A Structural Method for Hamiltonian Graphs

G. Li
Department of Mathematics, Yantai Teachers' College, Yantai 264000, China

B. Wei¹
Institute of Systems Science, Academia Sinica, Beijing 100080, China

T. Gao
Department of Mathematics, University of Sanxi, Taiyuan 030006, China

Abstract

In this paper, we shall introduce a special structure for graphs and show that a graph G is hamiltonian if and only if G has such a special structure. Using this result, we can prove a new weakened version of Fan's condition for hamiltonian graphs, which generalizes a recent result of Bedrossian, Chen and Schelp (1993).

1 Preliminaries and Main Results

We consider only finite undirected graphs without loops or multiple edges. The set of vertices of a graph G is denoted by $V(G)$ or just by V; the set of edges by $E(G)$ or just by E. We use $|G|$ as a symbol for the cardinality of $V(G)$. If H and S are subsets of $V(G)$ or subgraphs of G, we denote by $N_H(S)$ the set of vertices in H which are adjacent to some vertex in S, and set $d_H(S) = |N_H(S)|$. If $S = \{u\}$ and $H = G$, then let $N_G(u) = N(u)$ and set $d_G(u) = d(u)$. For $D \subseteq V(G)$, $G[D]$ denotes the subgraph of G induced by D. For basic graph-theoretic terminology, we refer the reader to [3].

Definition 1. Let H be a subgraph of G and $x, y \in V(G) \setminus V(H)$. $\{x, y\}$ is called a pair of useful vertices of H if $G[H \cup \{x, y\}]$ contains a hamiltonian path connecting x and y.

Definition 2. A graph G is call L-decomposable if G can be separated into $k + 1$ pairwise disjoint subgraphs G_0, G_1, \ldots, G_k such that the following four conditions are satisfied:

1) G_0 is complete.

2) For any $1 \leq i \leq k$, there exists a subset $S_i \subseteq N_{G_0}(G_i)$ with at least two vertices which contains a vertex z such that for every $y \neq z \in S_i$, $\{x, y\}$ is a pair of useful vertices of G_i.

3) For any three distinct S_i, S_j, S_l, we have $S_i \cap S_j \cap S_l = \emptyset$.

¹ Supported by National Education Committee of China and Chinese Academy of Sciences
4) For any positive integer \(r \leq k \), \(|\bigcup_{1 \leq j \leq r} S_j| = r \) if and only if \(|V(G_0)| = k = r \).

If \(G \) is L-decomposable, then we say the partition \(G_0, G_1, \ldots, G_k \) which satisfies the four conditions above a \textit{L-decomposition} of \(G \). In Section 2, we shall prove the following structural theorem.

Theorem 1. A graph \(G \) is hamiltonian if and only if \(G \) has a L-decomposition.

Theorem 1 has some applications. We shall give some examples here. In order to do this, we need some additional terminology and notations.

In Figure 1, we define four kinds of graphs, C-graph, F-graph, B-graph and N-graph.

![C-graph, F-graph, B-graph, N-graph](image)

Figure 1.

Let \(S, T \) be two induced subgraphs of \(G \) with \(\max\{|S|, |T|\} < |G| \). A graph \(G \) of order \(n \) is said to satisfy property \(ST(n) \) if for any pair of vertices \(x \) and \(y \) at distance two in \(S \) or \(T \), \(\max\{d(x), d(y)\} \geq n/2 \). If \(G \) contains no \(S \) as an induced subgraph, we call \(G \) \(S \)-free. If \(G \) contains neither \(S \) nor \(T \) as an induced subgraph, we call \(G \) \(ST \)-free.

The closure of a graph \(G \) denoted by \(\overline{G} \), is the graph obtained from \(G \) by recursively joining pairs of nonadjacent vertices whose degree sum is at least \(|V(G)| \) until no such pair remains. Let \(V_0 = \{x : d(x) \geq n/2, x \in V(G)\} \).

The following result is due to Bondy and Chvátal.

Theorem 2[2]. A graph \(G \) is hamiltonian if and only if \(\overline{G} \) is hamiltonian.

Now, using Theorems 1 and 2, we can easily prove the following two theorem known before.

Theorem 3[4]. Let \(G \) be a 2-connected graph of order \(n \). If each pair of vertices \(x \) and \(y \) at distance 2 satisfies \(\max\{d(x), d(y)\} \geq n/2 \), then \(G \) is hamiltonian.

Theorem 4[1]. Let \(G \) be a 2-connected graph of order \(n \). If \(G \) satisfies property \(CF(n) \), then \(G \) is hamiltonian.

To prove Theorems 3 and 4, we assume, by contradiction, that \(G \) is a counterexample with as many as possible edges. By Theorem 2, \(G[V_0] \) is a complete subgraph of \(G \). Let \(G_0 \) be a induced complete subgraph of \(G \) with as many as possible vertices and \(V_0 \subseteq V(G_0) \). Let \(G_1, G_2, \ldots, G_k \) be the components of \(G \setminus G_0 \). We can easily
verify that G_0, G_1, \ldots, G_k is a L-decomposition of G under conditions of Theorem 3 or Theorem 4, which leads to a contradiction by Theorem 1.

In section 3, we shall prove the following more general theorem by using Theorems 1 and 2.

Theorem 5. Let G be a 2-connected graph of order n. If G satisfies property $CB(n)$, then G is hamiltonian.

2 The Proof of Theorem 1

If G is a hamiltonian graph, let $C = c_1 c_2 \cdots c_n c_1$ be a hamiltonian cycle of G. Set $G_0 = G[\{c_1, c_2\}]$ and $G_1 = G[\{c_3, \ldots, c_n\}]$. Then G_0, G_1 satisfy the four conditions of Definition 2. Thus G has a L-decomposition.

Conversely, let G_0, G_1, \ldots, G_k be a L-decomposition of G. By Definition 2, G_0 is a complete subgraph with $|G_0| \geq 2$ and for any $1 \leq i \leq k$, there exists some $S_i \subseteq N_{G_0}(G_i)$ which satisfies the conditions 2)–4) of Definition 2. By condition 2), S_i contains a vertex x_i such that for any $y \in S_i \setminus \{x_i\}$, $\{x_i, y\}$ is a pair of useful vertices of G_i for all $1 \leq i \leq k$. Using the following Claim we will give a structural proof of the sufficiency.

Claim. G_0 contains either a cycle $C = u_i \cdots u_{i_k} u_i$ with $|V(C)| = |G_0|$ (when $|G_0| = 2$, C is just an edge) such that

$$\{u_{ij}, u_{ij+1}\} = \{x_{ij}, y_{ij}\}, j = 1, \ldots, k, \ j \mod k \quad (*)$$

or q pairwise disjoint paths $P_i = u_i u_{i_2} \cdots u_{i_{r_i+1}}$, $i = 1, 2, \ldots, q$

$$\{u_{ij}, u_{ij+1}\} = \{x_{ij}, y_{ij}\}, j = 1, 2, \ldots, r_i \quad (**)$$

and

$$u_i, \ldots, u_{i_{r_i+1}} \notin \bigcup_j \bigcup_{i \neq i_j} S_j \quad (***)$$

where $y_{ij} \in S_i \setminus \{x_{ij}\}$.

In fact, let $P = u_i \cdots u_{i_{r_i+1}}$ be a longest path satisfying the equation (**). Then $u_{i_2} \cdots u_{i_r} \notin \bigcup_j \bigcup_{i \neq i_j} S_j$ by condition 3). If $u_i, u_{i_{r_i+1}} \notin \bigcup_j \bigcup_{i \neq i_j} S_j$, then P is desired. Otherwise, there exists a subset S_{r_i+1} such that $\{u_i, u_{i_{r_i+1}}\} \cap S_{r_i+1} \neq \emptyset$. By the maximality of P and $|S_{r_i+1}| \geq 2$, we have that $S_{r_i+1} = \{u_i, u_{i_{r_i+1}}\}$. Since $|\bigcup_{1 \leq j \leq r_i} S_j| \geq r$ for any $r \leq k$, we need only to consider the following two cases.

Case 1. $|\bigcup_{1 \leq j \leq r_i+1} S_j| = r_i + 1$.

Then $|V(G_0)| = k = r_i + 1$ by condition 4). Thus $C = u_i \cdots u_{i_{r_i+1}} u_i$ is a cycle of G_0 with $|V(C)| = |G_0|$ satisfying $(*)$.

Case 2. $|\bigcup_{1 \leq j \leq r_i+1} S_j| > r_i + 1$.

By condition 3), there is a $l \in \{1, \ldots, r_i\}$ such that $|S_{l_i}| \geq 3$. We assume without loss of generality that $\{x_{i_l}, y_{i_l}, z_{i_l}\} \subseteq S_{l_i}$ satisfying $x_{i_l} = u_{i_l}$, $y_{i_l} = u_{i_l+1}$ and $z_{i_l} \notin$
\(V(P) \). Then we can construct a new path \(P' = z_{i_1}u_{i_1}u_{i_1-1}\cdots u_{i_1}u_{i_r+1}u_r\cdots u_{i_r+1} \) which is longer than \(P \) and satisfies \((**)\) when the subscripts are rewritten. This contradiction completes the proof of the Claim.

Now, from the Claim above, if \(G_0 \) contains a cycle \(C \) with \(V(C) = |G_0| \) satisfying \((*)\), then it is easy to check that \(G \) is hamiltonian. Otherwise, by the Claim above, \(G_0 \) contains \(q \) pairwise disjoint paths \(P_i = u_{i_1}u_{i_2}\cdots u_{i_{r+1}}, i = 1, 2, \ldots, q \) which satisfy both \((**)\) and \((***)\), and we have \(\sum_{i=1}^{q} r_i = k \). Since \(G_0 \) is a complete subgraph of \(G \), we can easily check that \(G \) has a hamiltonian cycle.

Therefore, Theorem 1 is true. \(\diamond \)

Theorem 1 has the following consequence.

Corollary 1. Let \(G_0 \) be a complete subgraph of \(G \) with \(|G_0| \geq 2 \). If \(G_0 \) contains a pair of useful vertices of each component of \(G \setminus G_0 \) and \(G[N(G_0)] \) is C-free, then \(G \) is hamiltonian.

Proof. Let \(G_1, \ldots, G_k \) be all the components of \(G \setminus G_0 \) and set \(G^* = G[N(G_0)] \). By Theorem 1, it is sufficient to show that \(G_0, G_1, \ldots, G_k \) is a L-decomposition of \(G \).

By the hypothesis, we can choose \(S_i \subseteq V_{G_0}(G_i) \) such that \(S_i \) satisfies 2) of Definition 2 and \(|S_i| \) is as large as possible. Since \(G^* \) is C-free, 3) of Definition 2 is satisfied. Thus we only need to show that 4) of Definition 2 is also satisfied.

In fact, let \(r \leq k \) be any positive integer. Since \(G^* \) is C-free, we have \(|V(G_0)| \geq k \geq r \). If \(|V(G_0)| = k = r \), then \(|\bigcup_{1 \leq i \leq r} S_i| = r \). Conversely, if \(|\bigcup_{1 \leq j \leq r} S_{i_j}| = r \), then \(|S_{i_j}| = 2 \) \((j = 1, 2, \ldots, r) \) and each vertex \(x \in \bigcup_{1 \leq j \leq r} S_{i_j} \) is a common vertex of some two pairs of useful vertices. Let \(x \in S_{i_1} \cap S_{i_2} \) and \(y \in N_{G_{i_1}}(x), z \in N_{G_{i_2}}(x) \). When \(|G_0| > r \), then there exists some \(w \in V(G_0) \setminus (\bigcup_{1 \leq j \leq r} S_{i_j}) \). Since \(G^* \) is C-free, we have \(wy \in E \) or \(wz \in E \). Therefore, either \(S_{i_1} \cup \{w\} \) or \(S_{i_2} \cup \{w\} \) still satisfies 2) of Definition 2, which contrary to the choice of \(S_i \), or \(S_i \). Thus \(|V(G_0)| = k = r \). This completes the proof of Corollary 1. \(\diamond \)

3 The Proof of Theorem 5

In order to prove Theorem 5, we need the following theorem.

Theorem 6[5]. If \(G \) is 3-connected and CN-free, then for any distinct vertices \(x, y \) of \(G \), there exists a hamiltonian path connecting \(x \) and \(y \).

Now, set \(V_0 = \{x \in V(G) : d(x) \geq n/2\} \). By Theorem 2, we may assume that \(G[V_0] \) is a complete subgraph of \(G \) if \(V_0 \neq \emptyset \). Let \(G_0 \) be a complete subgraph of \(G \) such that \(V_0 \subseteq V(G_0) \) and \(|V(G_0)| \) is as large as possible. Let \(G_1, \ldots, G_k \) be all the components of \(G \setminus G_0 \). Then by the property \(CB(n) \), \(G[N(G_0)] \) is C-free and \(G_0 \) is CB-free for any \(1 \leq s \leq k \). By Corollary 1, we need only to show that \(G_0 \) contains a pair of useful vertices of \(G_s \) for \(1 \leq s \leq k \).

Assume that there is a component \(G_s \) of \(G \setminus G_0 \) such that \(G_0 \) does not contain
any pair of useful vertices of G. Let S be a minimal cut vertex set of G_* and $v \in S$. Then by the assumption and Theorem 6, $|S| \leq 2$. Since G_* is C-free, $G_* \setminus S$ has only two components H_1, H_2. Let $H = G[V(H_1) \cup V(H_2) \cup \{v\}]$ and $S_{-i} = \{u \in V(H_1) : d_H(u,v) = i\}$ and $S_i = \{u \in V(H_2) : d_H(u,v) = i\}$ for $i \geq 0$. Denote $m := \max\{i : S_i \neq \emptyset\}$ and $n := \max\{i : S_{-i} \neq \emptyset\}$. Clearly, we have $V(G_*) = S \cup \bigcup_{i=0}^{m} S_i$, and $G[S \cup S_j]$ is complete if and only if $|i-j| = 1$ since G_* is CB-free.

If $|S| = 1$, then there exist some $x \in S_m$ and $y \in S_{-n}$ such that neither x nor y is a cut vertex of G_* and $N_{G_0}(x) \neq \emptyset$ and $N_{G_0}(y) \neq \emptyset$. Since G_* is 2-connected. Because of the structure of G_*, there exists a path P connecting x and y in G_* with $V(P) = V(G_*)$. Thus by the assumption, $N_{G_0}(x) = N_{G_0}(y)$ and $|N_{G_0}(x)| = 1$, which contrary to the fact that $G[N(G_0)]$ is C-free.

If $|S| = 2$, let $v' \in S$ and $v' \neq v$. Since G_* is 2-connected$,$ $N(v') \cap S_i \neq \emptyset$ for some $1 \leq i \leq m$ and $N(v') \cap S_{-j} \neq \emptyset$ for some $1 \leq j \leq n$. Let $i_0 = \max\{i : N(v') \cap S_i \neq \emptyset\}$ and $j_0 = \max\{j : N(v') \cap S_{-j} \neq \emptyset\}$. By the hypothesis of Theorem 5, we may assume that there exists some t with $0 \leq t \leq m$ such that $N_{G_0}(S_t) \neq \emptyset$.

Since G_* is 2-connected, we have

(a) $|S_i| \geq 2$ for any $m - 1 \geq i \geq i_0$ and $|S_{-j}| \geq 2$ for any $n - 1 \geq j \geq j_0$.

By (a) and the structure of G_*, we have

(b) If $|S_m| \geq 2$ then for any two distinct vertices x and y in S_m, there exists a path P in G_* connecting x and y with $V(P) = V(G_*)$.

(c) For any $x \in S_{i-1}$ and $y \in S_i$ $(1 \leq i \leq m)$, there exists a path in G_* connecting x and y with $V(P) = V(G_*)$.

Since $|N_{G_0}(G_*)| \geq 2$. By the assumption, (c) and the hypothesis of Theorem 5, we have

(d) $n + m \geq 3$.

Now, we distinguish the following two cases.

Case 1. $0 \leq t < m$, that is there exists some $x \in S_t$ and $y \in V(G_0)$ such that $xy \in E$.

Then by the hypothesis of Theorem 5 and $1 \leq t < m$, there exists a vertex $z \in S_{t-1}$ or $z \in S_{t+1}$ such that $yz \in E$. By the assumption and (c), for any $y' \in V(G_0) \setminus \{y\}$ and $w \in S_{t-1} \cup S_{t+1}$, $y'w \not\in E$. Thus we can find a vertex set $F = \{x, y, z, y', w\}$ such that $G[F]$ is a B-graph and does not satisfy the condition of Theorem 5, a contradiction.

Case 2. For any $0 \leq i \leq m - 1$, $N_{G_0}(S_i) = \emptyset$, that is $t = m$.

Symmetrically, we may assume that for any $0 \leq j \leq n - 1$, $N_{G_0}(S_{-j}) = \emptyset$.

If $N_{G_0}(v') \neq \emptyset$, let $y \in V(G_0)$ such that $v'y \in E$. Then by the hypothesis of Theorem 5, we have $y \in N_{G_0}(S_{i_0})$ or $y \in N_{G_0}(S_{-j_0})$. Thus $i_0 = m$ or $j_0 = n$.

261
Without loss of generality, let $y \in N_{G_0}(S_{i_0})$. When $y \notin N_{G_0}(S_{-j_0})$, then by the hypothesis of Theorem 5, there exists a vertex $y' \in V(G_0) \setminus \{y\}$ such that $y'y' \in E$ or $y' \in N_{G_0}(S_m)$ or $y' \in N_{G_0}(S_{-n})$ whenever $j_0 = n$. By the structure of G_1, we can derive that (y, y') is a pair of useful vertices of G_1, contrary to the assumption.

When $y \in N_{G_0}(S_{i_0}) \cap N_{G_0}(S_{-j_0})$, that is $i_0 = m$ and $j_0 = n$. Since G is 2-connected, there exists a vertex $y' \in V(G_0)$ such that $y' \in N_{G_0}(S_m) \cup N_{G_0}(S_{-n})$ or $y'y' \in E$. Also by the structure of G_1, we can derive that (y, y') is a pair of useful vertices of G_1, contrary to the assumption. Hence in rest proof we suppose that $N_{G_0}(y') = \emptyset$.

Since G is 2-connected, there exist $x \neq x' \in S_m \cup S_{-n}$ and $y \neq y' \in V(G_0)$ such that $xy \in E$ and $x'y' \in E$. By the assumption and (b), $(x, x') \not\subseteq S_m$ and $(x, x') \not\subseteq S_{-n}$. Let $x \in S_m$ and $x' \in S_{-n}$. By (d), let $m \geq 2$, then $S_m \in N(y)$ by the hypothesis of Theorem 5.

If $i_0 = m$, then $S_{m-1} \subseteq N(y')$ by the hypothesis of Theorem 5. Thus by the structure of G_1, we can derive that (y, y') is a pair of useful vertices of G_1, contrary to the assumption. If $i_0 < m$, then $S_{i_0-1} \subseteq N(y')$. Thus we can also get a contradiction as before.

Therefore, Theorem 5 is true.

References

(Received 16/11/94)