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Abstract

Let G be a k-regular bipartite graph with bipartition (X, Y ) and let ℓ be
a positive integer such that ℓ ≤ k

2
. If λ(G) ≥ 2ℓ− 1 then for every u ∈ X

and v ∈ Y , the graph G− {u, v} contains an ℓ-factor.

1 Introduction and terminology

All graphs considered are assumed to be simple and finite. We refer the reader to [2]
for standard graph theoretic terms not defined in this paper.

Let G be a graph. The degree dG(x) of a vertex x in G is the number of edges
of G incident with x. If X and Y are subsets of V (G) such that X ∩ Y = ∅, the
set and the number of the edges of G joining X to Y are denoted by EG(X, Y ) and
eG(X, Y ) respectively. For any set X of vertices in G, the neighbour set of X in G

is denoted by NG(X). If e is an edge of G having u and v as end-vertices, then the
edge e is also denoted by uv. A graph G is k-regular if dG(x) = k for all x ∈ V (G).

A bipartite graph is one whose vertex set can be partitioned into two subsets X
and Y , so that each edge has one end in X and one end in Y ; such a partition (X, Y )
is called a bipartition of the graph. If |X| = m, |Y | = n, and each vertex of X is
joined to each vertex of Y , such a graph is called a complete bipartite graph and is
denoted by Km,n.

A vertex cut of G is a subset S of V (G) such that G−S is disconnected. If G is a
non-complete graph, we define the vertex connectivity κ(G) of G to be the minimum
number of elements of a vertex cut. If G is a complete graph, κ(G) is defined as
|V (G)| − 1. A graph G is said to be k-connected if κ(G) ≥ k.

An edge cut of G is a subset of E(G) of the form EG(S, S), where S is a nonempty
proper subset of V (G). If G is nontrivial and E ′ is an edge cut, then G − E ′ is
disconnected; we then define the edge connectivity λ(G) to be the minimum number
of elements of an edge cut. A graph G is said to be k-edge-connected if λ(G) ≥ k.
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A matching or set of independent edges in a graph G is a set of edges without
common end-vertices. Let k be a positive integer. A k-factor of a graph G is a
spanning subgraph H of G, such that dH(x) = k for every x ∈ V (G).

The following theorem, due to Petersen, is chronologically the first result on
k-factors in regular graphs.

Petersen’s Theorem [6]: Every 3-regular, 2-edge-connected graph has a 1-factor.

There are several results which generalize Petersen’s theorem. One of them is the
following.

Bäbler’s Theorem [1]: Every r-regular, (r−1)-edge-connected graph of even order

has a 1-factor.

The next theorem examines the existence of a 1-factor in vertex-deleted subgraphs
of a regular graph.

Theorem 1 [3]: Let G be a 2r-regular, 2r-edge-connected graph of odd order and u

be any vertex of G. Then the graph G− {u} has a 1-factor.

The following theorem generalizes Theorem 1.

Theorem 2 [4]: Let G be a 2r-regular, 2r-edge-connected graph of odd order and m

be an integer such that 1 ≤ m ≤ r. Then for every u ∈ V (G), the graph G−{u} has

an m-factor.

The main purpose of this paper is to focus on bipartite graphs and obtain for
them, the following result which is similar to Theorem 2.

Theorem 3: Let G be a k-regular bipartite graph with bipartition (X, Y ) and let ℓ

be a positive integer such that ℓ ≤ k
2
. If λ(G) ≥ 2ℓ − 1 then for every u ∈ X and

v ∈ Y , the graph G− {u, v} contains an ℓ-factor.

We note at this point that the two conditions of Theorem 3 are in some sense
best possible as we will show later.

For the proof of Theorem 3, we will use the following theorem.

Ore-Ryser ℓ-factor theorem [5]: Let G be a bipartite graph with bipartition (X, Y )
such that |X| = |Y |. Then G does not have an ℓ-factor if and only if there exists a

subset T of Y such that

ℓ|T | > r1 + 2r2 + · · ·+ (ℓ− 1)rℓ−1 + ℓ(rℓ + · · ·+ r∆)

where Ri = {x ∈ X : |EG(x, T )| = i}, ri = |Ri|, and ∆ is the maximum degree of G.

2 Proof of the main result

Proof of Theorem 3: Suppose that the theorem does not hold. Then there exist
a positive integer ℓ, where ℓ ≤ k

2
, and vertices u ∈ X, v ∈ Y such that G − {u, v}

does not have an ℓ-factor. If we define G1 = G−{u, v} then by Ore-Ryser Theorem
there exists T ⊆ Y − {v} such that

ℓ|T | > r1 + 2r2 + · · ·+ ℓ(rℓ + · · ·+ rk) (1)
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where Ri = {x ∈ X − {u} : |EG1
(x, T )| = i}, |Ri| = ri for i = 1, 2, . . . , k.

Clearly rℓ+· · ·+rk ≤ |T |−1 since otherwise (1) does not hold. Define rℓ+· · ·+rk =
|T | − t, where t is a positive integer. Then (1) yields

r1 + 2r2 + · · ·+ (ℓ− 1)rℓ−1 ≤ ℓt− 1. (2)

At this point, we consider the following two cases.

Case 1: t = 1

We have

k|T | = eG(T,R1 ∪ · · · ∪Rk ∪ {u})

= eG(T,R1 ∪ · · · ∪Rℓ−1) + eG(T,Rℓ ∪ · · · ∪Rk ∪ {u})

= eG(T,R1 ∪ · · · ∪Rℓ−1) + k(|T | − 1)− eG(Rℓ ∪ · · · ∪Rk, Y − T )

+ k − eG({u}, Y − T ) (3)

since rℓ + · · · + rk = |T | − 1 and dG(u) = k. Furthermore, EG(T,R1 ∪ · · · ∪ Rℓ−1) ∪
EG(Rℓ ∪ · · · ∪Rk ∪ {u}, Y − T ) is an edge cut of G and so we have

eG(T,R1 ∪ · · · ∪Rℓ−1) + eG(Rℓ ∪ · · · ∪Rk ∪ {u}, Y − T ) ≥ λ(G) ≥ 2ℓ− 1.

Thus by using (2),
eG(Rℓ ∪ · · · ∪Rk ∪ {u}, Y − T ) ≥ ℓ. (4)

Hence by considering (2) and (4), (3) yields

k|T | ≤ (ℓ− 1) + k(|T | − 1) + k − ℓ

which is a contradiction. Therefore this case cannot occur.

Case 2: t ≥ 2

We have

eG1
(T,NG1

(T )) = k|T | − eG({u}, T )

=
ℓ−1∑

i=1

iri +
k∑

i=ℓ

iri

≤ tℓ− 1 + k(|T | − t) by using (2).

Hence k|T | − k ≤ tℓ− 1 + k|T | − tk, which yields

ℓ ≥
tk + 1− k

t
≥ k +

1

t
−

k

t
>

k

2
since t ≥ 2

contradicting the hypothesis of the theorem. Therefore this case also cannot occur.
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3 Sharpness

We will show in this section that the conditions of Theorem 3 are in some sense
best possible. We will first notice that the upper bound on ℓ is in some sense best
possible. For this purpose we will describe a family of graphs G which constitutes
counterexamples to an opposite claim. Let H0 be a simple k-regular, k-connected
bipartite graph with bipartition (X0, Y0) and let w ∈ Y0. Define H1 = H0 − {w}
and let {u0,1, u0,2, . . . , u0,k} be the set of vertices having degree k− 1 in H1. We also
consider a copy of Kk−1,k with bipartition (X1, Y1) where Y1 = {u1,1, u1,2, . . . , u1,k}
denotes the set of vertices having degree k − 1 in Kk−1,k. We form the family of
graphs mentioned above, by adding to graphs H1 and Kk−1,k the independent edges
u0,1u1,1, u0,2u1,2, . . . , u0,ku1,k. Clearly G is a k-regular, k-edge-connected bipartite
graph with bipartition (X0 ∪ X1, (Y0 − {w}) ∪ Y1). Let u ∈ X1, v ∈ Y0 − {w} and
define G1 = G − {u, v}. If we assume that k ≥ 3 is odd and let ℓ = k+1

2
, then G

is k-edge-connected with k = 2ℓ − 1. Furthermore G1 does not have an ℓ-factor for
ℓ = k+1

2
because if we let T = Y1, then

ℓ|T | > r1 + 2r2 + · · ·+ ℓ(rℓ + · · ·+ rk)

since |T | = k, r1 = k, r2 + · · ·+ rk−1 = 0 and rk = |X1 − {u}| = k − 2.

We next show that the edge-connectivity condition is best possible by describing
a family of graphs G having slightly lower edge-connectivity and not having the
properties implied by Theorem 3. Let H(H∗) be a bipartite graph obtained from
Kk,k after the deletion of a matching containing ℓ−1 (2ℓ−2) edges, where 2 ≤ ℓ ≤ k

2
.

We considerm copiesHi ofH
∗ having bipartitions (Xi, Yi) for i = 1, 2, . . . ,m and two

copies H0 and Hm+1 of H having bipartitions (X0, Y0), (Xm+1, Ym+1) respectively.
Define X ′

i = {x ∈ Xi | dHi
(x) = k − 1}, Y ′

i = {x ∈ Yi | dHi
(x) = k − 1} for

i = 0, 1, . . . ,m + 1 and let X ′
0 = {u0,1, u0,2, . . . , u0,ℓ−1}, Y

′
0 = {v0,1, v0,2, . . . , v0,ℓ−1},

X ′
m+1 = {um+1,1, um+1,2, . . . , um+1,ℓ−1}, Y ′

m+1 = {vm+1,1, vm+1,2, . . . , vm+1,ℓ−1} and
X ′

i = {ui,1, ui,2, . . . , ui,2ℓ−2}, Y
′
i = {vi,1, vi,2, . . . , vi,2ℓ−2} for i = 1, 2, . . . ,m. We form

the family of graphs mentioned above by adding to graphs H0, H1, . . . , Hm, Hm+1 the
following four sets of independent edges:

E1 =
m⋃

i=1

{ui,ℓvi+1,1, ui,ℓ+1vi+1,2, . . . , ui,2ℓ−2vi+1,ℓ−1}

E2 =
m+1⋃

i=2

{ui,1vi−1,ℓ, ui,2vi−1,ℓ+1, . . . , ui,ℓ−1vi−1,2ℓ−2}

E3 = {u0,1v1,1, u0,2v1,2, . . . , u0,ℓ−1v1,ℓ−1}

E4 = {u1,1v0,1, u1,2v0,2, . . . , u1,ℓ−1v0,ℓ−1}.

Clearly G is a k-regular, (2ℓ− 2)-edge-connected graph with bipartition (X0 ∪X1 ∪
· · ·∪Xm+1, Y0∪Y1∪ · · ·∪Ym+1). Let u ∈ X0, v ∈ Y1∪Y2∪Y3∪ · · ·∪Ym+1 and define
G1 = G− {u, v}. If we let T = Y0, then

ℓ|T | > r1 + 2r2 + · · ·+ ℓ(rℓ + · · ·+ rk)
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since |T | = k, r1 = ℓ − 1, r2 + · · · + rk−2 = 0 and rk−1 + rk = k − 1. Thus G1 does
not have an ℓ-factor.
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