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Abstract

Let G be a k-regular bipartite graph with bipartition (X,Y’) and let ¢ be
a positive integer such that ¢ < % If \(G) > 2¢—1 then for every u € X
and v € Y, the graph G — {u, v} contains an (-factor.

1 Introduction and terminology

All graphs considered are assumed to be simple and finite. We refer the reader to [2]
for standard graph theoretic terms not defined in this paper.

Let G be a graph. The degree dg(z) of a vertex z in G is the number of edges
of G incident with z. If X and Y are subsets of V(G) such that X N Y = (), the
set and the number of the edges of G joining X to Y are denoted by Eq(X,Y) and
eq(X,Y) respectively. For any set X of vertices in GG, the neighbour set of X in G
is denoted by Ng(X). If e is an edge of G having u and v as end-vertices, then the
edge e is also denoted by uv. A graph G is k-regular if dg(x) =k for all z € V(G).

A bipartite graph is one whose vertex set can be partitioned into two subsets X
and Y, so that each edge has one end in X and one end in Y; such a partition (X,Y)
is called a bipartition of the graph. If |X| = m, |Y| = n, and each vertex of X is
joined to each vertex of Y, such a graph is called a complete bipartite graph and is
denoted by K, .

A vertex cut of G is a subset S of V(G) such that G — S is disconnected. If G is a
non-complete graph, we define the vertex connectivity x(G) of G to be the minimum
number of elements of a vertex cut. If G is a complete graph, x(G) is defined as
|V(G)| — 1. A graph G is said to be k-connected if kK(G) > k.

An edge cut of G is a subset of F(G) of the form Eg(S, S), where S is a nonempty
proper subset of V(G). If G is nontrivial and E’ is an edge cut, then G — E’ is
disconnected; we then define the edge connectivity A(G) to be the minimum number
of elements of an edge cut. A graph G is said to be k-edge-connected if A(G) > k.
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A matching or set of independent edges in a graph G is a set of edges without
common end-vertices. Let k& be a positive integer. A k-factor of a graph G is a
spanning subgraph H of G, such that dg(z) = k for every z € V(G).

The following theorem, due to Petersen, is chronologically the first result on
k-factors in regular graphs.

Petersen’s Theorem [6]: Every 3-regular, 2-edge-connected graph has a 1-factor.
There are several results which generalize Petersen’s theorem. One of them is the
following.
Béabler’s Theorem [1]: Every r-regular, (r — 1)-edge-connected graph of even order
has a 1-factor.
The next theorem examines the existence of a 1-factor in vertex-deleted subgraphs
of a regular graph.
Theorem 1 [3]: Let G be a 2r-regular, 2r-edge-connected graph of odd order and u
be any vertex of G. Then the graph G — {u} has a 1-factor.
The following theorem generalizes Theorem 1.

Theorem 2 [4]: Let G be a 2r-regular, 2r-edge-connected graph of odd order and m
be an integer such that 1 < m < r. Then for every u € V(G), the graph G —{u} has
an m-factor.

The main purpose of this paper is to focus on bipartite graphs and obtain for
them, the following result which is similar to Theorem 2.

Theorem 3: Let G be a k-reqular bipartite graph with bipartition (X,Y") and let ¢
be a positive integer such that ¢ < % If M(G) > 20 — 1 then for every u € X and
v €Y, the graph G — {u,v} contains an (-factor.

We note at this point that the two conditions of Theorem 3 are in some sense
best possible as we will show later.
For the proof of Theorem 3, we will use the following theorem.

Ore-Ryser (-factor theorem [5]: Let G be a bipartite graph with bipartition (X,Y)
such that | X| = |Y|. Then G does not have an (-factor if and only if there exists a
subset T' of Y such that

E|T| >T1+2T2+"'+(€_1)rf—1+€(77+"‘+7”A)
where R; = {x € X : |[Eg(z,T)| =i}, i = |Ri|, and A is the mazimum degree of G.

2 Proof of the main result

Proof of Theorem 3: Suppose that the theorem does not hold. Then there exist
a positive integer ¢, where ¢ < g, and vertices u € X, v € Y such that G — {u, v}
does not have an ¢-factor. If we define G; = G — {u, v} then by Ore-Ryser Theorem

there exists 7' C Y — {v} such that
OT| >ri+2rg+ -+ L(rg+ -+ 15) (1)
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where R; = {z € X — {u}: |Eg,(z,T)| =i}, |Ri| =m fori=1,2,... k.
Clearly rp+- - -+ry < |T|—1 since otherwise (1) does not hold. Define ry+- - -+ry =
|T'| — t, where t is a positive integer. Then (1) yields

T1+2T2+-"+(€_1)r£—1Sgt—l' (2)

At this point, we consider the following two cases.

Case 1: t =1
We have

ET| =eq(T,RU---URy U{u})
=eq(T,RiU---URi_1) +eq(T,RyU---UR,U{u})
=eq(T,RiU---UR_ )+ k(T|—1) —eq(R,U---URy,Y = T)
+k—ea({u},Y = T) (3)

since 1y + - -+ + 1, = |T| — 1 and dg(u) = k. Furthermore, Eq(T, Ry U---U Ry_1) U
Eq(RyU---URU{u},Y —T) is an edge cut of G and so we have

eg(T,RlU"'URg_l)—l—eG'(RgU"-URkU{U},Y—T) Z)\(G) > 20— 1.

Thus by using (2),
eg(RgU---URkU{u},Y—T)zé. (4)

Hence by considering (2) and (4), (3) yields
ET| <(—1)+k(T|—1)+k—¢

which is a contradiction. Therefore this case cannot occur.

Case 2: t > 2
We have

€G, (Ta NG1 (T)) = k‘T‘ - eG({u}7T)
-1 k
= Z iy + Z iy
i=1 i=t
<tl—1+4k(|T|—t) by using (2).
Hence k|T| — k < tl — 1+ k|T| — tk, which yields

tk+1—k 1 k k
€2+—2k+———>— since t > 2
t t t 2

contradicting the hypothesis of the theorem. Therefore this case also cannot occur.
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3 Sharpness

We will show in this section that the conditions of Theorem 3 are in some sense
best possible. We will first notice that the upper bound on £ is in some sense best
possible. For this purpose we will describe a family of graphs G which constitutes
counterexamples to an opposite claim. Let Hy be a simple k-regular, k-connected
bipartite graph with bipartition (Xo,Yy) and let w € Y,. Define H; = Hy — {w}
and let {ug1,uo2,...,uox} be the set of vertices having degree k — 1 in Hy. We also
consider a copy of Kj_;, with bipartition (Xi,Y)) where Y7 = {uy1,u12,...,u1 .}
denotes the set of vertices having degree £k — 1 in Kj_1;. We form the family of
graphs mentioned above, by adding to graphs H; and Kj_; ; the independent edges
Up1U1,1, U 2UL2, - - -, U kU1 k. Clearly G is a k-regular, k-edge-connected bipartite
graph with bipartition (X, U X3, (Yo — {w}) UY)). Let u € Xy, v € Yy — {w} and
define Gy = G — {u,v}. If we assume that k > 3 is odd and let £ = 1, then G
is k-edge-connected with k = 2¢ — 1. Furthermore (G; does not have an ¢-factor for
(= % because if we let T' = Y7, then

UT| > 1 +2rg 4+ L(rg+ -+ 1)

since [T| =k, ri =k, ro+---+r,_1 =0and r, = | X; — {u}| =k — 2.

We next show that the edge-connectivity condition is best possible by describing
a family of graphs G having slightly lower edge-connectivity and not having the
properties implied by Theorem 3. Let H(H*) be a bipartite graph obtained from
K . after the deletion of a matching containing £/ —1 (2¢—2) edges, where 2 < ¢ < %
We consider m copies H; of H* having bipartitions (X, Y;) fori = 1,2,...,m and two
copies Hy and H,,+1 of H having bipartitions (X, Yy), (Xpmt1, Yime1) respectively.
Define X! = {z € X; | dy,(x) = k—1}, Y = {z € Y; | dg,(z) = k — 1} for

- ! !

i=0,1,...,m+1 and let X = {uo1,u02,.-.,u0—1}, Yy = {vo1,v02,.-.,V00-1},
' _ ! _

Xm+1 = {Um+1,1, Um41,25 - - - ,Um+1,471}, Ym+1 = {Um+1,1, Um+1,25 - - - ,’Um+1,571} and
/ !/ .

Xi = {um, U2,y - ,Ui’gg_g}, Y; = {Ui,17 Vi2, .- - 7Ui’25_2} for ¢ = 1, 27 oo, M. We form

the family of graphs mentioned above by adding to graphs Hy, Hy, ..., H,,, H,+1 the
following four sets of independent edges:

m

E, = U{Uz',wiﬂ,b Ui 0+1Vi+1,25 - - - >Uz‘,2e—2vi+1,e—1}
i=1
m+1

Ey = U {Ui,wiq,e, Ui 2Vi—1 0415 - - - 7Ui,2—1%71,2472}
i=2

Es = {Uo,1v1,1, Up,2V1,2 - - - ,UO,Z—101,£—1}

E4 = {Ul?l’Uo’l, U1,2V0,2, - - - ,ul’g,ﬂ]o,gfl}.

Clearly G is a k-regular, (2¢ — 2)-edge-connected graph with bipartition (XU X; U
o UXpg1, YoUYI U UY00). Let uw € Xo, v € VYUY, UY3U---UY,, 41 and define
G1 =G —{u,v}. If welet T =Y, then

UT) >ri+2rg+ -+ L(rg+ -+ +15)
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since |T| =k, r1 =0—1, 19+ - +1,9=0and r,_1 + 7, = k — 1. Thus G; does
not have an ¢-factor.
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