Note on Hadamard groups and difference sets

Noboru Ito

Department of Mathematics, Meijo University
Nagoya, Tenpaku, 468 Japan

In honour of Albert Leon Whiteman's eightieth birthday

Abstract. A representation theoretical characterization of an Hadamard subset is given.

§1. Introduction. A finite group G of order $2n$ is called an Hadamard group if G contains an n-subset D and an element e^* such that

1. D and De^* are disjoint,
2. D and Da intersect exactly in $n/2$ elements for any element a of G distinct from e^* and the identity element e of G, and
3. Da and $\{b, be^*\}$ intersect exactly in one element for any elements a and b of G.

The subset D will be called an Hadamard subset corresponding to e^*.

We consider the group ring of G over the field of complex numbers. If S is a subset of G, then S also denotes the sum of elements of S. Now (1) and (2) together will be expressed as

4. \[D^{-1}D = ne + (n/2)(G - e - e^*) \]

We have shown in (2, Proposition 1) that e^* is a central involution. For the basic facts on the representations of finite groups the reader is referred to our reference (1). Then we have
that $R(e^*) = I$ or $-I$ for any irreducible representation R of G over the field of complex numbers, where I denotes the identity matrix of order equal to the degree of R. Now from (4) we obtain that

(I) \[R(D^{-1}D) = nI \text{ if } R(e^*) = -I, \text{ and } R(D^{-1}D) = 0 \text{ if } R(e^*) = I, \]

and if R is distinct from the identity representation 1_G of G. For a justification of this statement the reader should see (2, Proposition 4). Now the purpose of this note is to prove the following proposition.

Proposition 1. (I) is sufficient for an n-subset D of G satisfying (1) and (3) to be an Hadamard subset corresponding to e^*.

Incidentally we have noticed that the similar fact holds for difference sets. Let E be a (v, k, λ)-difference set in a group H of order v. Then we have that

(5) \[E^{-1}E = ke + \lambda(H - e), \text{ where } e \text{ also denotes the identity element of } H. \]

So from (5) we obtain that

(II) \[R(E^{-1}E) = (k - \lambda)I \text{ for any irreducible non-identity representation } R \text{ of } H. \]

Then the following proposition holds.

Proposition 2. (II) is sufficient for a k-subset E of H to be a difference set.

The proof of Proposition 2 is similar to that of Proposition 1. Actually it is simpler and it will be omitted.

§2. Proof of Proposition 1. Let D be an n-subset of G satisfying (1), (3) and (I). In this section the summation except the
last one always runs over $G - \{e, e^*\}$. Put
\[D^{-1}D = ne + \sum m(g)g, \] where $m(g)$ denotes the multiplicity of an element g of G in $D^{-1}D$.

Then by (I) we have that
\[n^2 - n = \sum m(g)1_G(g), \quad 0 = \sum m(g)R(g), \] where R is any irreducible representation of G such that $R(e^*) = -I$, and $-nI = \sum m(g)R(g)$, where R is any non-identity irreducible representation of G such that $R(e^*) = I$.

Let h be any fixed element of G distinct from e and e^*. Then from (6) we get that
\[n^2 - n = \sum m(g)1_G(gh^{-1}), \quad 0 = \sum m(g)R(gh^{-1}), \] where R is any irreducible representation of G such that $R(e^*) = -I$, and $-nR(h^{-1}) = \sum m(g)R(gh^{-1})$, where R is any non-identity irreducible representation of G such that $R(e^*) = I$.

Let χ denote the character of G corresponding to R. Then from (7) we get that
\[n^2 - n = \sum m(g)1_G(gh^{-1}), \quad 0 = \sum m(g)\chi(gh^{-1}), \] where χ corresponds to R such that $R(e^*) = -I$, and $-n\chi(h^{-1}) = \sum m(g)\chi(gh^{-1})$, where χ corresponds to R such that $R(e^*) = 1$ and $R \neq 1_G$.

Now from (8) we obtain that
\[n^2 - n = \sum m(g)1_G(gh^{-1})1_G(e), \quad 0 = \sum m(g)\chi(gh^{-1})\chi(e), \] where χ corresponds to R such that $R(e^*) = -I$, and $-n\chi(h^{-1})\chi(e) = \sum m(g)\chi(gh^{-1})\chi(e)$, where χ corresponds to R such that $R(e^*) = 1$ and $R \neq 1_G$.

Adding up in (9) all irreducible characters and using orthogonality relations for irreducible characters, we get that
\[n^2 - n - \sum_{(h^{-1}) \in \chi(e^*) \neq \chi(e)} \chi(h^{-1}) \chi(e) = n^2 = m(h)2n, \]

namely \(m(h) = n/2 \), as desired.

We add the following remark: \(R \) always can be assumed to be unitary. Then we have that \(R(D^{-1}) = R(D)^* \), where \(* \) denotes the composition of complex conjugation and transposition. If \(R(D^{-1}D) = nI \), then \(R(D)^*R(D) = nI \), and hence \(n^{-1/2}R(D) \) is a unitary matrix.

The propositions above imply the following propositions immediately.

(i) If \(G \) is an Hadamard group with prescribed subset \(D \) and element \(e^* \), then \(DD^{-1} = D^{-1}D \), and \(G \) is an Hadamard group with prescribed subset \(D^{-1} \) and element \(e^* \).

(ii) If \(E \) is an Hadamard difference set in a group \(H \), then \(EE^{-1} = E^{-1}E \), and \(E^{-1} \) is also an Hadamard difference set in \(H \).

References

(Received 9/3/94)