9, 12\}$. \qed

For the general construction, we take the vertex set $V = \{(i, j) \mid 1 \leq i \leq 2m, 1 \leq j \leq 4\}$ if $n = 8m$, or $V \cup \{\infty\}$ if $n = 8m + 1$.

Then if $2m \equiv 0$ or $2 \pmod{6}$, $2m \geq 6$, we may use a GDD with group size 2 and block size 3 on $\{1, 2, \ldots, 2m\}$, while if $2m \equiv 4 \pmod{6}$, $2m \geq 10$, we may use a GDD with one group of size 4 and the rest of size 2, and block size 3 on $\{1, 2, \ldots, 2m\}$. These exist; see for instance Lemma 2.1 in [1], or the general result in [7]. Then for each group $\{x_1, \ldots, x_g\}$ of the GDD, place a D-design on the set $\{(x_i, j) \mid 1 \leq i \leq g, 1 \leq j \leq 4\}$ or on this set together with ∞. Since the group sizes are 2 or 4, this means we require D-designs of orders 8, 9, 16 and 17. And for each block $\{a, b, c\}$ of the GDD, place a D-decomposition of $K_{4,4,4}$ on $\{(a, j) \mid 1 \leq j \leq 4\} \cup \{(b, j) \mid 1 \leq j \leq 4\} \cup \{(c, j) \mid 1 \leq j \leq 4\}$.

It now remains to deal with orders 8, 9, 16 and 17.

Example 4.2 $ID(8) = \{0, 1, \ldots, 5, 7\}$.

Take the vertex set $\{\infty\} \cup \mathbb{Z}_7$, and blocks $B = \{(i, 1 + i, 3 + i) - \infty \mid i \in \mathbb{Z}_7\}$. Note the following trades.

$X = \{(1, 2, 4) - \infty, (3, 4, 6) - \infty\}$ trades with $X' = \{(1, 2, 4) - 3, (\infty, 4, 6) - 3\}$,

$Y = \{(2, 3, 5) - \infty, (4, 5, 0) - \infty\}$ trades with $Y' = \{(2, 3, 5) - 4, (\infty, 5, 0) - 4\}$,

$Z = \{(5, 6, 1) - \infty, (0, 1, 3) - \infty\}$ trades with $Z' = \{(5, 6, 1) - 0, (\infty, 1, 3) - 0\}$,

$A = \{(0, 1, 3) - \infty, (2, 3, 5) - \infty, (5, 6, 1) - \infty\}$ trades with $A' = \{(0, 3, 1) - \infty, (2, 5, 3) - \infty, (6, 1, 5) - \infty\}$.

Here X, Y and Z are pairwise disjoint, and A is also disjoint from X. Thus we achieve the following intersection values, where α below denotes the permutation (1∞) applied to B.

<table>
<thead>
<tr>
<th>trades</th>
<th>blocks changed</th>
<th>intersection achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B\alpha$</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>X, Y, Z</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>X, A</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>X, Y</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>nothing</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

\[\square \]
EXAMPLE 4.3 $ID(9) = \{0, 1, \ldots, 7, 9\}$.
With vertex set \mathbb{Z}_9, let $D = \{(i, i+3, i+6) | i \in \mathbb{Z}_9\}$. The following trades are disjoint:

$X = \{(1, 2, 5) - 7, (4, 5, 8) - 1\}$ trades with $X' = \{(8, 4, 5) - 7, (2, 5, 1) - 8\}$,
$Y = \{(2, 3, 6) - 8, (5, 6, 0) - 2\}$ trades with $Y' = \{(3, 6, 2) - 0, (0, 5, 6) - 8\}$,
$Z = \{(0, 1, 4) - 6, (3, 4, 7) - 0, (6, 7, 1) - 3\}$ trades with
$Z' = \{(3, 1, 7) - 6, (0, 7, 4) - 3, (6, 4, 1) - 0\}$.

Now denote permutations by $\alpha = (01), \beta = (125), \gamma = (1234)$, and let $T = \{(7, 8, 2) - 4, (8, 0, 3) - 5\}$. The following table then completes this example.

<table>
<thead>
<tr>
<th>blocks</th>
<th>intersection size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D \cap D\gamma$</td>
<td>0</td>
</tr>
<tr>
<td>$D \cap D\beta$</td>
<td>1</td>
</tr>
<tr>
<td>$D \cap {X' \cup Y' \cup Z' \cup T}$</td>
<td>2</td>
</tr>
<tr>
<td>$D \cap D\alpha$</td>
<td>3</td>
</tr>
<tr>
<td>$D \cap {X \cup Y' \cup Z' \cup T}$</td>
<td>4</td>
</tr>
<tr>
<td>$D \cap {X' \cup Y' \cup Z \cup T}$</td>
<td>5</td>
</tr>
<tr>
<td>$D \cap {X \cup Y \cup Z' \cup T}$</td>
<td>6</td>
</tr>
<tr>
<td>$D \cap {X' \cup Y \cup Z \cup T}$</td>
<td>7</td>
</tr>
<tr>
<td>$D \cap D$</td>
<td>9</td>
</tr>
</tbody>
</table>

EXAMPLE 4.4 $ID(16) = \{0, 1, \ldots, 28, 30\}$.
With vertex set $\mathbb{Z}_{15} \cup \{\infty\}$, a design is given by

$\{(i, 1+i, 6+i) - (8+i), (i, 3+i, 7+i) - \infty\}$ where $i \in \mathbb{Z}_{15}$.

Now blocks A_i trade with A'_i for $0 \leq i \leq 6$ where

$A_i = \{(i, 3+i, 7+i) - \infty, (7+i, 10+i, 14+i) - \infty\}$ and
$A'_i = \{(i, 3+i, 7+i) - (10+i), (7+i, \infty+i, 14+i) - (10+i)\}$.

Disjoint from these trades are the following five trades, B_i with B'_i, for $0 \leq i \leq 4$, where

$B_i = \{(i, 1+i, 6+i) - (8+i), (5+i, 6+i, 11+i) - (13+i), (10+i, 11+i, 1+i) - (3+i)\}$
and

$B'_i = \{(i, 6+i, 1+i) - (3+i), (5+i, 11+i, 6+i) - (8+i), (10+i, 1+i, 11+i) - (13+i)\}$
(addition in \mathbb{Z}_{15}). Thus we have trades on $2a + 3b$ blocks, where $0 \leq a \leq 7$ and $0 \leq b \leq 5$. This means that we may trade $2a + 3b = c$ blocks for $2 \leq c \leq 29$. Thus $\{1, 2, \ldots, 28\} \subseteq ID(16)$. And trivially $30 \in ID(16)$. Finally, to show $0 \in ID(16)$, let

$X = \{(6, 9, 13) - \infty, (13, 1, 5) - \infty, (14, 2, 6) - \infty\}$

253
which trades with

\[X' = \{(14, 2, 6) - 9\lambda, (1, 15, 13) - 9, (13, 6, \infty) - 15\}. \]

Thus trading \(\{B_i\}_{i=0}^{4} \cup \{A_i\}_{i=0}^{5} \cup \{X\} \) will change all the blocks, so \(0 \in ID(16) \). This concludes the example. \(\square \)

Example 4.5 \(ID(17) = \{0, 1, \ldots, 32, 34\} \).

Let the vertex set be \(Z_{17} \). Then a design is given by

\[D = \{(i, i + 3, i + 8) - (i + 12), (i, i + 1, i + 7) - (i + 9) \mid i \in Z_{17}\}. \]

Let permutations on \(Z_{17} \) be given by

\[\alpha_0 = (0 1 2 3 4 5 6 7 8), \quad \alpha_1 = (0 1 2 3 4 5 6 7 8 9 10), \]
\[\alpha_2 = (0 1)(2 3 4 5 6), \quad \alpha_3 = (0 1)(2 3 4 5), \quad \alpha_4 = (0 1 2 3 4). \]

Then \(|D \cap D\alpha_i| = i, 0 \leq i \leq 4 \), so \(\{0, 1, 2, 3, 4\} \subseteq ID(17) \). For the remaining intersection values we consider trades as follows.

The set \(A_i = \{(1, 4, 9) - 13, (13, 16, 4) - 8\} + i \pmod{17} \) trades with \(A_i' = \{(16, 4, 13) - 9, (9, 1, 4) - 8\} + i \pmod{17}, 0 \leq i \leq 4 \). Disjoint from this are the blocks

\[B_i = \{(1, 2, 8) - 10, (9, 10, 16) - 1\} + i \pmod{17} \]

trading with

\[B_i' = \{(8, 2, 1) - 16, (9, 16, 10) - 8\} + i \pmod{17}, \]

\(0 \leq i \leq 7 \). Also let

\[C_i = \{(0, 3, 8) - 12, (12, 15, 3) - 7, (11, 12, 1) - 3\} + i, \]

which trades with

\[C_i' = \{(0, 8, 3) - 7, (12, 15, 3) - 1, (1, 11, 12) - 8\} + i, \]

for \(0 \leq i \leq 4 \).

Note that \(C_0 \) is disjoint from \(A_i, i = 0, 1, 2, 3 \),
\(C_1 \) is disjoint from \(A_i, i = 1, 2, 3, 4 \),
\(C_2 \) is disjoint from \(A_i, i = 0, 2, 3, 4 \),
\(C_3 \) is disjoint from \(A_i, i = 0, 1, 3, 4 \),
\(C_4 \) is disjoint from \(A_i, i = 0, 1, 2, 4 \).

Thus we may obtain trades of sizes 2, 3, \ldots, 28, 29, yielding \(\{5, 6, \ldots, 31, 32\} \subseteq ID(17) \). Finally, \(34 \in ID(17) \) trivially. This completes the example. \(\square \)

Now combining the results of this section we have

Theorem 4.1 The intersection numbers for \(D \)-designs are given by \(ID(n) = \{0, 1, \ldots, b - 2, b\} \) where \(b = n(n - 1)/8 \). \(\square \)

254
5 The graph Y

A Y-design of order n contains $n(n - 1)/8$ blocks, and so $n \equiv 0$ or $1 \pmod{8}$. The only ingredients we need are Y-designs of orders 8 and 9, a Y-decomposition of $K_{4,4}$, and their intersection numbers. (In fact, it suffices to use $IY(K_{4,4}) \supseteq \{0, 4\}$.)

Example 5.1 $IY(K_{4,4}) \supseteq \{0, 4\}$.

Let the vertex set be $\{1, 2, 3, 4\} \cup \{5, 6, 7, 8\}$. Then two disjoint decompositions are given by

$$\{(4, 7, 1; 5, 6), (1, 8, 2; 6, 7), (2, 5, 3; 7, 8), (3, 6, 4; 5, 8)\}$$

and

$$\{(8, 3, 5; 1, 2), (5, 4, 6; 2, 3), (6, 1, 7; 3, 4), (7, 2, 8; 1, 4)\}.$$

Example 5.2 $IY(8) = \{0, 1, 2, 3, 4, 5, 7\}$.

With vertex set $\{\infty\} \cup \mathbb{Z}_7$, take blocks $D = A \cup B \cup C$ where

$$A = \{((0, 1, 3; 6, \infty), (1, 2, 4; 0, \infty)), (2, 3, 5; 1, \infty), (3, 4, 6; 2, \infty)\},$$

$$B = \{((4, 5, 0; 3, \infty), (5, 6, 1; 4, \infty), (6, 0, 2; 5, \infty)\}).$$

Blocks A trade with $A' = \{(6, 3, 1; 0, 2), (3, \infty, 4; 0, 2)\}$,
blocks B trade with $B' = \{(1, 5, 3; 2, 4), (5, \infty, 6; 2, 4)\}$ and
blocks C trade with $C' = \{(4, 5, 0; 3, 2), (4, 1, 6; 5, 0), (5, 2, \infty; 1, 0)\}$.

Now let α denote the permutation (01) and β the permutation (012). We obtain the following intersection numbers, which completes the result.

<table>
<thead>
<tr>
<th>blocks</th>
<th>intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D \cap D\beta$</td>
<td>0</td>
</tr>
<tr>
<td>$D \cap D\alpha$</td>
<td>1</td>
</tr>
<tr>
<td>$D \cap {A \cup B' \cup C'}$</td>
<td>2</td>
</tr>
<tr>
<td>$D \cap {A' \cup B' \cup C}$</td>
<td>3</td>
</tr>
<tr>
<td>$D \cap {A \cup B \cup C'}$</td>
<td>4</td>
</tr>
<tr>
<td>$D \cap {A \cup B' \cup C}$</td>
<td>5</td>
</tr>
<tr>
<td>$D \cap D$</td>
<td>7</td>
</tr>
</tbody>
</table>

Example 5.3 $IY(9) = \{0, 1, \ldots, 7, 9\}$.

Let the vertex set be \mathbb{Z}_9, and blocks be $D = \{(0 + i, 1 + i, 3 + i; 6 + i, 7 + i) \mid i \in \mathbb{Z}_9\}$ (addition mod 9). The blocks

$$A_i = \{(i - 1, i, 2 + i; 5 + i, 6 + i), (i, 1 + i, 3 + i; 6 + i, 7 + i)\}, \quad 1 \leq i \leq 4,$$

then $IY(9)$ is obtained.
trade with
\[A_i' = \{(5 + i, 2 + i, i; i - 1, i + 1), (2 + i, 6 + i, 3 + i; 1 + i, 7 + i)\}, \ 1 \leq i \leq 4. \]

Also the blocks
\[B_i = \{(3i - 3, 3i - 2, 3i; 3i + 3, 3i + 4),
\[(3i - 2, 3i - 1, 3i + 1; 3i + 4, 3i + 5), (3i - 1, 3i, 3i + 2; 3i + 5, 3i + 6)\}, \]
\[1 \leq i \leq 3, \ \text{trade with the blocks} \]
\[B_i' = \{(3i + 3, 3i, 3i - 2; 3i - 3, 3i - 1),
\[(3i, 3i + 4, 3i + 1; 3i - 1, 3i + 5), (3i + 2, 3i + 5, 3i + 1; 3i + 4, 3i - 1)\}, \]
\[1 \leq i \leq 3. \text{ Thus we obtain the required intersection numbers:} \]

<table>
<thead>
<tr>
<th>blocks</th>
<th>intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D \cap {B_1' \cup B_2' \cup B_3'})</td>
<td>0</td>
</tr>
<tr>
<td>(D \cap {(8, 0, 2, 5, 6) \cup {A_i' \mid 1 \leq i \leq 4}})</td>
<td>1</td>
</tr>
<tr>
<td>(D \cap {A_1' \cup A_2' \cup A_3' \cup B_3'})</td>
<td>2</td>
</tr>
<tr>
<td>(D \cap {A_1' \cup A_2' \cup A_3' \cup B_3'})</td>
<td>3</td>
</tr>
<tr>
<td>(D \cap {A_1' \cup A_2' \cup A_3' \cup B_3'})</td>
<td>4</td>
</tr>
<tr>
<td>(D \cap {A_1' \cup A_2' \cup A_3' \cup B_3'})</td>
<td>5</td>
</tr>
<tr>
<td>(D \cap {A_1' \cup A_2' \cup A_3' \cup B_3'})</td>
<td>6</td>
</tr>
<tr>
<td>(D \cap {A_1' \cup A_2' \cup A_3' \cup B_3'})</td>
<td>7</td>
</tr>
<tr>
<td>(D \cap D)</td>
<td>9</td>
</tr>
</tbody>
</table>

Thanks to Lemma 1.1 we now have

Theorem 5.1 The intersection numbers for Y-designs are given by \(IY(n) = \{0, 1, \ldots, b - 2, b\} \) where \(b = n(n - 1)/8. \)

\[\square \]

6 Summary

The following table summarises the intersection results for G-designs where G is a connected graph on at most four vertices or at most four edges.

In the table, b denotes the number of blocks in a G-design of order n, and the impossible intersection values are \(b - x \) where x is as given. A reference is listed if the result is not in this paper.
<table>
<thead>
<tr>
<th>G</th>
<th>b</th>
<th>x</th>
<th>Comments</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_2</td>
<td>$n(n-1)/2$</td>
<td>all except b</td>
<td>unique design!</td>
<td></td>
</tr>
<tr>
<td>P_3</td>
<td>$n(n-1)/4$</td>
<td>1</td>
<td>$n \equiv 0, 1 \pmod{4}$</td>
<td></td>
</tr>
<tr>
<td>P_4</td>
<td>$n(n-1)/6$</td>
<td>1</td>
<td>$n \equiv 0, 1 \pmod{3}, \quad n \geq 4$</td>
<td></td>
</tr>
<tr>
<td>P_5</td>
<td>$n(n-1)/8$</td>
<td>1</td>
<td>$n \equiv 0, 1 \pmod{8}$</td>
<td></td>
</tr>
<tr>
<td>K_3</td>
<td>$n(n-1)/6$</td>
<td>1, 2, 3, 5</td>
<td>$n \equiv 1, 3 \pmod{6}, \quad 5, 8 \not\in IK_3(9)$.</td>
<td>[8]</td>
</tr>
<tr>
<td>D</td>
<td>$n(n-1)/8$</td>
<td>1</td>
<td>$n \equiv 0, 1 \pmod{8}$</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>$n(n-1)/8$</td>
<td>1</td>
<td>$n \equiv 0, 1 \pmod{8}$</td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td>$n(n-1)/6$</td>
<td>1</td>
<td>$n \geq 6, n \equiv 0, 1 \pmod{8}, \quad 3 \not\in IS_3(6)$</td>
<td></td>
</tr>
<tr>
<td>S_4</td>
<td>$n(n-1)/8$</td>
<td>1</td>
<td>$n \equiv 0, 1 \pmod{8}, \quad 5 \not\in IS_4(8)$</td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td>$n(n-1)/8$</td>
<td>1</td>
<td>$n \equiv 1 \pmod{8}$</td>
<td>[4]</td>
</tr>
<tr>
<td>$K_4 - e$</td>
<td>$n(n-1)/10$</td>
<td>1, 2</td>
<td>$n \equiv 0, 1 \pmod{5}, \quad n \geq 6; \quad 7, 8 \not\in I(11)$</td>
<td>[5]</td>
</tr>
<tr>
<td>K_4</td>
<td>$n(n-1)/12$</td>
<td>1, 2, 3, 4, 5, 7</td>
<td>$n \equiv 1, 4 \pmod{12}; \quad 7, 9, 10, 11, 14 \not\in I(16); \quad several\ unknown\ values\ for\ n = 25, 28, 37.$</td>
<td>[6]</td>
</tr>
</tbody>
</table>
References

(Received 15/2/95)