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Abstract

A connected signed graph Σ with underlying graph G is balanced if
and only if either spectra (of the adjacency matrix) of G and Σ coincide
or the largest eigenvalue of G coincides with the largest eigenvalue of
Σ. These spectral criteria for balance are known and they are extended
to the Laplacian spectrum, as well. In this paper, we generalize these

criteria by proposing βA(Σ) =
n∑
i=1

(
λi(Σ)−λi(G)

)2
and γA(Σ) = λ1(G)−

λ1(Σ) as spectral measures of balance, where λ1 ≥ λ2 ≥ · · · ≥ λn are
the eigenvalues of the corresponding (signed) graph. Also, analogous
measures based on Laplacian eigenvalues are defined. We discuss and
compute them for several classes of signed graphs and prove a sequence of
lower or upper bounds for each of them. In particular, relationships with
the frustration index (a structural measure of balance) are established.
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1 Introduction

A signed graph has its edges declared either positive or negative. Formally, for a
finite unoriented unsigned graph without loops or multiple edges G with the edge set
E(G) and a function σ : E(G) −→ {+1,−1}, a signed graph Σ is the ordered pair
(G, σ). In this context, G is referred to as the underlying graph of Σ and σ is a sign
function or a signature. The number of vertices of Σ is denoted by n and called the
order.

Many notions about unsigned graphs extend directly to signed graphs. For exam-
ple, a signed graph is connected or regular if the same holds for its underlying graph.
The degree of a vertex in Σ is simply its degree in the corresponding underlying
graph G. Similarly, the diameter of Σ is the diameter of G.

We proceed with some notions exclusive to signed graphs. The sign of a cycle
in a signed graph is the product of its edge signs. If U is a set of vertices of Σ, the
switched signed graph is obtained by reversing the signs of edges of Σ having exactly
one end in U .

One of the fundamental concepts in the framework of signed graphs is the concept
of balance. A signed graph or its subgraph is called balanced if every cycle in it, if
any, is positive. Equivalently, it is balanced if and only if it switches to its underlying
graph (considered as a signed graph with the all-positive signature) [16].

There are many invariants measuring how far a signed graph is from being bal-
anced, and we only mention the frustration index f(Σ), that is the minimum number
of edges whose removal results in a balanced signed graph. Evidently, Σ is balanced
if and only if f(Σ) = 0.

We proceed to introduce the standard matrices associated with signed graphs.
The adjacency matrix A(Σ) = (auv) is the n × n matrix such that auv = σ(uv) if u
and v are adjacent, and 0 otherwise. The Laplacian matrix L(Σ) is D(Σ) − A(Σ),
where D(Σ) is the diagonal matrix of vertex degrees. The eigenvalues of Σ are the
eigenvalues of A(Σ), and they are denoted by λ1, λ2, . . . , λn along with an assumption
that they are indexed non-increasingly. Similarly, the Laplacian eigenvalues of Σ are
the eigenvalues of L(Σ), denoted by µ1, µ2, . . . , µn, along with the same assumption
on their indexing. In some occasions, we will also use additional notation to distin-
guish the eigenvalues (or the Laplacian eigenvalues) of distinct signed graphs. The
spectrum and the Laplacian spectrum of Σ are defined along the same lines.

We know from Acharya [2] that a signed graph is balanced if and only if its
spectrum coincides with the spectrum of its underlying graph. A refinement has
recently been obtained by the third author of this paper and states that a connected
signed graph Σ = (G, σ) is balanced if and only if λ1(Σ) = λ1(G) [12]. Both criteria
are significant since, in contrast to the frustration index and other structural criteria
(see [15]), they are polynomially computed. Accordingly, we define

βA(Σ) =
n∑
i=1

(λi(Σ)− λi(G))2, (1)
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and, for Σ connected,
γA(Σ) = λ1(G)− λ1(Σ), (2)

and propose these numerical quantities as spectral measures of balance. Clearly,
βA(Σ) = 0 (and γA(Σ) = 0) holds if and only if Σ is balanced. It is worth mentioning
that βA(Σ) can be seen as a particular case of the spectral distance between n-vertex
signed graphs defined in the same way, i.e., when G is replaced by any signed graph.
A generalization considers the `p norm instead of `2 [14]. We know from [12] that
γA(Σ) ≥ 0 holds for every signed graphs Σ.

In the spirit of the previous measures, we introduce βL(Σ) =
n∑
i=1

(µi(Σ)− µi(G))2

and, for Σ connected, γL(Σ) = µn(Σ). For the latter measure, it is known that the
least Laplacian eigenvalue of a connected signed graph is zero if and only if it is
balanced [5, 15].

In this paper we discuss and compute the previously mentioned measures for
signed cycles and signed complete graphs. We also establish some lower and some
upper bounds on these invariants. In particular, they are related to the frustration
index.

In the beginning of Section 2 we compute βA(Σ) and γA(Σ), when Σ is any signed
graph whose underlying graph is the Petersen graph. This part can be seen as an
illustrative example. We also show that βA(Σ) = βL(Σ) and γA(Σ) = γL(Σ) hold for
every regular signed graph Σ. We also discuss the spectral measures in the case of
signed cycles and signed complete graphs. Section 3 is devoted to bounds expressed
in terms of certain structural invariants including the frustration index.

2 The Petersen graph, a cycle or a complete graph in the
role of an underlying graph

We warm-up with the Petersen graph. According to Zaslavsky [17] there are exactly
six equivalence classes of signatures under the combination of switching and isomor-
phism of the Petersen graph. The corresponding representatives are illustrated in
Fig. 1; they include the Petersen graph itself (i.e., the all-positive signature) as well
as the negation of the Petersen graph (i.e., the all-negative signature). It is a matter
of algebraic computation to obtain the results listed in Table 1.

Since a signed graph built on an r-regular graph G has r−λi(Σ) as the Laplacian
eigenvalues, the following theorem needs no further explanation.

Theorem 2.1. If Σ = (G, σ) is a signed graph such that the underlying graph G is
regular, then βA(Σ) = βL(Σ) and γL(Σ) = γA(Σ).

Hereafter, whenever we deal with a regular signed graph Σ, we suppress the
results on βL(Σ) and γL(Σ).

We proceed with n-vertex cycles Cn. Evidently, here we have only two switching
classes: a positive signed cycle Cn and a negative signed cycle C−n . The spectrum of
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Π1 Π2 Π3

Π4 Π5 Π6

Figure 1: Representatives of six switching classes of the Petersen graph.

Table 1: Values of βA and γA for signed graphs of Figure 1

Σ βA(Σ) γA(Σ)
Π1 0 0
Π2 3.95044 0.221543
Π3 5.59874712 0.438477
Π4 9.372103 0.510711
Π5 10.80650450 0.763932
Π6 16 1

the latter one is λj(C
−
n ) = 2 cos[(2j+1)π/n], 0 ≤ j ≤ n−1 [10], and for the positive

cycle Cn, it is comprised of λj(Cn) = 2 cos(2jπ/n), 0 ≤ j ≤ n−1 [4, Example 1.1.4].

Theorem 2.2. We have
βA(C−n ) = 8n sin2

( π
2n

)
and

γA(C−n ) = 4 sin2
( π

2n

)
.

Proof. Taking into account properties of the cosine function, we deduce that the
eigenvalues λj (a common notation for both λj(C

−
n ) and λj(Cn)) are ordered as λ0 ≥

λn−1 ≥ λ1 ≥ λn−2 ≥ λ2 ≥ λn−3 ≥ · · · ≥ λk−1 ≥ λk+1 ≥ λk, for n = 2k + 1. Similarly,
for n = 2k we have λ0 ≥ λn−1 ≥ λ1 ≥ λn−2 ≥ λ2 ≥ λn−3 ≥ · · · ≥ λk+1 ≥ λk−1 ≥ λk.
Therefore,

βA(C−n ) =
n−1∑
j=0

(
2 cos

(2j + 1)π

n
− 2 cos

2jπ

n

)2
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= 8 sin2
( π

2n

)(
n−

n−1∑
j=0

cos
(4j + 1)π

n

)
= 8n sin2

( π
2n

)
,

since
n−1∑
j=0

cos (4j+1)π
n

= 0. As the sine function increases in [0, π
2
], we have γA(C−n ) =

4 sin2
(
π
2n

)
.

Here is a corollary concerning the limit case. The proof is elementary.

Corollary 2.3. lim
n→∞

βA(C−n ) = 0 = lim
n→∞

γA(C−n ).

We continue with complete signed graphs Kσ
n = (Kn, σ). In the forthcoming

Theorem 2.5 we offer an upper bound for βA(Kσ
n). The all-negative complete signed

graph is denoted by −Kn. The following lemma is needed.

Lemma 2.4 ([3]). The largest eigenvalue of a signed graph Σ of order n lies in
[1, n− 1]. It is equal to 1 when Σ switches to −Kn.

Now, we formulate the result.

Theorem 2.5. For a complete signed graph Kσ
n , βA(Kσ

n) ≤ 2n(n− 2) = βA(−Kn).

Proof. Note that the eigenvalues of Kn are λ1 = n − 1 and λi = −1, for 2 ≤ i ≤ n.
Let ν1 ≥ ν2 ≥ · · · ≥ νn be the eigenvalues of A(Kσ

n). Then

βA(Kσ
n) =

(
ν1 − (n− 1)

)2
+

n∑
i=2

(
νi + 1

)2

=
n∑
i=1

ν2
i + 2

( n∑
i=2

νi − (n− 1)ν1

)
+ (n− 1)2 + (n− 1)

=
n∑
i=1

ν2
i − 2nν1 + n(n− 1).

In the last step, we have used the fact that the trace is zero which makes
n∑
i=2

νi = −ν1.

Since
n∑
i=1

ν2
i = n(n−1) (as follows by considering the trace of A2(Kσ

n)), by employing

Lemma 2.4 we find

βA(Kσ
n) ≤ n(n− 1)− 2n+ n(n− 1) = 2n(n− 2) = βA(−Kn),

as desired.

We prove the following comparison of complete signed graphs.
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Figure 2: Two signatures on the Heawood graph for Example 2.7.

Theorem 2.6. For complete signed graphs Kσ1
n and Kσ2

n , βA(Kσ1
n ) ≤ βA(Kσ2

n ) if and
only if γA(Kσ1

n ) ≤ γA(Kσ2
n ).

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn and ν1 ≥ ν2 ≥ · · · ≥ νn be the eigenvalues of Kσ1
n and

Kσ2
n , respectively. Now, βA(Kσ1

n ) ≤ βA(Kσ2
n ) implies (λ1−n+1)2+

n∑
i=2

(λi+1)2 ≤ (ν1−

n+1)2 +
n∑
i=2

(νi+1)2. From
n∑
i=2

(λi+1)2 = n(n−1)−λ2
1−2λ1 +n−1 and the analogous

equality for
n∑
i=2

(νi+1)2, we deduce −λ1 ≤ −ν1. Hence, 0 ≤ (n−1)−λ1 ≤ (n−1)−ν1,

proving that γA(Kσ1
n ) ≤ γA(Kσ2

n ).

The converse is proved by retracing the steps.

Example 2.7. An exhaustive search on randomly chosen small underlying graphs
and the corresponding signed graphs has revealed many particular examples for which
the statement of Theorem 2.6 remains valid. However, this statement does not hold
in general, and a counterexample consists of the Heawood graph and two signatures
illustrated in Fig. 2.

Indeed, since the signed graphs we are dealing with are bipartite, their spectrum
is symmetric with respect to the origin, and the non-negative part of the spec-

trum of the underlying graph is [3,
√

2
6
], whereas the same parts for two illustrated

signed graphs (see Fig. 2), say Σ1 and Σ2 respectively, are [2.5482, 1.7632, 1, 0.6292]

and [2.681, 2.323, 2,
√

2
2
, 0.642, 02], respectively. Accordingly, βA(Σ1) = 6.276 <

βA(Σ2) = 7.734, but γA(Σ1) = 0.452 > γA(Σ2) = 0.319.

3 Bounds for βA, βL and γA

This section presents a collection of upper and lower bounds for the invariants indi-
cated in its title.
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3.1 Bounds for βA

We first extend the upper bound of Theorem 2.5 to any signed graph.

Theorem 3.1. For a signed graph Σ of order n, βA(Σ) ∈ [0, 2n(n− 2)].

This result can be proved by examining the eigenvalues of a signed graph Σ and
its underlying graph G. An elegant way to perform this is based on the Schatten
2-norm applied to the adjacency matrices AΣ and AG; the details are given in the
proof of Theorem 3.3 below.

3.2 Bounds for βL

It is interesting that Theorem 3.1 remains unchanged when βA(Σ) is replaced with
βL(Σ). In what follows we will prove this and relate βL(Σ) to the frustration index
of Σ.

We recall that, for a vector (x1, x2, . . . , xn)ᵀ ∈ Rn, its `p-norm (1 ≤ p < ∞)

is ‖(x1, x2, . . . , xn)ᵀ‖`p =
( n∑
i=1

|xi|p
)1/p

. For an n × n matrix B with real eigenval-

ues λ1, λ2, . . . , λn, the Schatten p-norm is ‖B‖Sp
= ‖(λ1, λ2, . . . , λn)ᵀ‖`p . In par-

ticular, for the adjacency matrix A(Σ) of a signed graph and p = 2, ‖A(Σ)‖2
S2

=
(‖(λ1, λ2, . . . , λn)ᵀ‖`2)

2 = 2|E(Σ)|.
For two symmetric n × n real matrices A and B, with eigenvalues λ1 ≥ λ2 ≥

· · · ≥ λn and λ′1 ≥ λ′2 ≥ · · · ≥ λ′n, respectively, we have

‖(λ1, λ2, . . . , λn)ᵀ − (λ′1, λ
′
2, . . . , λ

′
n)ᵀ‖`p ≤ ‖A−B‖Sp

. (3)

This inequality is a consequence of the Wielandt-Hoffman inequality; for an explicit
proof see [1, Theorem 2.1].

In what follows, we will use the following upper bound for the frustration index
f(Σ) of an arbitrary signed graph Σ expressed in terms of the number of edges m,
cf. [6, 7]:

f(Σ) ≤ m−
√
m

2
. (4)

The following lemma is a known result, but for the sake of completeness, we
include a short proof.

Lemma 3.2. Every signed graph Σ switches to a signed graph Σ′ such that the
number of negative edges of Σ′ is the frustration index of Σ.

Proof. As the removal of f := f(Σ) edges results in a balanced signed graph, Σ
switches to a signed graph in which at most f edges are negative. Moreover, this
number is equal to f , since otherwise the frustration index of Σ would be less than f .

We are ready to prove the following result.
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Theorem 3.3. For a signed graph Σ with n vertices and frustration index f ,

(i) βL(Σ) ≤ 8f ,

(ii) βL(Σ) ∈ [0, 2n(n− 2)].

Proof. Let µ1 ≥ µ2 ≥ · · · ≥ µn and ν1 ≥ ν2 ≥ · · · ≥ νn denote the Laplacian
eigenvalues of the underlying graph G and the signed graph Σ, respectively. By
Lemma 3.2, Σ switches to a signed graph Σ′ having exactly f negative edges. In
addition, Σ′ shares the same Laplacian eigenvalues and the same underlying graph.
In the light of (3), we compute

βL(Σ) =
n∑
i=1

(νi(Σ)− µi(G))2 = (‖(ν1, ν2, . . . , νn)ᵀ − (µ1, µ2, . . . , µn)ᵀ‖`2)
2

≤ (‖L(Σ′)− L(G)‖S2
)2 ≤ (‖2A(H)‖S2

)2,

where A(H) is the adjacency matrix of the graph H that shares the same vertices and
has a positive edge exactly where Σ′ has a negative edge. Thus, for m(H) = |E(H)|,
we have

βL(Σ) ≤ 4(‖A(H)‖S2
)2 = 4 · 2m(H) = 8f,

which proves (i).

By taking into account the upper bound (4) and observing that the function
m−
√
m

2
is increasing, we obtain

βL(Σ) ≤ 8 ·
m(Σ)−

√
m(Σ)

2
≤ 4
(n(n− 1)

2
−
√
n(n− 1)

2

)
= 2n(n− 1)−

√
8n(n− 1).

For n ≥ 3, the latter inequality gives βL(Σ) ≤ 2n(n − 1) −
√

4n2 = 2n(n − 2). For
n = 2 we have βL(Σ) = 0, which completes the proof.

3.3 Bounds for γA

Henceforth, Σ = (G, σ) is a signed graph with n vertices and frustration index f , Σ′

is a switching equivalent signed graph with exactly f negative edges (see Lemma 3.2)
and H is the subgraph of Σ′ obtained by removing all negative edges. We will use
the following results:

λ1(G)− λ1(H) >
1

nλ1(G)2D
, (5)

where G is connected of diameter D, see [8];

λ1(H) ≥ λ1(Σ), (6)
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see Theorem 3.1 in [11];
ymin

ymax

>
1

λ1(H)n−1
, (7)

where H is connected and ymin and ymax are a minimum and a maximum entry of its
principal eigenvector (a unit all-positive eigenvector associated with λ1(H)), see [9];

x2
max ≤

∆

∆ + λ1(Σ)2
, (8)

where Σ is connected, ∆ is the maximum vertex degree in Σ and xmax is a maxi-
mum absolute value of entries of the principal eigenvector of Σ (a unit eigenvector
associated with λ1(Σ)), compare [13] where a more general result is established.

Theorem 3.4. For a connected signed graph Σ with maximum vertex degree ∆,
average vertex degree d and frustration index f ,

γA(Σ) ≤ 4f∆

∆ + d
2 .

Moreover, if Σ is regular, then

γA(Σ) ≤ 4f

n
,

where n is the order of Σ.

Each equality holds if and only if Σ is balanced.

Proof. Let x = (x1, x2, . . . , xn)ᵀ and y be unit eigenvectors corresponding to λ1(G)
and λ1(Σ), respectively. Then

γA(Σ) =xᵀA(G)x− yᵀA(Σ)y

≤xᵀA(G)x− xᵀA(Σ)x (by the Rayleigh principle)

=xᵀ(A(G)− A(Σ))x ≤ 4
∑

ij∈E−(Σ)

xixj (9)

≤ 4f∆

∆ + λ2
1(G)

(using (8) with G in the role of Σ)

≤ 4f(Σ)∆

∆ + d
2 ,

where the last inequality follows from λ1(G) ≥ d which is a well-known result, see
[4, Theorem 3.2.1].

If Σ is regular, so is G and then x = 1√
n
(1, 1, . . . , 1)ᵀ, giving

∑
ij∈E−(Σ)

xixj =
f

n
.

The desired inequality follows by replacing this into (9).
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It remains to consider equality cases. If Σ is balanced, then each side in each
inequality is zero, which proves one implication. Conversely, if the first or the sec-
ond equality give the statement formulation holds, then each inequality in the proof
reduce to equality. In particular, this means that x features as the principal eigen-
vector of Σ. Using the eigenvalue equation, we deduce that this is possible if and
only if Σ has no negative edges, i.e., it is balanced.

At this point we need the following lemmas; the notation from the beginning of
this subsection is used without noting.

Lemma 3.5. If Σ is connected, so is the induced subgraph H.

Proof. If H is disconnected, then there exists a negative edge of Σ′ lying between two
components of H. Let Ξ denote the signed graph obtained by adding this edge to H.
By making a switch (in Ξ) with respect to all the vertices in one of the mentioned two
components, we arrive at a switching equivalent signed graph having the all-positive
signature. Since this signed graph is a subgraph of Σ and has an extra edge relative
to H, we deduce that the frustration index of Σ is less than f . This contradiction
concludes the proof.

Lemma 3.6. If y is a principal eigenvector of H, then yᵀA(G)y ≥ yᵀA(H)y.

Proof. By Lemma 3.5, H is connected, and so y is all-positive. Let F be the subgraph
of G induced by the edges that are removed from G to obtain H; in other words, G
is decomposed into F and H. Now,

yᵀA(G)y =yᵀ
(
A(H) + A(F )

)
y = yᵀA(H)y + yᵀA(F )y ≥ yᵀA(H)y,

where the inequality follows since y is all-positive.

We establish another lower bound.

Theorem 3.7. Let Σ be a connected signed graph with n vertices and frustration
index f . We have

γA(Σ) ≥ 2f

n∆
2(n−1)
H

,

where ∆H is the maximum vertex degree in the all-positive graph H obtained by
removing f edges from Σ′.

The equality holds if and only if Σ is balanced.

Proof. Let y = (y1, y2, . . . , yn)ᵀ denote the principal eigenvector of H, and ymax a
largest entry of y. Observe that ymax ≥ 1√

n
. We have

γA(Σ) =λ1(G)− λ1(Σ′)

≥λ1(G)− λ1(H) (by employing (6))
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≥yᵀ
(
A(G)− A(H)

)
y

(by the Rayleigh principle for λ1(G), and by Lemma 3.6)

= 2
∑

ij∈E−(Σ)

yiyj

≥ 2
∑

ij∈E−(Σ)

( ymax
λ1(H)n−1

)2

(using (7))

= 2f
( ymax
λ1(H)n−1

)2

≥ 2f

(
√
nλ1(H)n−1)2

(since ymax ≥
1√
n

)

≥ 2f

n∆
2(n−1)
H

,

where for the last inequality we have used λ1(H) ≤ ∆H , see [4, Theorem 3.2.1].

We consider the equality case. If Σ is balanced, then the inequality of this
statement reduces to 0 = 0, i.e., we have the equality.

Conversely, the equality in it implies that G and H share the same principal
eigenvector. However, this is possible only if G ∼= H by the following argument.
Supposing that G 6∼= H we deduce the existence of an edge, say uv ∈ E(G), such
that uv /∈ E(H) (as H is a subgraph of G). For H we have yu =

∑
uw∈E(H) yw,

whereas for G we have

yu =
∑

uw∈E(G)

yw =
∑

uw∈E(H)

yw +
∑

uw∈E(G)\E(H)

yw = yu +
∑

uw∈E(G)\E(H)

yw > yu,

as y is all-positive and uv ∈ E(G) \ E(H). Now, G ∼= H means f = 0, i.e., Σ is
balanced.

The last result is similar yet based on (5) instead of (7).

Theorem 3.8. Let Σ be a connected signed graph with n vertices, maximum vertex
degree ∆, diameter D and frustration index f . We have

γA(Σ) >
1

n∆2D
.

Proof. We compute

γA(Σ) =λ1(G)− λ1(Σ)

≥λ1(G)− λ1(H) (using (6))

>
1

nλ1(G)2D
(using (5))

≥ 1

n∆2D
,

as λ1(G) ≤ ∆.
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We conclude this section with some comments. Evidently, lower bounds of The-
orems 3.7 and 3.8 are incomparable. The former bound would give a finer estimate
whenever 2f∆2D ≥ ∆

2(n−1)
H . Any of these bounds in conjunction with the upper

bound of Theorem 3.4 gives a range for γA(Σ).

Each bound may be tested on signed graphs of Figs. 1 and 2. For example, since
we deal with regular signed graphs, for the Petersen graph the upper bound reads
γA(Σ) ≤ 4f

n
= 2f

5
. Say, for Σ ∼= Π2 we have f = 1, which implies 0.221543 ≈

γA(Π2) ≤ 0.4.
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[13] Z. Stanić, Estimating distance between an eigenvalue of a signed graph and the
spectrum of an induced subgraph, Discrete Appl. Math. 340 (2023), 32–40.
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