\textit{n-Extendability of Line Graphs, Power Graphs, and Total Graphs}

D. A. Holton
Department of Mathematics and Statistics
University of Otago
P.O. Box 56 Dunedin, New Zealand
e-mail dholton@math.otago.ac.nz

Dingjun Lou
Department of Computer Science
Zhongshan University
Guangzhou 510275, People’s Republic of China

K. L. McAvaney
School of Computing and Mathematics
Deakin University
Geelong Victoria 3217, Australia
e-mail kevin@deakin.edu.au

Abstract

A graph \(G \) that has a perfect matching is \(n \)-extendable if every matching of size \(n \) lies in a perfect matching of \(G \). We show that when the connectivity of a line graph, power graph, or total graph is sufficiently large then it is \(n \)-extendable. Specifically: if \(G \) has even size and is \((2n + 1)\)-edge-connected or \((n + 2)\)-connected, then its line graph is \(n \)-extendable; if \(G \) has even order and is \((n + 1)\)-connected, then \(G^2 \) is \(n \)-extendable; if \(G \) has even order and is connected, then \(G^{2n+1} \) is \(n \)-extendable; if the total graph \(T(G) \) has even order and is \((2n + 1)\)-connected, then \(T(G) \) is \(n \)-extendable.

1 Introduction and terminology

All graphs considered in this paper are finite, undirected, connected and simple.
The vertex set and edge set of a graph G are denoted by $V(G)$ and $E(G)$ respectively. The cardinalities of $V(G)$ and $E(G)$ are called respectively the order and size of G. The line graph $L(G)$ of a graph G is the graph whose vertex set is $E(G)$ and in which two vertices are joined if and only if they are adjacent edges in G. The iterated line graph $L^m(G)$ is defined recursively by $L^1(G) = L(G)$ and $L^m(G) = L(L^{m-1}(G))$ for $m > 1$. A power graph G^k (the kth power of a graph G) is the graph whose vertices are those of G and in which two distinct vertices are joined whenever the distance between them in G is at most k. The vertices and edges of a graph are called elements. Two elements of a graph are neighbours if they are either incident or adjacent. The total graph $T(G)$ has vertex set $V(G) \cup E(G)$ and two vertices of $T(G)$ are adjacent whenever they are neighbours in G. The iterated total graph $T^m(G)$ is defined recursively by $T^1(G) = T(G)$ and $T^m(G) = T(T^{m-1}(G))$ for $m > 1$. The subdivision graph $S(G)$ of a graph G is the graph obtained by replacing all edges of G with paths of length two. The inserted vertices are called the subdivision vertices of $S(G)$. We use P_{n+1} to denote a path of length n. The number of components of G of odd order is denoted by $o(G)$. A matching of G is a set edges no two of which are adjacent. The matching is perfect if it contains all the vertices of G. For the terminology and notation not defined in this paper, the reader is referred to [3].

We will need the following well known condition for the existence of a perfect matching.

Tutte's Theorem ([10]) A graph G has a perfect matching if and only if for every subset S of vertices, $|S| \leq o(G - S)$.

Let n and $2m$ be positive integers with $n \leq m - 1$ and let G be a graph with $2m$ vertices having a perfect matching (of size m). The graph G is said to be n-extendable if every matching of size n in G lies in a perfect matching.

The n-extendability of symmetric graphs was studied in [1], [7], and [8]. In this paper we investigate the n-extendability of some locally dense graphs, namely, line graphs, power graphs and total graphs. The following lemma is useful.

Lemma 1 ([4]) (1) If a line graph is connected and has even order, then it has a perfect matching. (2) If G is a connected graph of even order, then G^2 has a perfect matching. (3) If a total graph is connected and has even order, then it has a perfect matching.

We show that when the connectivity of line graphs, power graphs and total graphs is sufficiently large, then they are n-extendable.

2 Line graphs

In this section, a necessary and sufficient condition for a line graph to be n-extendable is given. The next two lemmas follow immediately from the definition of a line graph.

Lemma 2 If $D \subseteq E(G)$ then $L(G - D) = L(G) - D$.

216
Lemma 3 If $D \subseteq E(G)$ then the number of non-trivial components of $G - D$ equals the number of components of $L(G) - D$.

Theorem 4 Let G be a graph of even size. Then $L(G)$ is n-extendable if and only if, for any collection Q_1, Q_2, \ldots, Q_n of edge-disjoint P_3’s in G, $G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$ does not have a component of odd size.

Proof. Suppose $L(G)$ is n-extendable. Any edge disjoint P_3’s Q_1, Q_2, \ldots, Q_n of G correspond to n independent edges $e_i = u_iv_i$ of $L(G)$ ($i = 1, 2, \ldots, n$). So $L(G) - \{u_1, v_1, \ldots, u_n, v_n\}$ has a perfect matching and therefore does not have any odd components. But each component of $L(G) - \{u_1, v_1, \ldots, u_n, v_n\}$ is the line graph of some component of $G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$. Hence no component of $G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$ has an odd number of edges.

For the converse, let edges $e_i = u_iv_i$ ($i = 1, 2, \ldots, n$) form a matching of $L(G)$. These edges correspond to n edge disjoint P_3’s Q_1, Q_2, \ldots, Q_n of G. By Lemma 1, the line graph of each component of $G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$ has a perfect matching. Thus $L(G) - \{u_1, v_1, \ldots, u_n, v_n\}$ has a perfect matching and $L(G)$ is n-extendable. □

Corollary 5 If a graph G has even size and is $(2n + 1)$-edge-connected, then $L(G)$ is n-extendable.

Proof. Let Q_1, Q_2, \ldots, Q_n be n edge-disjoint P_3’s of G. Since G is $(2n + 1)$-edge-connected, $G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$ is connected and therefore has no component with an odd number of edges. The result now follows from Theorem 4. □

The connectivity in Corollary 5 is the least possible. Let F and H be two disjoint graphs both isomorphic to K_{2n+3} if K_{2n+3} has odd size or to K_{2n+3} with one edge deleted if K_{2n+3} has even size. Join F and H by n P_3’s such that the middle vertices of the P_3’s are n different vertices of F and the end vertices of the n P_3’s are $2n$ different vertices of H. The resulting graph is $2n$-edge-connected, but deleting the edges of the n P_3’s gives a component of odd size. By Theorem 4, its line graph is not n-extendable.

We have another version of Corollary 5.

Corollary 6 If $L(G)$ has even order and is $(2n + 1)$-connected, then $L(G)$ is n-extendable.

Corollary 7 If a graph G has even size and is $(n + 2)$-connected, then $L(G)$ is n-extendable.

Proof. Suppose that $L(G)$ is not n-extendable. By Theorem 4 there are n edge disjoint P_3’s Q_1, Q_2, \ldots, Q_n of G such that $G' = G - E(Q_1) - E(Q_2) - \cdots - E(Q_n)$ has a component of odd size and is therefore disconnected. Let w_j be the middle vertex of Q_j for $1 \leq j \leq n$. Let $W = \{w_1, \ldots, w_n\}$. Note that the w_i’s are not necessarily distinct. Let v_1, \ldots, v_m be the distinct vertices of W. Suppose each v_i is repeated l_i
times in W. G is $(n+2)$-connected, so $G-W$ is connected. Also, since G' has at least two components of odd size, there is a component C of odd size that contains vertices only from W. Without loss of generality, let $V(C) = \{v_1, \ldots, v_r\}$. Note that $r \geq 2$ since C has odd size. Assume that l_i is the least of the l_i's for $1 \leq i \leq r$ and that $v_1 = w_1 = \cdots = w_{l_i}$. The end vertices of $Q_1, Q_2, \ldots, Q_{l_i}$ and the vertices v_2, \ldots, v_m form a cut set of order $2l_1 + (r-1) + (m-r) \leq 2l_1 + (1 + l_3 + \cdots + l_r) + (l_{r+1} + \cdots + l_m) \leq 1 + l_1 + l_2 + \cdots + l_m = n + 1$, contradicting the fact that G is $(n+2)$-connected. □

The connectivity in Corollary 7 is also the least possible. Let F be K_n where $n = 4i + 2$ for some i. Let H be K_{2n} with one edge deleted. Both F and H have an odd number of edges. Join F to H with $n P_3$'s such that the middle vertices of the $n P_3$'s are the n different vertices of F and the end vertices of the $n P_3$’s are the $2n$ different vertices of H. The resulting graph is $(n+1)$-connected but deleting the edges of the $n P_3$’s gives a component of odd size. By Theorem 4, its line graph is not n-extendable.

We turn now to the iterated line graph $L^m(G)$.

Lemma 8 ([5]) (1) If G is k-connected, then $L(G)$ is k-connected. (2) If G is k-edge-connected, then $L(G)$ is $(2k-2)$-edge-connected.

Corollary 9 If G is $(n+2)$-connected and $L^m(G)$ has even order, then $L^m(G)$ is n-extendable.

Proof. This follows from Corollary 7 and Lemma 8(1). □

If we relax the connectivity of G, then $L^m(G)$ is still n-extendable for sufficiently large m.

Corollary 10 Let k, m, n be positive integers and $2^m \geq (4n-2)/k$. If G is $(k+2)$-edge-connected and $L^m(G)$ has even order then $L^m(G)$ is n-extendable.

Proof. From Lemma 8(2), $L^{m-1}(G)$ is $(2^{m-1}k + 2)$-edge-connected. The result now follows from Corollary 5. □

Corollary 11 Let k, m, n be positive integers and $2^m \geq (4n-2)/k$. If G is $(k+2)$-connected and $L^m(G)$ has even order then $L^m(G)$ is n-extendable.

Proof. This follows from Corollary 10 since G is at least $(k+2)$-edge-connected. □

3 Power graphs

In this section, we prove that when the connectivity of a graph G is sufficiently large, G^2 is n-extendable. We also show that for any connected graph G, G^r is n-extendable for sufficiently large r.

Lemma 12 Let G be a k-connected graph. Then G^m is km-connected if km is less than the order of G. □
Proof. Suppose \(S \) is a cutset of \(G^m \) and \(S \) contains less than \(km \) vertices. Let \(u \) and \(v \) be vertices separated in \(G^m \) by \(S \). Since \(G \) is \(k \)-connected, there are at least \(k \) internal vertex disjoint paths in \(G \) from \(u \) to \(v \). They must all contain a vertex from \(S \). There are fewer than \(m \) vertices from \(S \) in one of these paths. By choosing a different \(u \) and \(v \) if necessary, we can assume that all internal vertices of this path lie in \(S \). Thus, in \(G^m \), \(u \) and \(v \) are adjacent; a contradiction. \(\square \)

The following result shows that if the connectivity of a graph \(G \) is large, the square of \(G \) is \(n \)-extendable.

Theorem 13 If \(G \) is \(k \)-connected with even order and \(k > n \), then \(G^r \) is \(n \)-extendable for \(r \geq 2 \).

Proof. Suppose \(G^r \) is not \(n \)-extendable. There are \(n \) independent edges \(e_i = u_iv_i \) (\(i = 1, 2, \ldots, n \)) which do not lie in any perfect matching of \(G^r \). Let \(H = G^r - \{u_1, v_1, \ldots, u_n, v_n\} \). By Lemma 12, \(H \) is connected. By Tutte’s Theorem, there is a cutset \(S \) of \(H \) such that \(o(H - S) > |S| \). By parity, \(o(H - S) = |S| + 2m \) for some positive integer \(m \). Let \(S' = S \cup \{u_1, v_1, \ldots, u_n, v_n\} \). Then \(|S'| = |S| + 2n \) and \(o(G^r - S') = o(H - S) = |S| + 2m \).

As \(G \) is \(k \)-connected, each component of \(G^r - S' \) is adjacent in \(G \) to at least \(k \) vertices of \(S' \). Suppose no two odd components of \(G^r - S' \) in \(G \) have a common neighbour in \(S' \). Then there are at least \((|S| + 2m)k \) vertices in \(S' \). But \(S' \) has only \(|S| + 2n < (|S| + 2m)k \) vertices. So at least two odd components \(C_1 \) and \(C_2 \) have in \(G \) a common neighbour \(v \) in \(S' \). Then there is vertex \(u \) in \(C_1 \) and a vertex \(w \) in \(C_2 \) such that \(u \) and \(w \) are both adjacent to \(v \). In \(G^r \), \(u \) and \(w \) are adjacent. So \(u \) and \(w \) are in the same component of \(G^r - S' \), contradicting the fact that \(C_1 \) and \(C_2 \) are different components of \(G^r - S' \). \(\square \)

The connectivity bound is sharp. Let \(F = K_{n+1} \) if \(n \) is even or \(K_{n+2} \) if \(n \) is odd. Let \(H \) be isomorphic to \(F \). Let \(e_i = u_iv_i \) (\(i = 1, 2, \ldots, n \)) be \(n \) independent edges which are vertex disjoint from \(F \) and \(H \). Join each \(u_i \) to every vertex of \(F \) and join each \(v_i \) to every vertex of \(H \). The resulting graph \(G \) is \(n \)-connected. But \(G^2 - \{u_1, v_1, \ldots, u_n, v_n\} \) has an odd component and therefore no perfect matching. Thus \(G^2 \) is not \(n \)-extendable.

If we relax the connectivity of \(G \), then its power graph \(G^r \) is still \(n \)-extendable for sufficiently large \(r \).

Theorem 14 If \(G \) is \(k \)-connected with even order and \(1 \leq k \leq n \), then \(G^r \) is \(n \)-extendable for \(r \geq 2(n - k) + 3 \).

Proof. Proceed as in the first paragraph of the proof for Theorem 13. Let \(C_1, C_2, \ldots, C_t \) be the components of \(G^r - S' \). Let \(N_i \) be the set of vertices of \(S' \) that are adjacent in \(G \) to vertices of \(C_i \). Since \(G \) is \(k \)-connected, each \(N_i \) contains at least \(k \) vertices. Also, the \(N_i \) are pairwise disjoint otherwise one of the components \(C_i \) contains a vertex \(u \) that is distance two from a vertex \(v \) in some other component \(C_j \) but then \(u \) and \(v \) would be in the same component of \(G^r \). Since \(G \) is connected, there is a path \(P \) in \(G \) from a vertex \(w_i \) in \(N_i \) to a vertex \(w_j \) in \(N_j \) (\(j \neq i \)). By
assuming P has the minimum length among all such paths, P is contained in S' and the internal vertices of P have no vertex in N_I for $1 \leq l \leq t$. Since $|S'| = |S| + 2n$ and $t \geq |S| + 2m$, the order of P is at most $|S| + 2n - k(|S| + 2m) + 2 \leq |S| + 2n - k(|S| + 2) + 2 = 2(n - k) - |S|(k - 1) + 2 \leq 2(n - k) + 2$. There is a vertex z_i in C_i and a vertex z_j in C_j adjacent to w_i and w_j respectively. Then z_iPz_j is a path of length at most $2(n - k) + 3$. So z_i and z_j are adjacent in G^r, contradicting the fact that C_i and C_j are different components of $G^r - S'$. □

The bound on r in Theorem 14 is the least possible. Let $G = u_0u_1\ldots u_{2n}u_{2n+1}$ be a path. Let $e_i = u_{2i-1}u_{2i}$ ($i = 1, 2, \ldots n$). Since $G^{2n} - \{u_1, u_2, \ldots u_{2n}\}$ has an odd component (u_0 or u_{2n+1}) it does not have a perfect matching. We can replace u_0 or u_{2n+1} by odd components, and the resulting graph will still be a counterexample.

4 Total graphs

In this section we show that when the connectivity of a total graph $T(G)$ is sufficiently large, then $T(G)$ is n-extendable. We quote three useful lemmas.

Lemma 15 ([2]) For any graph G, $T(G) = (S(G))^2$.

Lemma 16 Let G be a connected graph and let w be a vertex in a cutset R of $T(G)$.

1. If w is a subdivision vertex of $S(G)$, then w is adjacent to at most two components of $T(G) - R$. (2) If R contains no subdivision vertices of $S(G)$, then w is adjacent to exactly one component of $T(G) - R$.

Proof. This follows immediately from Lemma 15. □

Theorem 17 If $T(G)$ is $(2n + 1)$-connected and has even order, then $T(G)$ is n-extendable.

Proof. Suppose $T(G)$ is not n-extendable. There are n independent edges $e_i = u_iv_i$ ($i = 1, 2, \ldots n$) which do not lie in a perfect matching of $T(G)$. Let $T' = T(G) - \{u_1, v_1, \ldots, u_n, v_n\}$. By Tutte's Theorem, there is a subset S' of vertices of T' such that $o(T' - S') > |S'|$. By parity, $o(T' - S') = |S'| + 2m$ for some positive integer m. Let $S = S' \cup \{u_1, v_1, \ldots, u_n, v_n\}$. Then $o(T(G) - S) = o(T' - S') = |S'| + 2m = |S'| - 2n + 2m$. Let C_1, C_2, \ldots denote the odd components of $T(G) - S$.

We now reduce S while keeping the relation $o(T(G) - S) = |S'| - 2n + 2m$ ($m \geq 1$). Let w be a vertex in S and replace S with $S'' = S\setminus\{w\}$.

If w is not adjacent to any odd component, then $o(T(G) - S'') = o(T(G) - S) + 1 = |S''| - 2n + 2(m + 1)$.

Suppose every vertex of S is adjacent to an odd component. If w is a subdivision vertex of $S(G)$, then, by Lemma 16, w is adjacent to at most two odd components. If w is adjacent to two odd components C_i and C_j, then the subgraph of $T(G) - S''$ induced by $C_i \cup \{w\} \cup C_j$ is an odd component and $o(T(G) - S'') = |S''| - 2n + 2m$. If w is adjacent to only one odd component C_i, then again $o(T(G) - S'') = |S''| - 2n + 2m$.
If S does not contain any subdivision vertex of $S(G)$, then, by Lemma 16, w is adjacent to exactly one odd component and again $o(T(G) - S'') = |S''| - 2n + 2m$.

Repeat the process above until $|S'| = 2n$. Then $o(T(G) - S) = |S'| - 2n + 2m = 2m \geq 2$. Thus S is a cutset of $T(G)$ of order $2n$, a contradiction. □

If we relax the connectivity of G then its iterated total graph $T^r(G)$ is still n-extendable for sufficiently large r.

Lemma 18 ([6, 9]) If G is k-connected, then $T(G)$ is $2k$-connected.

Corollary 19 Let G be k-connected and $2^r > 2n/k$. The iterated total graph $T^r(G)$ is n-extendable if it has even order.

Proof. This follows immediately from Lemma 18 and Theorem 17. □

Note that if G is k-connected, then $T(G)$ may be exactly $2k$-connected. Let w be a vertex of degree k. Then w has $2k$ neighbours in $T(G)$ which form a cutset. On the other hand the connectivity of $T(G)$ may be considerably higher than $2k$. For example, let G be the graph formed by identifying a vertex from K_{4p} with a vertex of K_{4p+1}. Then G is 1-connected but $T(G)$ has even order and is $(8p - 2)$-connected. Thus Theorem 17 is more powerful than Corollary 19.

The connectivity in Theorem 17 and inequality in Theorem 18 are sharp. Let G be a k-connected k-regular graph. Suppose $2^r k = 2n$. Since $T^1(G)$ is $2^1 k$-regular, $T^i(G)$ is exactly $2^r k$-connected by Lemma 18. By Lemma 15 $T^r(G) = (S(T^{r-1}(G)))^2$. Let w be a vertex in $T^{r-1}(G)$, let $w_i (i = 1, 2, \ldots, 2^{r-1} k)$ be the vertices of $T^{r-1}(G)$ adjacent to w and let u_i be the subdivision vertex on ww_i in $S(T^{r-1}(G)) (i = 1, 2, \ldots, 2^{r-1} k)$. Then the $u_i w_i$ are $2^{r-1} k = n$ independent edges of $T^r(G)$. But $T^r(G) - \{u_i, w_i | i = 1, 2, \ldots, 2^{r-1} k\}$ does not have a perfect matching as w is an isolated vertex. So $T^r(G)$ is not n-extendable.

Acknowledgement The authors wish to thank the referee for several improvements to this paper.

References

(Received 17/10/94; revised 25/1/95)