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Abstract

The Gray configuration is a (273) configuration which typically is realized
as the points and lines of the 3×3×3 integer lattice. It occurs as a member
of an infinite family of configurations defined by Bouwer in 1972. Since
their discovery, both the Gray configuration and its Levi graph (i.e., its
point-line incidence graph) have been the subject of intensive study. Its
automorphism group contains cyclic subgroups isomorphic to Z3 and Z9,
so it is natural to ask whether the Gray configuration can be realized
in the plane with any of the corresponding rotational symmetry. In this
paper, we show that there are two distinct polycyclic realizations with
Z3 symmetry. In contrast, the only geometric polycyclic realization with
straight lines and Z9 symmetry is only a “weak” realization, with extra
unwanted incidences (in particular, the realization is actually a (274)
configuration).

1 Introduction

The Gray graph was discovered by Marion C. Gray in 1932, and was rediscovered
independently by Bouwer when searching for regular graphs that are edge-transitive
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but not vertex-transitive [6]; graphs fulfilling these conditions are called semisym-
metric [23]), so henceforth we use this term. A first detailed study of semisymmetric
graphs is due to Folkman [12]. The Gray graph, in particular, also became the subject
of a careful investigation: the third author of this paper and his co-workers explored
many interesting properties of this graph [20, 21, 23, 24]; see also [26, Chapter 6] (for
more details about its history, see [23]). We know that it is the smallest trivalent
semisymmetric graph. Its girth is 8, which is equivalent to saying that the Gray
configuration is triangle-free. It is Hamiltonian, with a Hamiltonian realization dis-
playing a Z9 symmetry, as a construction due to Randić reveals it [20, 25]. This can
be clearly seen in Figure 1. Note that the construction leads to the well-known LCF
notation [7,−7, 13,−13, 25,−25]9 of this graph; the LCF (or Lederberg–Coxeter–
Frucht) notation provides a method of specifying a Hamiltonian cubic graph by
providing instructions for specifying the chords of the graph when the Hamiltonian
cycle is drawn as a non-crossing cycle on the boundary (see, e.g., [26] for details).

Figure 1: The Gray graph. The square nodes correspond to lines and the circular
nodes correspond to points; the coloring demonstrates rotational Z9 symmetry.
This is further explored in Section 7.

The Gray configuration is a (273) configuration which occurs as a member of an
infinite family of configurations defined by Bouwer in 1972 [6, Section 1]. Its name
stems from the fact that its Levi graph—that is, the point-line incidence graph—is
the Gray graph; see Figure 1. (While it may appear that the graph has dihedral
symmetry, this is not the case, because the mirror symmetry interchanges line-nodes
and point-nodes, and while the individual color classes have mirror symmetry, the
graph as a whole does not.) By the definition due to Bouwer, the Gray configuration
can be realized as a spatial configuration consisting of the 27 points and 27 lines of the
3×3×3 integer grid (cf. Figure 2). It can also be conceived as the Cartesian product of



L.W. BERMAN ET AL. /AUSTRALAS. J. COMBIN. 93 (1) (2025), 171–197 173

three copies of the “dual pencil” (31, 13) configuration, or equivalently, the Cartesian
product of the dual pencil (31, 13) and the (92, 63) “grid configuration” [13]. Together
with its dual, it forms a pair of the smallest configurations which are triangle-free
and flag transitive but not self-dual [21]. Moreover, it is resolvable. By definition,
this means that the set of configuration lines partitions into classes (called resolution
classes or parallel classes) such that within each class, the lines partition the set of
points of the configuration by incidences [14]. This is clearly seen in Figure 2, since
the parallel classes of the lines coincide with the parallel classes in geometric sense.
The grid structure makes possible assigning labels to the configuration points of the
form xyz (x, y, z ∈ Z3) such that two points with labels xyz and x′y′z′ are incident
to the same line if and only if precisely two of the equalities x = x′, y = y′, z = z′

hold.

Figure 2: Spatial realization of the Gray configuration.

A polycyclic geometric realization of a configuration of points and lines is one
in which (1) the combinatorial lines of the configuration are represented in the Eu-
clidean plane using straight lines; (2) the points and lines are divided into symmetry
classes (that is, orbits of points and lines under the action of a particular geometric
rotation) in which each symmetry class contains the same number of elements. That
is, it is a realization of the configuration in which a semi-regular subgroup of the
automorphism group maps the realization to itself.

The main results of this paper are to show that

� the Gray configuration can be realized polycyclically in two different ways with
Z3 symmetry, realized as geometric rotation;

� the Gray configuration can only be weakly polycyclically geometrically realized
with Z9 symmetry (any straight-line realization forces extra incidences), but it
can be topologically realized as a polycyclic realization using pseudolines;

� there are no other geometric polycyclic realizations of the Gray configuration.
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2 The automorphism group of the Gray configuration

The automorphism group AutG of the Gray graph is a group of order 1296 = 64,
which can be given in the following form:

(S3 × S3 × S3)⋊ S3
∼= S3 ≀ S3, (1)

where S3 is the symmetric group of degree 3. This has been established in the
literature in a more general setting, see e.g. [24]. The automorphism group of the
Gray configuration is the same, since the Gray configuration is not self-dual (so
there are no color-exchanging automorphisms). Here we give an independent proof,
focusing directly on simple geometric properties of the spatial realization of the
configuration.

In this spatial realization, the configuration contains three pencils of parallel
layers. Each of these layers forms a (92, 63) “grid” configuration. Within each parallel
pencil there are three layers, and these pencils are perpendicular (say) to the x-,
y-, respectively the z-axis of a Cartesian coordinate system (note that the labels
introduced in the previous section can be conceived as coordinates with respect to
such a coordinate system in the Euclidean 3-space). Each of the three copies of the S3

group in the parentheses of (1) is responsible for permuting the layers within a given
pencil (independently of each other, which explains why direct products are used).
Note that this product in the parentheses does not move one pencil to any other
pencil. On the other hand, the second term of the semidirect product is responsible
for permuting the three pencils, each as a whole (while leaving fixed the order of the
layers within a pencil). In addition, it is easily seen that the group on the left (i.e.
the triple direct product in the parentheses) is an invariant subgroup of the entire
group (while this does not hold for the right term). This explains why we use here
semidirect product. Finally, it is well known that the semidirect product of the form
above can be rewritten in the form of a wreath product of two copies of S3.

3 Finding possible quotient graphs and reduced Levi graphs
from semi-regular subgroups

Although we are interested mainly in polycyclic configurations, we first briefly con-
sider the general case of semi-regular groups.

The automorphism group AutG of a simple graph G may be viewed as a group
of permutations acting on the set of vertices of G. Its orbits induce a partition of the
set of vertices of G. The action of a nontrivial subgroup Γ ⊆ AutG is semi-regular if
all of its orbits have the same cardinality |Γ|. Note that this is equivalent to saying
that the stabiliser of Γ in G is trivial; see [10]. For more information on this and
what follows, see [10, 26].

A subgroup of AutG with a semi-regular action on the vertices of G is called
a semi-regular subgroup. All nontrivial subgroups of a semi-regular group are semi-
regular. In particular, each nontrivial element α of a semi-regular group is a generator
of a semi-regular cyclic group. Hence α is a semi-regular permutation. This is
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equivalent to saying that when writing a permutation α as a product of disjoint
cycles, the length of all cycles is the same.

For any simple graph G the action of Γ ⊆ AutG on the vertex set extends to
the actions on the set of edges (that is, undirected pairs of adjacent vertices) and
the set of arcs or darts (that is, directed pairs of adjacent vertices). The action
of a semi-regular subgroup can be described via quotient graphs. If Γ is a semi-
regular subgroup, then the graph G/Γ is the quotient graph, with vertices in G/Γ
corresponding to orbits of vertices of G under the action of Γ, and edges (including
parallel edges, semi-edges, loops) determined by orbits of arcs of G, in the standard
way, and the projection π : G → G/Γ is called a regular covering projection (see
[16, 26, 10]). In the special case of a cyclic group Γ, we may consider its generator
permutation α. If α is a semi-regular automorphism, then the graph G/α is the
quotient graph, with vertices in G/α corresponding to orbits of vertices of G under
the action of α, etc.

Definition 1. A simple graph G of order n admitting a semi-regular automorphism
α of order m is polycirculant.

Remark 1. Note that in the Definition above, if m = n, the automorphism α is
regular, and the graph is circulant. In general, the quotient graph G/α has order k,
where n = mk.

The renowned theorem of Sabidussi [27] states that a graph G is a Cayley graph
if and only if AutG admits a subgroup with regular action, which corresponds to
the quotient graph G/Γ having only a single vertex.

Remark 2. Note that a semi-regular automorphism of a simple graph acts semi-
regularly on vertices and arcs of a graph but not necessarily on the edges of a graph.
The easiest way to check whether the action on the edges is semi-regular is via
quotient graphs; the action is semi-regular on the edges if and only if the quotient
graph has no semi-edges.

Given a graph G, it is possible to determine all distinct regular covering projec-
tions π : G → G/Γ, where Γ is a semi-regular subgroup of AutG (acting on the
vertices). The recipe is as follows.

First we generate all semi-regular group actions up to conjugacy. This can be
easily done by SageMath/python/GAP, which has all ingredients readily available.

def generate_semi_regular_actions(G):

""" Given graph G, generate all semi -regular group actions."""

AutG = G.automorphism_group ()

for Gamma in AutG.conjugacy_classes_subgroups ():

if Gamma.is_semi_regular ():

yield Gamma

Using Sage [28] and the above algorithm, we determined that the Gray graph has
5 conjugacy classes of subgroups which produce bipartite quotient graphs; the groups
are listed in Table 1 and the corresponding quotient graphs in Figure 3. Note that
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Table 1: Semi-regular subgroups of AutG for the Gray graph.

ID order subgroup isomorphic to... bipartite?
1 3 Z3 YES
2 3 Z3 YES
3 9 Z3 × Z3 YES
4 9 Z9 YES
5 27 Z9 × Z3 YES

the Gray graph is unusual in the sense that all quotients arising from semi-regular
actions are bipartite!

(a) Quotient with respect to Z3;
the graph GG (ID#1)

(b) Quotient with respect to Z3;
the Pappus graph (ID#2)

(c) Quotient with respect to
Z3 × Z3 (ID#3)

(d) Quotient with respect to Z9

(ID#4)
(e) Quotient with respect to
Z9 ⋊ Z3. (ID#5)

Figure 3: The five semi-regular quotient graphs of the Gray graph, and their IDs
from Table 1. Since all quotients are bipartite, these graphs are all the possible
RLGs of the Gray configuration.

Given a configuration, the incidence graph of the configuration, usually called a
Levi graph, is formed by assigning one vertex of the graph to each point and line of
the configuration, and joining vertices with edges if and only if the corresponding
point and line are incident.
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Definition 2. A geometric realization of a configuration is polycyclic if there exists
a semi-regular automorphism α of the Levi graph G which preserves setwise the
bipartition classes of G that is realized by geometric rotation of the same order.

A reduced Levi graph (RLG) is a bipartite quotient of the Levi graph with a
semi-regular subgroup of the automorphism group. We use the convention that arcs
in reduced Levi graphs are directed from line-orbits to point-orbits. If you reverse
all arrows in a reduced Levi graph and switch the interpretation of colors of nodes,
the result is the reduced Levi graph of the dual configuration.

In the remainder of the paper, we determine which of the quotients of the Gray
graph can be the reduced Levi graphs of polycyclic realizations of the Gray configu-
ration, and we determine whether such geometric realizations exist.

4 Labeling elements of the Gray configuration and identify-
ing the reduced Levi graphs

In what follows, we use the following labeling conventions. We label the points of
the 3 × 3 integer grid using the labels ijk, i, j, k = 0, 1, 2 corresponding to the axes
in R3, with the first, second, third coordinates corresponding to left-right, down-up,
and front-back respectively.

The lines of the configuration are labeled ∗ij = {0ij, 1ij, 2ij}, i∗j = {i0j, i1j, i2j},
and ij∗ = {ij0, ij1, ij2}. See Figure 4.
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Figure 4: The Gray Grid: the points and lines of the Gray configuration, viewed
as points and lines on the 3× 3 integer grid.
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The labels, separated into symmetry classes, are shown in Table 2. Note that
going from Rij to R(i+1)j (B,G respectively) corresponds to adding 111, and going
from Rij to Ri(j+1) corresponds to adding 210 (with index arithmetic and point
arithmetic all happening mod 3).

For the lines, adding an index also corresponds to adding 111 or 210 respectively,
but ignoring the * component (that is, ∗ + i = ∗ for i = 0, 1, 2). For example,
X11 + 210 = ∗21 + 210 = (∗ + 2)(2 + 1)(1 + 0) = ∗01 = X12 and Y10 + 111 =
2 ∗ 1 + 111 = (2 + 1)(∗+ 1)(1 + 1) = 0 ∗ 2 = Y20.

Table 2: The elements of the Gray configuration, labeled according to symmetry
class over Z3 × Z3

R00 = 000 R01 = 210 R02 = 120
R10 = 111 R11 = 021 R12 = 201
R20 = 222 R21 = 102 R22 = 012

X00 = ∗00 X01 = ∗10 X02 = ∗20
X10 = ∗11 X11 = ∗21 X12 = ∗01
X20 = ∗22 X21 = ∗02 X22 = ∗12

B00 = 100 B01 = 010 B02 = 220
B10 = 211 B11 = 121 B12 = 001
B20 = 022 B21 = 202 B22 = 112

Y00 = 1∗0 Y01 = 0∗0 Y02 = 2∗0
Y10 = 2∗1 Y11 = 1∗1 Y12 = 0∗1
Y20 = 0∗2 Y21 = 2∗2 Y22 = 1∗2

G00 = 110 G01 = 020 G02 = 200
G10 = 221 G11 = 101 G12 = 011
G20 = 002 G21 = 212 G22 = 122

Z00 = 11∗ Z01 = 02∗ Z02 = 20∗
Z10 = 22∗ Z11 = 10∗ Z12 = 01∗
Z20 = 00∗ Z21 = 21∗ Z22 = 12∗

Figure 5 shows the Gray Grid using the labels from Table 2. This choice of
labeling corresponds to the reduced Levi graph over Z3 × Z3 shown in Figure 6 (see
also Figure 3c), where the first copy of Z3 corresponds to increasing the row index in
Table 2 (that is, to adding +111) and the second copy of Z3 corresponds to increasing
the column index (that is, to adding +210).

In Figure 6, the reduced Levi graph is oriented so that all arrows go from line
classes to point classes, as mentioned above. Voltages are indicated as ordered pairs

(a, b) ∈ Z3 × Z3, where L
(a,b)−−→ P corresponds to an edge between Lij and P(i+a)(j+b)

in the unreduced Levi graph, for P ∈ {R,G,B}, L ∈ {X, Y, Z}, i, j ∈ {0, 1, 2}.
Unlabeled edges have voltage (0, 0). Incrementing the first coordinate corresponds
to increasing the row index (that is, to adding +111) and incrementing the second
coordinate corresponds to increasing the column index (that is, to adding +210).

Expanding the second copy of Z3 (that is, having symmetry classes □a0, □a1,
□a2, a ∈ Z3, □ ∈ {X, Y, Z,R,G,B}) gives a quotient whose underlying graph is
isomorphic to the Pappus graph (see Figure 3b).

Expanding the first copy of Z3 (that is, having symmetry classes □0j, □1j, □2j,
j ∈ Z3, □ ∈ {X, Y, Z,R,G,B}) gives a quotient isomorphic to the graph GG shown
in Figure 3a.
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Figure 5: The Gray Grid labeled with the symmetry classes from Table 2.
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Figure 6: The reduced Levi graph for the Gray configuration with voltage group
Z3 × Z3.

5 A polycyclic realization of the Gray Configuration with
the Pappus RLG

In this section, we show that the Z3 quotient of the Gray graph, which as an unla-
beled graph is isomorphic to the Pappus graph (Figure 3b), produces a polycyclic
realization of the Gray graph with Z3 symmetry. Consider the re-drawing of the
Pappus voltage graph shown in Figure 9, in which a particular Hamiltonian cycle is
chosen to be on the boundary of the graph.
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Figure 7: Expanding the second copy of Z3 (that is, having symmetry classes □a0,
□a1, □a2, a ∈ Z3, □ ∈ {X,Y, Z,R,G,B}) gives a quotient whose underlying graph
is isomorphic to the Pappus graph. Two realizations are shown, one where the
expansion is obvious and one where the underlying graph uses a more standard
realization of the Pappus graph.
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Figure 8: Expanding the first copy of Z3 (that is, having symmetry classes □0j ,
□1j , □2j , j ∈ Z3) gives a quotient isomorphic to the graph GG. Again, two
drawings are shown, one corresponding directly to the expansion and one obviously
isomorphic to the drawing of GG shown in Figure 3a.
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Figure 9: (Left) A drawing of the Pappus RLG using a Hamiltonian cycle on the
boundary, used in producing a polycyclic realization of the Gray configuration
whose reduced Levi graph is the Pappus RLG. (Right) Relabeling to zero out
the boundary edges. In the construction of a corresponding polycyclic realiza-
tion, yellow highlights correspond to incidences with one degree of freedom, green
highlights to incidences that are determined, and the blue highlights to a final
incidence that results from a continuity argument.

Two useful facts about voltage graphs (which reduced Levi graphs are), are the
following: (1) Adding an element of the voltage group to all edges incident with a
node in the voltage graph results in an isomorphic lift graph (roughly, it corresponds
to changing the designation of the “0-th” element of a particular symmetry class),
and (2) consequently, given any spanning tree in a voltage graph, it is possible to
zero-out the labels on that spanning tree. See [26] for more detailed information,
and [3], especially Figure 6, for a worked out example. Beginning with the Pappus
graph drawn with a Hamiltonian cycle on the boundary shown in Figure 9, we add
and subtract voltages as necessary around the perimeter to zero-out all but one of
the voltages on the outside Hamiltonian cycle, which will make construction of the
corresponding realization of the Gray configuration more tractable. (Specifically, we
started, somewhat arbitrarily at the node Zj2 and added +1 to each of the labels

on the incident edges, which turned Zj2
−1−→ Bj1 into Zj2 → Bj1 while also turning

Zj2
1−→ Rj2 to Zj2

2−→ Rj2 and Zj2 → Gj2 to Zj2
1−→ Gj2. Next, we added −1 to all the

edges incident with Gj2, which zeroes out the previously assigned Zj2
1−→ Gj2 while

modifying the other two edges, including the one which becomes Gj2
−1−→ Xj0, which

is zeroed out by adding +1 to Xj0, and so on around the boundary, until all but one
of the edges in the boundary cycle has label 0.)

To construct a configuration with Z3 symmetry with this reduced Levi graph, we
follow the same sort of construction techniques that were outlined in [3], beginning
at point symmetry class Bj2 and proceeding counterclockwise around the boundary
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of the RLG. At each step except the last, we are doing one of the following:

� Initialization: construct the point class Bj2 as the vertices of a regular 3-gon
centered at O: specifically, let Bj2 = (cos(2πj/3), sin(2πj/3)).

� Draw a line (class) arbitrarily through a point (class) (one degree of freedom,
denoted by a yellow highlight on the corresponding edge).

� Place a point (class) arbitrarily on a previously drawn line class (one degree of
freedom, denoted by a yellow highlight on the corresponding edge).

� Construct a line (class) as the join of two points (green highlight on the corre-
sponding graph edges).

� Construct a point (class) as the meet of two lines (green highlight on the
corresponding graph edges).

Each of these steps depends on at most two previously-constructed elements.
In the final step, according to the constructions in the RLG, we need to have

the line Zj0 be incident with points Gj0, Rj0 and B(j−1)2 (cyan highlight on the
corresponding graph edges), which we accomplish via a continuity argument.

The specific construction steps are as follows:

1. Construct Bj2 = (cos(2πj/3), sin(2πj/3)).

2. Construct line Y02 arbitrarily through B02, and construct Yj2 by rotating Y02

by 2πj/3 about (0, 0) (henceforth, “by rotation”).

3. Construct R01 arbitrarily on Y02 and the rest of the Rj1 by rotation.

4. Construct Z01 arbitrarily through R01, and the rest of the Zj1 by rotation.

5. Construct B00 arbitrarily on Z01 and the rest of the Bj0 by rotation.

6. Construct Y00 arbitrarily through B00, and the rest of the Yj0 by rotation.

7. Construct R02 arbitrarily on Y00 and the rest of the Rj2 by rotation.

8. Construct X02 = join(R02, B12) (corresponding to the label Xj2
1−→ Bj2) and

the rest of the Xj2 by rotation.

9. Construct G01 = meet(X02, Z21) and the rest of the Gj2 by rotation. Note

that the arrow Zj1
1−→ Gj1 says that for each j, Zj1 ∼ G(j+1)1, or alternately

Z(j−1)1 ∼ Gj1, and −1 ≡ 2 mod 3.

10. Construct Y01 arbitrarily through G01, and the rest of the Yj1 by rotation.

11. Construct R00 arbitrarily on Y01 and the rest of the Rj0 by rotation.

12. Construct X00 = join(R00, B00) and the rest of the Xj0 by rotation.

13. Construct G02 = meet(X00, Y12) (corresponding to the label Yj2
−1−→ Gj2) and

the rest of the Gj2 by rotation.

14. Construct Z02 = join(G02, R12) (corresponding to the label Zj2
1−→ Rj2) and

the rest of the Zj2 by rotation.
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15. Construct B01 = meet(Z02, Y21) (corresponding to the label Yj1
−1−→ Bj1) and

the rest of the Bj1 by rotation.

16. Construct X01 = join(B01, R01) and the rest of the Xj1 by rotation.

17. Construct G00 = meet(X01, Y20) (corresponding to the label Yj0
1−→ Gj0) and

the rest of the Gj0 by rotation.

18. Finally, construct Z00 = join(G00, R00) and the rest of the Zj0 by rotation.

The missing incidence, indicated in cyan, is that line Z00 needs to pass through
B22 (and by symmetry, Z10 ∼ B02, Z20 ∼ B12). This can be accomplished by
a continuity argument, observing that, for example, moving the last point class
Rj0 that has a degree of freedom sweeps the resulting line Z00 across B22 (and
corresponding for the other two lines in the class). This is illustrated in the three
snapshot constructions shown in Figure 10.

6 A polycyclic realization of the Gray configuration with
threefold rotational symmetry, using the GG RLG.

A polycyclic realization of the Gray configuration with threefold rotational symmetry
is depicted in Figure 11. The reduced Levi graph using Z3 as the voltage group is
GG.

In what follows we explain how this realization is constructed.
We start from a polycyclic realization of the Pappus configuration, see Figure 12.

This realization is well known; it occurs e.g. in [17, Figure 1.16] and in [26, Figure
1.10]. The Pappus configuration contains as a subconfiguration the (92, 63) “grid”
configuration, which is shown in Figure 12 by blue and green lines. The labels of the
points in that figure verify that this is so, indeed. This implies that using two addi-
tional suitable copies of the (92, 63) configuration (along with adding 9 independent
lines), one obtains a realization of the Gray configuration given in Figure 11.

To this end we need the following Theorem [22, 30]. Here, we apply the theorem
to geometric figures which consist only of points and straight lines, although the
original theorem is stated more generally.

Theorem 6.1. Let F be a geometric figure in the Euclidean plane. Assume that F
changes continuously in such a way that

(1) precisely one of its points is fixed (denote it by O);

(2) it is at all times directly similar to its original copy.

Consider two points P, P ′ ∈ F , both different from O. Then, if P moves along a
path ℓ, then P ′ moves along a path ℓ′ such that ℓ′ is an image of ℓ under a dilative
rotation.

Note that “directly similar” means that F is only being changed using orientation
preserving isometries; in this procedure, images of F occur under the action of a one-
parameter family of dilative rotations (also known as spiral similarities). For some
properties of a dilative rotation, see e.g. [9].
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(a) Line Z00 (dashed) is just above pointB22 (hol-
low)

(b) Line Z00 (dashed) is just below point B22

(hollow)

(c) The exact configuration, by continuity.

Figure 10: Realizing the Gray configuration with the Pappus RLG. The 0th ele-
ment of each point and line class is shown larger/thicker. Points R, G, B are shown
in shades of red, green, blue respectively (going from light to dark as j = 0, 1, 2)
and similarly for line classes X,Y, Z using shades of black, yellow, cyan. Points
shown with diamonds are movable. (The movable lines are not specifically indi-
cated.) Moving R00 along its line moves the cyan dashed line Z00 from above
the point B22 (shown hollow) to below the point B22, so by continuity there is a
position of R22 in which line Z00 passes through B22 exactly. The Z3 action is
counterclockwise rotation through 2π/3 and corresponds to adding +111 to each
point label.
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Figure 11: The Gray configuration: a polycyclic realization with 3-fold rotational
symmetry. The labels of points are those introduced in Section 1. The colors
emphasize resolvability of the configuration (show the parallel classes). Note that
the Z3 action corresponds to adding +210 to each point label.

We apply this theorem in the following way. Take a copy of a polycyclic realization
of the (92, 63) “grid” configuration (let it be denoted by G0). Denote its centre of
rotation by O, and fix this point; it plays the role of the point O of the theorem.
Choose a straight line which passes through a configuration point of this grid, but
avoids all its other configuration points as well as the centre O; this will play the
role of the path ℓ of the theorem, thus we shall refer to it by the same notation.
Considering our Figure 11, the starting copy of the grid configuration can be taken
as a copy of precisely what is depicted in Figure 12 (with the same labels of points).
In addition, the line ℓ is taken as the red line through the point (020).

Now take the copies G1 and G2 which are images of G0 under dilative rotations
such that their points (021) and (022), respectively correspond to the point (020),
and lie on the line ℓ. As a consequence of Theorem 6.1 above, we have that the
points of the set G0 ∪ G1 ∪ G2 are arranged into collinear triples along the 9 red lines
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Figure 12: Polycyclic realization of the Pappus configuration with 3-fold rotational
symmetry. Removal of the dashed lines gives rise to a polycyclic realization of the
(92, 63) “grid” configuration.

of our Figure 11 (note that all these lines are copies of ℓ under dilative rotations,
again due to the theorem). As a result, the set G0 ∪G1 ∪G2, together with the 9 new
lines, forms a configuration which is isomorphic to the Gray configuration; moreover,
it is polycyclic with threefold rotational symmetry.

Clearly, the realization of the Gray configuration shown in Figure 11 has 3-fold
rotational symmetry, and it is easy to verify that the rotation corresponds to adding
+210 to each of the point labels. We previously showed that adding +210 corre-
sponds to the reduced Levi graph shown in Figure 8, so this realization is a polycylic
realization with graph GG as its reduced Levi graph.

This geometric realization has been used to construct a unit-distance realization
of the Gray graph; see [4].

7 9-fold symmetry of the Gray Graph and Gray Configura-
tion

7.1 9-fold symmetry of the Gray graph

Figure 14 shows two drawings of the Gray Graph with 9-fold rotational symmetry,
which interact nicely with the Pappus realization. (The graph on the left has the
positions of the rings of points and lines chosen so that the graph is intelligible, while
the graph on the right has the GG symmetry class elements lined up; there is no
change in the order of the elements along each rotational ring, just in the position
of the 0th element of each ring of points and of lines.) Specifically, 3-fold rotation
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Figure 13: Using reciprocation on the configuration shown in Figure 11, we also
construct a realization of the dual configuration to the Gray configuration.

preserves the symmetry classes under the Pappus action. For example, considering
the class Bi0 = {B00 = 100, B10 = 211, B20 = 022} shown in blue, located on the
outermost ring of the graph, rotation by 120◦ maps B00 → B10 → B20. It is easy to
verify that all of the Pappus symmetry classes (the color-coded columns in Table 2)
are preserved by this 3-fold rotation.

Table 3 lists the symmetry classes of points and lines that correspond to this
realization of the Gray Graph using Z9 symmetry, shown in Figure 14. They are
chosen so that 3-fold rotation permutes the “Pappus” symmetry classes (that is, the
colored columns in Table 2.

The symmetry classes under the GG action (the color-coded rows in Table 2) are
preserved through interchanging the rings of symmetry classes, but the action is more
complicated. Simply cyclically permuting the three rings (outside-middle-inside) in
the second drawing in Figure 14 permutes the elements in the classes R0i, R1i, R2i and
X0i, X1i, X2i: for example, mapping the outer ring to the middle ring to the center
ring applies the permutation R00 = 000 → R01 = 210 → R02 = 120. However, the
permuting of the rings does not map the other GG symmetry classes to themselves
directly. To preserve the classes Bij (blue) and Yij (orange), i = 0, 1, 2, permuting
the rings plus a −120◦ rotation is required: for example, mapping the outer ring
to the middle ring and rotating backwards by 120◦ sends B00 = 100 → B01 = 010,
and doing that action again sends B01 = 010 → B02 = 220. Similarly, to preserve
GG classes Gij (green) and Zij (cyan), i = 0, 1, 2, requires a ring permutation and a
rotation by +120◦.
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Figure 14: Two drawings of the Gray Graph with Z9 symmetry. Note that
the symmetry classes under the Pappus action (the columns in Table 2) are
preserved under 3-fold rotation applied to this graph. The elements ∗0j , ∗ ∈
{X,Y, Z,R,B,G} (that is, the first rows in Table 2) are shown thick.

7.2 Constructing a Z9 realization

We use the 9-fold rotation of the graph shown in Figure 14 to construct orbits of
length 9 of points and lines, listed in Table 3. The 0th element of each orbit is shown
thick in Figure 14. These symmetry classes can be seen as 9-cycles on the standard
grid, viewed as a solid torus formed by identifying opposite sides of the 3 × 3 grid,
shown in Figure 15. However, producing the symmetry classes listed in Table 3 is
not as straightforward as just following the 9-gons. The sequence of points and lines
obtained by following the solid 9-gon on the torus corresponds to alternating points
in class D and lines in class L. However, to alternate between F and N requires
skipping 2 steps on the doubled 9-gon, and to alternate between E and M requires
skipping 4 steps on the dashed 9-gon.

Using the drawings in Figure 14, it is straightforward to read off the voltages
for the Z9 voltage graph, shown in Figure 16a. As usual, we then add and subtract
voltages to produce a reduced Levi graph with a spanning path 16b, to aid in applying
known algorithms for constructing configurations with reduced Levi graphs of this
type.

Figure 16c shows the corresponding drawing of the Gray Graph emphasizing the
Z9 symmetry classes.

The voltage graph shown in Figure 16b is an example of a voltage graph that
corresponds to a multilateral chiral 3-configuration, as described in [3] as a config-
uration whose reduced Levi graph over some Zm is 3-regular and alternates double
(parallel) arcs and single arcs. That paper provided an algorithm for constructing
corresponding geometric configurations. The Configuration Construction Lemma,
described in that paper and elsewhere, says, essentially, the following: Given a set
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Table 3: Symmetry classes of points and lines corresponding to a Z9 realization
of the Gray Graph.

symmetry point class D: R00, B00, G00, R10, B10, G10, R20, B20, G20

= 000, 100, 110, 111, 211, 221, 222, 022, 002

symmetry line class L: X00, Y00, Z00, X10, Y21, Z10, X20, Y20, Z20

= ∗00, 1∗0, 11∗, ∗11, 2∗1, 22∗, ∗22, 0∗2, 00∗
symmetry point class F : R02, B22, G12, R12, B02, G22, R22, B12, G02

= 120, 112, 011, 201, 220, 122, 012, 001, 200

symmetry line class N : X02, Y22, Z12, X12, Y02, Z22, X22, Y12, Z02

= ∗20, 12∗, 01∗, ∗01, 2∗0, 12∗, ∗12, 0∗1, 20∗
symmetry point class E: R01, B11, G21, R11, B21, G01, R21, B01, G11

= 210, 121, 212, 012, 202, 020, 102, 010, 101

symmetry line class M : X01, Y11, Z21, X11, Y21, Z01, X21, Y01, Z11

= ∗10, 1∗1, 21∗, ∗21, 2∗2, 02∗, ∗02, 0∗0, 10∗

of points Pi that are cyclically labeled as the vertices of a regular m-gon centered at
the origin O, construct the circle C passing through points Pb, O, Pb−d. If a point Q
lies on C, and if Q′ is the rotation of Q by 2πd

m
, then the line QQ′ passes through Pb.

This is particularly useful if the point Q is constructed as the intersection of some
other line constructed in the configuration with the circle C. In this case, to realize
the given reduced Levi graph, the required process is as follows:

Algorithm 7.1. To construct a geometric realization of a 3-configuration with the
reduced Levi graph in Figure 16b, do the following (with index arithmetic modulo
9):

1. Construct points Di, i = 0, 1, . . . , 8 as the vertices of a regular 9-gon; specifi-
cally, let Di = (cos(2πi/9), sin(2πi/9)).

2. Construct lines Li = DiDi+1.

3. Place a point F0(t) arbitrarily (parameterized by t) on line L0 and let Fi(t) be
the rotation of F0 through 2πi/9 about the origin.

4. Construct lines Ni(t) = Fi(t)Fi+4(t).

5. Construct a circle C through the three points D−1, D−1−2 and the origin.

6. Construct point E0 to be the intersection of line N0(t) with C, if it exists. If no
point of intersection exists, then the algorithm fails. If a point of intersection
exists, let Ei be the rotation of E0 through 2πi/9 about the origin.

7. Construct lines Mi = EiEi+2. The line Mi will pass through the point Di−1.
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Figure 15: Identifying Z9 symmetry classes in the Gray Grid. Successive points
in symmetry class D occur by traveling one step along the solid black 9-gon,
successive points in symmetry class F occur by traveling two steps along the
doubled 9-gon, and successive points in symmetry class E occur by travelling four
steps along the dashed 9-gon (in each case, following the direction of the arrows).
The 0th element of each point class is indicated by a heavy circle.

Theorem 7.2. There are exactly two positions of F0(t) on L0 so that the line N0(t) =
F0(t)F4(t) intersects the circle C passing through the three points D−1, D−3 and O.
These two positions are precisely the points P1 = L0 ∩ L−3 and P2 = L0 ∩ L3,
and at these positions, the line N0(t) is tangent to C. For all other values of t,
the line N0(t) does not intersect C. Therefore, any straight-line realization of the
Gray Configuration with Z9 symmetry is a weak realization, because there are extra
incidences caused by the fact that F0 lies on two lines Li (rather than only one).

To prove this theorem, we will use the following lemma:

Lemma 7.3. Let ℓ be a line and let ℓ′ be the image of ℓ under rotation through some
angle θ about a point O. Let P be an arbitrary point on ℓ and P ′ the image of P
under rotation through θ about O of P (thus P ′ lies on ℓ′). The envelope of the lines
PP ′ is a parabola with focus O and directrix formed by the line OℓOℓ′, where Oℓ, Oℓ′

are formed by reflecting O over ℓ, ℓ′ respectively.
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(c) The Gray graph viewed as the expanded Levi graph, emphasizing
the spanning path of 0 indicated in the voltage graph (which can
be seen following the “spine” of the graph, shown thick). As usual,
points are circular nodes and lines are rectangular nodes.

Figure 16: Helpful realizations of the Gray graph and the Z9 voltage graph.
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Proof. Recall that to construct a parabola with a given focus and tangent to two
given lines, the directrix is formed by reflecting the focus over each of those two lines
and joining the image points. Let P be the parabola with focus O that is tangent
to the lines ℓ and ℓ′. Using similar triangles and angle-chasing, it is straightforward
to show that in the above situation, if we reflect O over the line PP ′ to form the
point OPP ′ , the three points Oℓ, Oℓ′ and OPP ′ are collinear; thus, the variable line
PP ′ is tangent to the parabola P for all choices of point P . In addition, if Mℓ, Mℓ′

are the feet of the perpendiculars to ℓ, ℓ′ passing through O, the vertex V of P is
the midpoint of the segment MℓMℓ′ , and the line MℓMℓ′ is tangent to P at V .

Proof of Theorem 7.2. Consider the setup of Algorithm 7.1, except for convenience,
choose starting coordinates

Di =

(
cos

(
2πi

9
+

17π

18

)
, sin

(
2πi

9
+

17π

18

))
.

With this choice of coordinates, by Lemma 7.3, the lines L0 and L4 (which is the
rotate of line L0 through the angle θ = 4 · 2π

9
about O) are tangent to a parabola P

with focus at O = (0, 0) and axis of symmetry on the y-axis. Using basic trigonome-
try, it is straightforward to show that the directrix of P is parallel to the x-axis and
has equation y = −2 cos

(
2π
9

)
cos

(
4π
9

)
. See Figure 17 for labels and details.

Since the general formula of a parabola that opens up, whose axis of symmetry
is the y-axis, and whose focus is at the origin, is x2 = 4p2 + 4py, where p is half the
distance from the focus to the directrix, it follows that the parabola P has equation

x2 = 4y cos

(
2π

9

)
cos

(
4π

9

)
+ 4 cos2

(
2π

9

)
cos2

(
4π

9

)
= 4y sin

( π

18

)
cos

(π
9

)
+ 4 sin2

( π

18

)
cos2

(π
9

)
after simplification.

It is straightforward to show that the circle C passing through D−1, D−3,O has
center c = (0, 1

2 cos(2π/9)
) and equation

x2 + y2 − y sec

(
2π

9

)
= 0.

Define F0(t) = (1 − t)D0 + tD1 to be a variable point on line L0, and define its
rotate F4(t) = (1− t)D4+ tD5; that is, F4(t) is the rotate of F0(t) through

4·2π
9

about
O. As in Algorithm 7.1, define N0(t) = F0(t)F4(t). By Lemma 7.3, this (generic)
line N0(t) is tangent to P . Thus, to investigate which lines N0(t) intersect C, we can
first investigate the intersections of the parabola and the circle.

Using Mathematica, we solve for the intersections of C and P . No solutions would
indicate that the circle and the parabola have no real intersections; four distinct
solutions would indicate that the circle and the parabola intersect transversally; and
two distinct solutions would show that the circle and the parabola intersect only at
two tangent points. It is this third possiblity that turns out to be the case: after
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Figure 17: Illustrating the proof of Theorem 7.2. The circle C and its center are
shown in green; the parabola P is shown in magenta with its directrix dashed
black. The points Di and the lines L0, L4 are shown in orange, with L−3 and
L3 shown in dashed orange. The points of tangency T1 and T2 between P and C
are shown in blue, along with the line connecting P1 and P ′

1 (shown in red) that
passes through T1. The thin gray lines mark out angles of π

18 .

simplification, the only points of intersection between P and C are two points of
tangency

T1 =
(
−2

√
3 sin

( π

18

)
cos

(π
9

)
, 2 sin

( π

18

)
cos

(π
9

))
and

T2 =
(
2
√
3 sin

( π

18

)
cos

(π
9

)
, 2 sin

( π

18

)
cos

(π
9

))
.

We claim that the tangent line to T1 is precisely the line that passes through
P1 = L−3 ∩ L0 and its rotate P ′

1 through 4·2π
9

about O. Elementary right-triangle
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trigonometry shows that the coordinates of P1 and P ′
1 are

P1 = 2 cos
(π
9

)(
− sin

(
2π

9

)
, cos

(
2π

9

))
P ′
1 = 2 cos

(π
9

)(
sin

(π
9

)
,− cos

(π
9

))
Computing det

(
P1 P ′

1 T1

1 1 1

)
and verifying, by Mathematica, that the determi-

nant equals 0 shows that P1, P
′
1 and T1 are collinear. Since (by construction of P ′

1)
the line P1P ′

1 is a member of the envelope of lines to the parabola, it follows that
P1P ′

1 is tangent to P at the point T1.
Symmetry of the construction shows that if we use P2 = L0 ∩ L3 as the starting

point on line L0, that the corresponding line P2P
′
2 (with P ′

2 the rotate of P2 through
4·2π
9

about O) is tangent to P at T2.
In summary, there are precisely two points (namely, P1 and P2) on L0 that can

serve as the points F0(t) that have the property that the line N0(t) intersects C
at some point E0, following the labeling from Algorithm 7.1, namely E0 = T1 if
F0(t) = P1, or E0 = T2 if F0(t) = P2.

However, each of these possible points F0(t) has the property that in addition to
the line L0 passing through them, another line Li also passes through them.

Remark 3. In fact, choosing either of these points as F0 and completing Algorithm
7.1 (see Figure 18a, which uses the points Di rotated back so that D0 = (1, 0)) results
in four points lying on each line and four lines passing through each point; the result-
ing incidence structure is actually the (274) celestial configuration 9#(1, 3; 4, 3; 2, 3))
(see, e.g., [18, Section 3.7] for details on 3-celestial configurations, where they are
called 3-astral configurations). These extra incidences mean that the construction
from Algorithm 7.1 produces only a weak realization of the Gray configuration.

A pseudoline realization of a configuration is a drawing of a configuration in
which lines are allowed to “wiggle” but any two can intersect at most once. (In
the projective plane, any two pseudolines intersect exactly once.) See, for example,
[18, 2, 15]. Two pseudoline drawings (topological realizations) of the Gray Config-
uration with Z9 symmetry are shown in Figure 18. The left-hand figure indicates
what the weak realization would be with straight lines, via the celestial configura-
tion 9#(1, 3; 4, 3; 2, 3), but the extra incidences are avoided with pseudolines using
semicircular paths around the unwanted vertices. Note this drawing was also shown
in [21, Figure 3]; Theorem 7.2 shows that this configuration is the only straight-line
(weak) realization possible of the Gray graph with Z9 symmetry. The right-hand
figure shows a pseudoline realization in which two orbits of lines are straight, and
the third orbit uses pseudolines consisting of circular arcs in the area shown.
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(a) A pseudoline drawing of the Gray configu-
ration based on the (274) celestial configuration
9#(1, 3; 4, 3; 2, 3), avoiding the extra incidences
with semicircles. Compare Figure 3 from [21].

(b) A second pseudoline drawing, avoiding extra
incidences.

Figure 18: Pseudoline realizations of the Gray configuration with Z9 symmetry.

8 Conclusion and open questions

We have showed that among all possible polycyclic realizations of the Gray con-
figuration, it is possible to realize both Z3 versions, but the Z9 realization is only
topological.

There are other semisymmetric cubic bipartite graphs of girth at least 6, including
the Iofinova-Ivanov graph on 110 vertices (corresponding to a (553) configuration)
[19]; the Ljubljana graph with 112 vertices (corresponding to a combinatorial (563)
configuration [7]; the Tutte 12-cage, also known as the Benson Graph (correspond-
ing to a combinatorial (633) configuration) with 126 vertices [1, 11]. A polycyclic
geometric realization of the Ljubljana configuration with 7-fold symmetry was given
in [7], and a polycyclic geometric realization of the configuration corresponding to
the Tutte 12-cage has been shown in [5]. However, although [29] provides symmet-
ric graph drawings, we are not aware of a published geometric realization of the
Iofinova-Ivanov (553) configuration or its dual. We plan to investigate the geometric
realizability of the corresponding configuration; the automorphism group of the graph
is isomorphic to PGL2(11). Future work will explore the possibility of realizations
of this configuration with 5-fold and 11-fold rotational symmetry.

Recently, Conder and Potočnik presented a method that enabled them to generate
all semisymmetric cubic bipartite graphs of order up to 10000 [8]. It would be
interesting if one could use our method with their census of examples to develop
infinite families of geometrically realizable configurations.
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ics II. Geometric Transformations) (in Hungarian), Tankönyvkiadó, Budapest, 1990.
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