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Abstract

Graph burning models the spread of information or contagion in a graph.
At each time step, two events occur: neighbours of already burned ver-
tices become burned, and a new vertex is chosen to be burned. The big
conjecture is known as the burning number conjecture: for any connected
graph on n vertices, all n vertices can be burned after at most d

√
n e time

steps. It is well-known that to prove the conjecture, it suffices to prove
it for trees. We prove the conjecture for sufficiently large p-caterpillars.

1 Introduction

The process called graph burning models the spread of information or contagion
through a graph. Graph burning was introduced by Bonato, Janssen, and Roshan-
bin [5, 6], who describe a process in which a fire spreads through a simple undirected
graph. There are two possible states for a vertex: burned or unburned; and initially,
each vertex is unburned. During the first round, a vertex is chosen to be burned.
During each subsequent round, two events occur: every unburned neighbour of a
burned vertex becomes burned; and an unburned vertex is selected to be burned,
provided such an unburned vertex exists. The vertex selected at each round is called

ISSN: 2202-3518 c©The author(s). Released under the CC BY-ND 4.0 International License



D. COX ET AL. /AUSTRALAS. J. COMBIN. 93 (1) (2025), 90–110 91

a source. The process continues until every vertex in the graph is burned. The cen-
tral question asks how quickly the fire propagates through the graph. The burning
number of a graph G, denoted b(G), is the minimum number of rounds needed to
burn every vertex of G.

The burning number has been studied for a variety of classes of graphs, including
random graphs, theta graphs, generalized Petersen graphs, path-forests, hypercubes,
graph products, and some trees. See the survey by Bonato [4] for more informa-
tion about the burning number for various classes of graphs. Although the burning
number can be determined in polynomial time for cographs and split graphs [11],
the associated decision problem is NP-complete in general. It remains NP-complete
for trees with maximum degree 3, spider graphs, caterpillars of maximum degree 3,
interval graphs, connected proper interval graphs, connected cubic graphs, permu-
tation graphs, and disk graphs; see [1, 3, 9, 10, 12]. For a connected graph on n
vertices, a central question is whether the burning number is bounded by d

√
n e:

Burning number conjecture (BNC). [6] For a connected graph G on n vertices,
b(G) ≤ d

√
n e.

In [6], it was observed that if H is a spanning subgraph of a connected graph G,
then b(G) ≤ b(H). Thus, the following corollary from [6] demonstrates that to prove
the conjecture in general, it suffices to prove the conjecture for trees.

Corollary 1.1. [6] For a graph G we have that

b(G) = min{b(T ) : T is a spanning subtree of G}.

See [2, 4, 13] for asymptotic bounds on the burning number. The conjecture has
been proven to be true for paths [6], spiders [7, 8], trees whose non-leaf vertices have
degree at least 4 [14], trees whose non-leaf vertices have degree at least 3 (on at
least 81 vertices) [14], 1-caterpillars [10, 12], and 2-caterpillars [10]. For p ≥ 1, a
p-caterpillar is a tree that contains a maximal path P (called the spine) such that
every vertex is distance at most p to P . The BNC is unresolved for p-caterpillars
with p ≥ 3. We state our main result next (the proof appears in Section 5).

Theorem 1.2. The BNC holds for any p-caterpillar on at least 16(4p3+2p2+4p)2p2

vertices.

2 Proof Outline

We describe an alternate approach to graph burning (developed in [6]), and provide
some intuition on how we use this approach to prove our main theorem.

Definition 2.1. Let G be a graph. For integer r ≥ 0, a ball of radius r in
G is a subset of vertices of V (G) containing a vertex x ∈ V (G) and all vertices
within distance r of x. Such a ball is said to be centered at x. If B is a ball, we
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optionally superscript, writing B[r] to indicate that the ball has radius r, or write
that rad(B) = r.

In the graph-theoretic literature, the set of vertices in a ball of radius r centered at
vertex x is sometimes referred to as the rth closed neighbourhood of x.

Definition 2.2. A cover of a p-caterpillar is a collection of balls centered on the
spine, such that every vertex is in at least one ball and no two balls have the same
radius.

An example of a cover of the tree T ∗ (drawn at the right in Figure 1) is the following:
a radius 0 ball centered at v1, a radius 1 ball centered at v8, and a radius 2 ball
centered at v4. This example corresponds to the graph burning process in which 3
sources are chosen: first v4, then v8, then v1; the balls correspond to the vertices
burned by the respective sources. So we can see that b(T ∗) ≤ 3. In general for a
graph G, b(G) = r + 1, where r is the smallest integer such that r is the radius of
the largest ball in a cover of G (though for a general graph there need be no spine,
and there are no constraints on where the balls are centered).

Figure 1: 1-Caterpillars T and T ∗ for which b(T ) > b(T ∗).

We refer to a vertex on the spine P with degree greater than 2 as a root. In the
subgraph induced by the deletion of the edges of P , each non-isolated spine vertex
(i.e. a root) can be viewed as the root to a subtree; we denote such a subtree with
root x by T [x]. Note that each root has a subtree of height at most p. For example,
the left tree in Figure 1 is a 1-caterpillar whose spine can be taken to be the path
from v1 to v8, and thus has roots v3, v4, v5, and v6, where each is the root of a height
1 subtree.

The fundamental idea of our proof approach is to transform a cover of the path
Pn (where we know the BNC holds), into a cover of a p-caterpillar on n vertices,
thus implying the BNC for the p-caterpillar. We will use Figure 2 to illustrate this
procedure. Consider a p-caterpillar T with k roots; for example part (a) of Figure 2
which shows a 2-caterpillar with 9 vertices and 2 roots. Our proof will begin with
an n vertex path and a cover with d

√
n e balls. For example part (b) of Figure 2

displays P9 and a cover with 3 balls: from left-to-right, a ball of radius 1, a ball of
radius 2, and a ball of radius 0. In our transformation, we move vertices and edges
from the right side of the path to the leftmost root. For example, we start with the
path in part (b) of Figure 2, and to obtain part (c), we remove two vertices from the
right end of the spine and append a path of length two to x1.
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Figure 2: Outline of the process used in the proof.

We note that the vertices in the subtree at x1 may not be covered by the original
arrangement of balls on the path. For example, the arrangement of balls in part (c)
would not work, as the vertices appended to x1 would not be covered. We will show,
that under the right assumptions, we can rearrange the balls (neither adding nor
removing balls) so that the subtree at the leftmost root is covered. For example, the
arrangement of balls shown in part (d) of Figure 2 results in the subtree rooted at
x1 being covered. We continue the process, moving vertices and edges from the right
side to place them at the next root, then rearranging the balls, so that the vertices
at the root are covered. For example, we remove one vertex from the right end of
the spine of the graph in part (d) of Figure 2 and append a path of length one to
x2 in order to obtain the graph in part (e). The arrangement of balls in part (e)
would not work as the vertex appended to x2 would not be covered. However, the
arrangement of balls in part (f) results in every vertex of the original tree covered
(and in this case, the ball of radius 0 is not used).

The outlined approach depends on having the correct conditions. Consider the
example of Figure 1, where the right tree T ∗ is transformed into the left tree T ,
in line with the above outlined process. As pictured, T ∗ has a cover with 3 balls.
However, 3 balls do not suffice to cover T . To see this, observe that if the ball of
radius 2 is not centered at v4 or v5, it will cover at most 7 vertices, leaving at least 5
vertices to be covered by balls of radius 0 and 1, which is impossible. Thus, without
loss of generality, the ball of radius 2 must be centered at v4. However, centering it
at v4 leaves v1, v7, v8, and the leaf adjacent to v6 to be covered by the balls of radius
0 and 1, which is impossible. The example shows that the process of transforming a
cover of the path into a cover of a p-caterpillar by rearranging balls, may, in general,
not work. If, in the middle of this process, we wanted to convert the cover of T ∗ into
a cover of T (from Figure 1), this would not be possible using the same balls. In
the proof of Theorem 1.2, we will make particular demands on the cover in order to
successfully complete the process, using combinations of shift and jump operations,
as described in Section 3.3.
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3 Covering Caterpillars

As described in the previous section, our approach will involve successively trans-
forming an existing cover of a p-caterpillar into a new cover of a slightly modified
p-caterpillar, getting closer to our target p-caterpillar with each step. We next discuss
stages of caterpillars, covers, and then operations on covers.

3.1 Caterpillar Cocoon

When we refer to a p-caterpillar T , we standardize the notation to say it has spine
(v1, . . . , vt) with roots x1, . . . , xk; this means that the spine consists of the path
(v1, . . . , vt) and there are some 1 < i1 < · · · < ik < t, such that xj = vij are the
roots. We consider v1 to be on the left, moving right as we proceed towards vt. Let
hi be the height of the subtree at root xi; observe hi ≤ p. Let ni be the number of
vertices in the subtree rooted at xi (not counting the root itself). As an example,
for the 1-caterpillar in Figure 3 (a), n1 = 3, n2 = n3 = 1 and h1 = h2 = h3 = 1.

Figure 3: A 1-caterpillar (a) and its wrapper (b), the 5 new spine vertices indicated
in grey.

At times, it will be convenient to consider extending the spine of our p-caterpillar.
Given a p-caterpillar T , by T̃ (called its wrapper) we mean to take the p-caterpillar
T , with a path of

∑k
i=1 ni vertices added to the rightmost spine vertex of T . For

example, if T is as in Figure 3 (a), then its wrapper T̃ will be the 1-caterpillar in
Figure 3 (b), i.e. T with its spine extended by 3 + 1 + 1 = 5 vertices (the new spine
vertices are indicated in grey).

In Figure 2 we outlined the step-by-step process of transforming a path into a
p-caterpillar. The next definition encodes this process in a precise way that will aid
our proofs.

Definition 3.1. Suppose T is a p-caterpillar with k roots, x1, . . . , xk, ordered from
left to right. The cocoon of T is the sequence of p-caterpillars 〈〈T0, T1, . . . , Tk〉〉,
where Tk = T , and Ti−1 is constructed from Ti as follows:

Consider xi, i.e. the rightmost root of Ti. Remove all ni vertices in the
subtree at xi, and extend Ti at its rightmost spine vertex, by a path with
hi vertices.
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For example, if we let T be the 1-caterpillar from Figure 3 (a), then its cocoon is
〈〈T0, T1, T2, T3〉〉, where these Ti are displayed in Figure 4 (for seeing the cocoon,
ignore the grey vertices, and the covers). Notice that T0 is simply a path, which is in

fact a p-caterpillar. Each Ti is a subgraph of the wrapper T̃ from Figure 3 (b). The

dotted edges and grey vertices are in the wrapper T̃ , but not in the Ti subgraphs.
These grey vertices represent extra spine vertices in some cover of Ti which go past
Ti and into T̃ ; we define this notion of excess in the next definition.

Figure 4: A 1-caterpillar T and the sequence of 1-caterpillars that form its cocoon.

Definition 3.2. Consider a cocoon 〈〈T0, . . . , Tk〉〉 of p-caterpillar T , and let T̃ be

its wrapper. A Ti-cover in T̃ with excess εi is a cover of subgraph Ti in T̃ such
that a set of εi vertices on the spine of T̃ −Ti are covered. We require that if a spine
vertex of T̃ is covered, then any spine vertex to its left is also covered.

Figure 4 illustrates the last definition, where we see in part (d) a T0-cover in T̃ with

excess ε0 = 2. Part (c) displays a T1-cover in T̃ with excess ε1 = 3, part (b) displays

a T2-cover in T̃ with excess ε2 = 2, and part (a) displays a T3-cover in T̃ with excess
ε3 = 2.

Notice that when constructing Ti−1 from Ti in the cocoon of T , the number of
vertices added to the right of the path is the height (i.e. hi) of the subtree, not the
number of vertices (i.e. ni) in the subtree. The rationale behind this distinction
hinges on the fact that when using a cover, all that matters is the height of the
subtree, so that extra vertices of a subtree that get covered (i.e. ni − hi) make the
p-caterpillar easier to cover, so we refer to them as excess. In this paper, a cover
consists of balls centered on the spine, so the hardest case is when every subtree T [xi]
at every xi is just a path, so hi = ni. In this hardest case, when transitioning from
Ti to Ti−1, we are simply moving all the vertices of Ti to the end of its spine. So our
definition of excess is set up to count this hardest case as having zero excess.
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Recall that k is the number of roots on the spine of T . We will typically start
with the entire spine of T̃ covered, so for the initial excess we count the number of
spine vertices on T̃ that are not on T0, i.e.

ε0 =
k∑

i=1

(ni − hi) ≥ 0.

Generally, we assume ε0 = 0 because we consider the hardest case of ni = hi (i.e.
each subtree is merely a path), though in one situation we consider positive initial

excess. The goal of our proofs will be to arrive at a Tk-cover in T̃ with excess εk ≥ 0,
since this immediately yields a cover of T .

3.2 Basics of Covers

A root x of a p-caterpillar is tree-covered by ball B if all the vertices of the sub-
tree rooted at x are in ball B. So if B is of radius r and centered at vi, then in
addition to including some non-spine vertices, B includes up to 2r+ 1 spine vertices:
vi−r, . . . , vi, . . . , vi+r; we refer to vi−r as the left endpoint of B and vi+r as the right
endpoint of B. Note, if i − r < 0 then the corresponding left endpoint will be v1,
and B will contain less than 2r + 1 spine vertices. Consider a ball centered at vi:
if the ball has radius at least p it is guaranteed to tree-cover vi, otherwise it may
not. Since this distinction will be highly relevant to our subsequent proofs, we say
that a ball is tiny if its radius is less than p and non-tiny if its radius is at least
p. The tiny ball region is the set of spine vertices that are covered by tiny balls.
If a non-tiny ball B contains xj but does not tree-cover it, there are 2 ways this can
happen:

1. If xj is left of the center of B and B would not contain all of subtree T [xj] if
it were attached at xj, then we say xj is left-bad in B.

2. If xj is right of the center of B and B would not contain all of subtree T [xj] if
it were attached at xj, then we say xj is right-bad in B.

For example, in the T0-cover in T̃ in Figure 4 (d), vertex x1 is right-bad in B[1]; in

the T2-cover in T̃ in Figure 4 (b), vertex x3 is left-bad in B[3].

Definition 3.3. For a ball arrangement on the spine of a p-caterpillar, a sequence
of balls B1, . . . , Bt is special (and starts at B1) if it has the following properties:

1. Increasing: rad(Bi) < rad(Bj) if i < j and both Bi and Bj are non-tiny.

2. Non-overlapping cover: Bi is immediately left of Bi+1 (i.e. immediately after
the right endpoint of Bi, comes the left endpoint of Bi+1).

3. Tiny balls: The tiny balls are contiguous and the tiny ball region contains no
root vertices.



D. COX ET AL. /AUSTRALAS. J. COMBIN. 93 (1) (2025), 90–110 97

Note that in a special cover, there could be other overlapping balls in the ar-
rangement, which we are ignoring when selecting a particular special sequence. For
a ball arrangement on the spine of a p-caterpillar that contains ball B, we say the
arrangement is special from B if there exists a special sequence starting at B. A
cover is simply special, if it is special from the leftmost ball. For example, in Fig-
ure 4 (d), the cover of T0 in T̃ is special and in (c), the cover of T1 in T̃ is special
from ball B[1].

We now describe the basic idea of the proof of Theorem 1.2 more carefully. To
denote a cover of T we will sometimes write

〈B1, B2, . . . , Bs〉,

where the notation indicates that the center of ball Bi is left of the center of ball Bj

when i < j; we refer to ball Bi as being left of Bj. The idea of the proof is to start

with a special cover C0 of the spine of T̃ (for N = d
√
n e) i.e.

〈B[p], . . . , B[N−1], B[p−1], . . . , B[1], B[0]〉,

which is increasing by radius, except for the tiny balls at the right. The spine of
T̃ has a burning number of d

√
n e since it is a path of order n. As we successively

transform T0 into Tk = T (i.e. following the cocoon definition), we simultaneously

transform the cover C0, which covers T0 in T̃ , into a cover Ck, which covers T in T̃ .
Constructing the cover will just involve combinations of shift and jump operations
(defined in the next subsection), so that at the end of the process, using the same
balls, we will have a cover of T , proving our goal; namely that b(T ) ≤ d

√
n e.

3.3 Operations on Covers

We now present the two basic operations we will perform on a cover. Both operations
take a cover for a p-caterpillar and rearrange some of the balls to ensure certain roots
are tree-covered.

3.3.1 Shift Operation

Definition 3.4. (Shift Operation) Suppose we have the following cover of some
p-caterpillar:

〈B1, . . . , Bj−1, Bj, . . . , Bs〉.

For an integer ` ≥ 1, an `-shift at Bj yields a new arrangement of balls, with the
center of Bi, for i ∈ {j, j + 1, . . . , s}, moved ` vertices to the left on the spine. The
rest of the balls remain unmoved.

For example, in Figure 4 we see a 2-shift at B[1] in T1 (part (c)), resulting in a cover
of T2 (part (b)); then we see a 1-shift at B[3] (part (b)), resulting in a cover of T3

(part (a)).
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We can see that the change in excess is described by the equation:

εj+1 = εj + hj+1 − `.

For example, ε1 = 3 in Figure 4 (c), and the 2-shift at B[1] (so ` = 2) used to tree-
cover x2, leads to a new excess (using j = 1) of ε2 = ε1 + h2 − ` = 3 + 1 − 2 = 2.
Similarly, the 1-shift at B[3], results in excess ε3 = ε2 + h3 − 1 = 2 + 1 − 1 = 2.
Note that shifting at ball Bj will turn a non-overlapping arrangement of balls into
an overlapping arrangement of balls, though such an arrangement will remain non-
overlapping among the balls Bj, Bj+1, . . ..

The Left Shift Lemma generalizes what happened in the example above when we
did a 1-shift at B[3] in order to tree-cover x3. In this case, the root x3 was left-bad
in the ball that was shifted. Since we have to shift at most h3 to tree-cover x3, the
excess stays the same or increases.

Lemma 3.5. (Left Shift Lemma) Let 〈〈T0, . . . , Tk〉〉 be a cocoon of p-caterpillar

T and let Cj be a Tj-cover in T̃ where B is a non-tiny ball containing xj+1. Suppose
• xj+1 is left-bad in B

• Cj is special from B, and

• root vertices to the left of the tiny ball region are at distance greater than p
from the tiny ball region.

For some ` ≤ hj+1, an `-shift at B will produce a Tj+1-cover in T̃ that is special
from B with εj+1 ≥ εj.

Proof. Since hj+1 is the height of the subtree rooted at xj+1, there is an ` ≤ hj+1

for which an `-shift at B results in xj+1 being tree-covered by B; essential to this
point is that hj+1 ≤ p ≤ rad(B). Let Cj+1 be the result of an `-shift at B. Since

Cj is a Tj-cover in T̃ (recall Definition 3.2), x1, . . . , xj are tree-covered. Balls to the
left of B are not moved during the `-shift, so roots x1, . . . , xj remain tree-covered in
Cj+1. Recall from Definition 3.1 the difference between Tj and Tj+1: in Tj+1, subtree
T [xj+1] is rooted at xj+1, whereas in Tj, the subtree is removed and hj+1 vertices are
appended as a path to the right end of the spine. Since ` ≤ hj+1, all the vertices
of Tj+1 will be covered by Cj+1. Furthermore, since we shift at most p, the tiny

ball region contains no root vertices. Thus, Cj+1 is a Tj+1-cover in T̃ . Additionally,
observe that Cj+1 is special from B. Finally, since ` ≤ hj+1,

εj+1 = εj + hj+1 − ` ≥ εj.

We state a weaker version of the Left Shift Lemma that removes the requirement
of the cover being special. This will be useful in one part of the proof of Theorem 1.2.

Lemma 3.6. (Weak Left Shift Lemma) Let 〈〈T0, . . . , Tk〉〉 be a cocoon of p-

caterpillar T and let Cj be a Tj-cover in T̃ where B is a non-tiny ball containing
xj+1. Suppose xj+1 is left-bad in B. For some ` ≤ hj+1, an `-shift at B will produce

a Tj+1-cover in T̃ with εj+1 ≥ εj.
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The Right Shift Lemma generalizes what happened in Figure 4, part (c) when we
did a 2-shift at B[1] in order to tree-cover x2 in part (b). In this case, the root x2 was
right-bad in a ball, so we leave that ball alone, and shift at the ball immediately to
its right. Now we might have to shift up to 2h2 to tree-cover x2, so the excess could
go down as much as h2, so to keep the excess non-negative, we begin with excess at
least h2.

Lemma 3.7. (Right Shift Lemma) Let 〈〈T0, . . . , Tk〉〉 be a cocoon of p-caterpillar

T and let Cj be a Tj-cover in T̃ where B is a non-tiny ball containing xj+1, and B∗

is a non-tiny ball directly right of B. If

• xj+1 is right-bad in B,

• Cj is special from B∗,

• root vertices to the left of the tiny ball region are at distance greater than 2p
from the tiny ball region, and

• εj ≥ hj+1,

then for some ` ≤ 2hj+1, an `-shift at B∗ will produce a Tj+1-cover in T̃ that is
special from B∗ with εj+1 ≥ εj − hj+1 ≥ 0.

Proof. For some ` ≤ 2hj+1 an `-shift at B∗ results in xj+1 being tree-covered by B∗

(in the worst case, an hj+1-shift would get xj+1 in B∗, but not tree-covered, requiring
up to hj+1 additional shifts to tree-cover xj+1); call this arrangement Cj+1. As the
balls to the left of B∗ are not moved, roots x1, . . . , xj were tree-covered in Cj and
remain tree-covered in Cj+1.

Observe that there are hj+1 fewer vertices on the right end of the spine of Tj+1

than Tj. From Definition 3.2, εj is the number of vertices on the spine of T̃−Tj that
are covered by Cj. As εj ≥ hj+1, after we do an `-shift at B∗ for ` ≤ 2hj+1,

εj+1 = εj + hj+1 − ` ≥ εj + hj+1 − 2hj+1 = εj − hj+1 ≥ 0.

Since εj+1 ≥ 0, all vertices on the spine of Tj+1 are covered by Cj+1. Furthermore,
since we shift at most 2p, the tiny ball region contains no root vertices. Thus, Cj+1

is a Tj+1-cover in T̃ . Additionally, observe that Cj+1 is special from B∗.

3.3.2 Jump Operation

Definition 3.8. (Jump Operation) Suppose we have the following cover of some
p-caterpillar:

〈B1, . . . , Bi−1, Bi, . . . , Bk−1, Bk, Bk+1, . . . , Bs〉.
To jump Bk to Bi yields the following new arrangement of balls:

〈B1, . . . , Bi−1, Bk, Bi, . . . , Bk−1, Bk+1, . . . , Bs〉,

i.e. Bk has its left endpoint where Bi used to have its left endpoint, and all the balls
at Bi and right, are moved to the right so that the left endpoint of Bi immediately
follows the right endpoint of Bk.
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The jump operation is pictured in Figure 5 where we see that from the top
illustration to the bottom illustration, ball R is jumped to ball L. Note, we are just
showing the spine, not the subtrees. The left endpoint of L, and any balls (whether
zero or more) that were between L and R, are shifted to the right by 2 · rad(R) + 1
in order to accommodate the placement of ball R. For an explicit example of the
jump operation, consider the cover of T0 given in Figure 4 (d) and observe that x1 is
right-bad in B[1] and the cover in (d) has excess ε0 = 2. We jump B[2] to B[1] to get
the cover of T1 given in Figure 4 (c), noting that since B[2] has radius 2, ball B[1] is
shifted 5 (i.e. 2 · 2 + 1) to the right. Also note that the resulting cover in Figure 4
(c) has excess ε1 = 3 = ε0 + 1.

In general, in a cocoon, if we have a cover of Tj in which xj+1 is left- or right-bad
and we jump a ball to get a cover of Tj+1, then εj+1 = εj + hj+1; we will see this
point in the next lemma. In the next lemma, we discuss when we can rearrange the
balls (think of doing repeated jump operations) in order to tree-cover z many roots,
so our excess will increase by the sum of the corresponding z many hi values. This
gain in excess will depend on the strong assumption of having enough non-tiny balls
on the right.

Figure 5: An illustration of the jump operation with ball R jumped to L.

Figure 6: An illustration of the labelings of the balls described in the proof of
Lemma 3.9.

Lemma 3.9. (Jump Lemma) Let 〈〈T0, . . . , Tk〉〉 be a cocoon of p-caterpillar T and

let Cj be a Tj-cover in T̃ , where B is the rightmost non-tiny ball containing xj+1,
and B∗ is the ball directly left of B, if it exists. Suppose the tiny ball region is at the
rightmost vertices of the spine. Suppose further that we are in one of the following
two situations:

• xj+1 is right-bad or tree-covered in B and Cj is special beginning at B, or

• xj+1 is left-bad in B and Cj is special beginning at B∗.
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Further, for some z ≥ 1, suppose that there are at least zp non-tiny balls of Cj right
of the ball containing xj+z. There is a rearrangement of the balls that results in a

Tj+z-cover in T̃ that is special beginning at the ball directly right of the ball containing
xj+z; and with excess

εj+z ≥ εj +

z+j∑
i=j+1

hi.

Proof. Since cover Cj is special from B or B∗ we can select a special sequence of
non-overlapping balls starting at B, calling it:

B1, B2, B3, . . . , Bu, Bu+1, . . . , Bu+zp, . . . ,

where B1 is B, xj+z is in Bu (we allow for the possibility that B1 = Bu, i.e. xj+z is
in B), the non-overlapping Bi increase in radius (see Figure 6), and Bi is non-tiny
for 1 ≤ i ≤ u + zp.

Note that it is important that we actually have non-tiny balls up to and including
ball Bu+zp due to the assumption that we have at least zp many non-tiny balls right of
the root xj+z. In this proof, we refer to the roots xj+1, . . . , xj+z as the target roots.
We will tree-cover all the target roots by a series of well chosen jump operations.

The proof will involve a series of steps (at least one step, and at most z steps,
depending on the situation), where at each of these steps we will jump an appropri-
ately chosen ball from B = {Bu+ip | i = 1, . . . , z} to a ball left of it. A key point will
be that the right boundary of the jumped ball X from B is not problematic, where
by problematic we mean that some target root is right-bad in X, or left-bad in the
ball directly right of X, i.e. there is a “problem” near the right boundary of X.

In Step 1, we consider target root xj+1, which is in ball B. If xj+1 is right-bad
we will jump an appropriate ball X from B to the ball B, while if xj+1 is left-bad
we will jump X to the ball directly left of B (in either case, tree-covering xj+1).
In either case, we will choose X to be the smallest ball from B such that X is not
problematic. We argue that such an X exists. First we note that any ball from B
will work to tree-cover xj+1, because the radius of X is at least p larger than the
ball it is jumped to; thus X occupies at least 2p more vertices. Thus xj+1 will be in
X and neither left- nor right-bad. In other words, if xj+1 is right-bad in B then to
guarantee that xj+1 is not less than distance hj+1 from the right boundary we need
only increase the radius of the ball that contains it by at most p, which is satisfied
by jumping X to B. If xj+1 is left-bad in B, jumping X to the ball directly left of B
results in xj+1 being in X and to the right of the center of the ball. It can be verified
that xj+1 is not right-bad in X since as in the previous situation, the additional p
vertices guarantee that xj+1 is not less than hj+1 from the right boundary of X.

We next argue that there is such a ball X that will not be problematic for any
target roots. If X = Bu+p is problematic for some target root, say xj+2, then we
instead consider X = Bu+2p, which will tree-cover both xj+1 and xj+2. Continuing
in this fashion, the step ends with some initial number of target roots (at least one)
tree-covered, using a single ball from B, leaving some (perhaps none) of the target
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roots uncovered. Suppose xj+i is the first uncovered target root; that is, X covered
the first (i − 1) target roots. Since the jump was not problematic, the next target
root xj+i starts as xj+1 did: either it is i) right-bad (or already tree-covered), and
special starting at the ball it is in, or ii) it is left-bad and special starting at the ball
directly left of it.

Step 2 now does exactly the same kind of action as done in Step 1, though to
the next target root xj+i. To see that the same reasoning applies, note that xj+i

is somewhere among B1, . . . , Bu, so any choice of ball from B will tree-cover it.
Furthermore, we can make an unproblematic choice, since, as in Step 1, if a choice is
problematic, we can go to the next bigger ball. Note that in avoiding a problematic
choice we cannot run out of balls from B since each time a ball is problematic and
we go to the next bigger ball from B, we in fact cover another target root.

We continue in this manner using as many steps as needed to obtain a Tj+z-cover

in T̃ that is special, beginning at the ball directly right of the ball containing xj+z.
Finally, note that since we have covered roots just by rearranging balls, we have
εj+z ≥ εj +

∑j+z
i=j+1 hi.

4 Preliminary Results

Hiller et al. [10] observed that for a p-caterpillar with spine length t, b(T ) ≤
√
t+ p:

first cover the vertices of the spine using balls of radius 0, 1, . . . ,
√
t−1; then to ensure

all non-spine vertices will be covered, increase the radius of every ball by p. Thus,
the BNC holds trivially for p-caterpillars when

√
t+p ≤

√
n. Let z be the number of

non-spine vertices, so n = t + z, and thus, the trivial case is when
√
t + z ≥

√
t + p;

squaring both sides of the inequality and simplifying yields the inequality

z ≥ 2p
√
t + p2.

Remark 4.1. If the number of non-spine vertices is at least 2p
√
t+p2 then the BNC

holds.

If we consider p to be fixed, the result is trivial when the number of non-spine
vertices (i.e. z) is somewhat larger than the square root of the number of spine
vertices (i.e. t). In Section 5, we consider case where the number of non-spine vertices
is simply a polynomial of p, so as t increases, our results are not trivial.

In the following observation we address the issue of when the number of vertices
in a p-caterpillar is not a perfect square.

Observation 4.2. If (x− 1)2 < y < x2 and the BNC holds for p-caterpillars on x2

vertices, then the BNC holds for p-caterpillars on y vertices.

The observation holds because for any p-caterpillar T on y vertices, we can extend
its spine to obtain p-caterpillar T ∗ on x2 many vertices, and then easily transform a
cover of T ∗ with x many balls into a cover of T with d√y e = x many balls.
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We note for the proof below, and subsequent proofs, that if non-overlapping, the
tiny balls occupy 1 + 3 + · · · + (2p − 1) = p2 spine vertices. The next result points
out that the most difficult case is when the subtrees of the roots are simply paths
(or close to paths); once the the number of vertices in the subtrees is large enough
relative to the tree heights, the BNC follows in a straightforward manner, just using
shift operations (no jump operations). Thus, a good picture to have in mind is that
the hardest case is when the subtrees are all paths.

Proposition 4.3. The BNC holds for any p-caterpillar such that
k∑

i=1

(ni − 2hi) ≥ p2 + p.

Proof. Suppose a p-caterpillar T on n vertices has cocoon 〈〈T0, . . . , Tk〉〉, where by
Observation 4.2 we can assume n is a perfect square. Begin with a special T0-cover
in T̃ which covers the entire spine of T̃ ; since n is a perfect square we can achieve
the required non-overlapping condition.

We start with initial excess

ε0 =
k∑

i=1

(ni − hi)

=
k∑

i=1

(ni − 2hi + hi)

=
k∑

i=1

(ni − 2hi) +
k∑

i=1

hi

≥ p2 + p +
k∑

i=1

hi by the assumption.

Proceeding by induction, assume that for some j ≥ 0, we have a Tj-cover in T̃ ,
call it Cj, that is special beginning at a ball containing xj (except for j = 0, it is
special from the leftmost ball), and has excess

εj ≥ p2 + p +
k∑

i=j+1

hi.

Now consider xj+1, and we will turn Cj into a cover Cj+1 of Tj+1. If xj+1 is

tree-covered by the Tj-cover in T̃ , we let Cj+1 = Cj. If xj+1 is left-bad, we do an
`-shift for ` ≤ hj+1 (using the Left Shift Lemma) to get Cj+1. If xj+1 is right-bad
we do an `-shift for ` ≤ 2hj+1 (using the Right Shift Lemma) to get Cj+1. The
next paragraph justifies the application of either Shift Lemma. Observe that Cj+1 is
special beginning at the leftmost ball containing xj+1, and in the worst case we get
the required inductive conclusion:

εj+1 ≥ εj + hj+1 − 2hj+1 ≥ p2 + p +
k∑

i=j+2

hi.
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We now justify our applications of the shift lemmas. We use the fact that the
excess is always at least p2 + p. The Left Shift Lemma requires the ball containing
the root (i.e. xj+1) to be non-tiny. Since the tiny balls occupy p2 vertices, the excess
being at least p2 is sufficient to keep any root safely to the left of any tiny ball. The
Right Shift Lemma (applied to a right-bad root) makes the stronger requirement
that ball right of the ball containing the root is non-tiny. In this case, the root is
right-bad in some ball B, so it is at most distance p − 1 from the right endpoint of
B. The ball right of B must be non-tiny, otherwise there would be at most p2 +p−1
vertices right of the root, which is insufficient to account for our excess of p2 + p.

In the last proposition we see that one of the key points is that the tiny balls
remain on the right of the spine, not interacting with the roots. We do this by
keeping the excess up to at least p2 + p. As a bigger point, we can see Remark 4.1
and Proposition 4.3 highlighting two ways the BNC becomes straightforward. Re-
mark 4.1 points out that if there are enough non-spine vertices, the BNC is easy.
Proposition 4.3 points out that if the subtrees at the roots are sufficiently dense,
then the BNC follows.

Section 5 considers the harder case where we do not have enough non-spine ver-
tices, and the subtrees are sparse. Given the complication caused by the tiny balls,
it is tempting to dispense with them, and just add one single large ball. However,
then our main result would not prove the BNC, since the tiny balls are sometimes
required in order to start the process off with a cover of the spine of T̃ .

5 The main result: p-caterpillars

In this section, we prove the burning number conjecture holds for all p-caterpillars
with a sufficient number of vertices. We begin with a technical lemma and a rough
overview of the proof of Theorem 1.2, before proceeding with the actual proof of
Theorem 1.2.

At various places in this section we will refer to the left or right half of a path,
and say that some balls are entirely contained in one of the halves — by this we mean
that all of the vertices in such a ball are contained in that half (not just its center
or some of its vertices). In the next technical lemma we lower bound the number of
balls in the right half of a path.

Lemma 5.1. For positive integers z and p, if n > 16z2p2 and n is a perfect square,
then any special cover of an n vertex path has at least zp non-tiny balls entirely
contained in the bn/2c rightmost vertices.

Proof. Let N =
√
n ≥ 4zp + 1. Since the cover is non-overlapping and the largest

ball has radius N − 1, the number of vertices covered by the largest zp balls is

N−1∑
i=N−zp

(2i + 1) = N2 − (N − zp)2 = 2zpN − z2p2.
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There are bn/2c − p2 = bN2/2c − p2 vertices among the rightmost bn/2c vertices of
the path that must be covered by non-tiny balls. Thus, to guarantee at least zp non-
tiny balls in the right half of the path, it suffices to show bN2/2c−p2 ≥ 2zpN−z2p2,
which follows from N(N − 4zp) + 2p2(z2 − 1) − 1 ≥ 0 (the “−1” arises in the case
where n is odd). The inequality holds because z ≥ 1 and N ≥ 4zp + 1.

We now describe the rough approach to the proof of Theorem 1.2. The Jump
Lemma is initially applied to cover enough roots on the left side of the path T0

so that the excess is sufficiently large. Then, if there are few roots (Case 1), we
repeatedly apply the shift lemmas to cover the rest of the roots. If there are many
roots (Case 2), then we carry out a process which successively tree-covers the roots,
from left to right. If a root is left-bad, we can apply the Left Shift Lemma, and this
action does not decrease the excess. If a root is right-bad, simply applying the Right
Shift lemma could reduce the excess, so instead we execute “p jumps” (i.e. apply the
Jump Lemma with z = p) and then one shift. At the end, the excess is sufficiently
large to ensure we can shift to tree cover the final few roots. We now formally prove
Theorem 1.2.

Theorem 1.2. The BNC holds for any p-caterpillar on at least 16(4p3+2p2+4p)2p2

vertices.

Proof. We assume p > 1 as it is already known [10], [12] that the BNC holds for
caterpillars (i.e. 1-caterpillars). Let T be a p-caterpillar on n ≥ 16(4p3 +2p2 +4p)2p2

vertices. By Observation 4.2, we can assume n is a perfect square. We have chosen
n to satisfy two key inequalities which we call Inequality 1 and Inequality 2.

1. n ≥ 16(4p3 + 2p2 + 4p)2p2

2.
n− 2(4p3 + 2p2 + 4p)

4(4p3 + 2p2 + 4p)
≥
√
n + p2

Inequality 1 holds by assumption. To see why Inequality 2 holds, let x = 2(4p3 +
2p2 + 4p) and observe that Inequality 2 can be expressed as

n− x

2x
≥
√
n + p2 ⇐⇒

√
n(
√
n− 2x) ≥ (2p2 + 1)x.

We are given that n ≥ 4x2p2, so
√
n ≥ 2xp, so since p > 1 we have:

√
n(
√
n− 2x) ≥ 2xp(2xp− 2x) = 4x2p(p− 1)

≥ 4x2p = (32p4 + 16p3 + 32p2)x ≥ (2p2 + 1)x.

Therefore Inequality 2 holds.

Suppose T has r roots and let 〈〈T0, . . . , Tr〉〉 be a cocoon of T (recall Defini-

tion 3.1). Let C0 be a special T0-cover in T̃ which covers the entire spine of T̃ , where
the tiny ball region is at the right (recall Definition 3.2 and Definition 3.3). We pro-
ceed by cases based on r. In both cases we describe a process which begins with a
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number of jumps and ends with a number of shifts. It will be essential that we never
shift at a tiny ball (required by the shift lemmas, since the tiny balls cannot always
tree-cover a root). At the end of each case, we show that the excess is sufficient to
avoid the tiny balls.

Case 1: T has r < 4p3 + 2p2 + 4p roots.

We can assume there is some b < r so that x1, . . . , xb are among the leftmost dn/2e
vertices on the spine of T̃ and

∑b
i=1 hi ≥

∑r
i=b+1 hi, i.e. think of the first half as

“heavier” (if the second half is heavier, we can just reverse the meaning of left and

right in T ). Let C0 be a special T0-cover in T̃ which covers the entire spine of T̃ , where
the tiny ball region is at the right. Using Inequality 1 with z = b < 4p3 + 2p2 + 4p,
we apply Lemma 5.1 in order to conclude that there are at least pb non-tiny balls
entirely among the rightmost bn/2c vertices of the spine of T̃ . Thus, we can apply
the Jump Lemma (with z = b and j = 0) to the first b roots of T , to conclude

there is a rearrangement of the balls that results in a Tb-cover in T̃ , called Cb, with
excess εb ≥

∑b
i=1 hi. Furthermore, the Jump Lemma ensures Cb is special from the

ball directly right of the ball containing xb. At this point, the idea is to repeatedly
shift in order to tree-cover the rest of the roots. However we have to take some care
because if there are roots close to the right end of the spine, they would be among
the tiny balls, where the shift lemmas are invalid; we will get around this by moving
all the small balls to a region sparse in roots.

The right half has fewer than r roots that break up the right half of the spine into
root-free intervals (i.e. maximal sets of consecutive non-root spine vertices). Since
we have at least n

2
− r = n−2r

2
non-roots among these, we must have some root-free

interval of size at least

I =
n−2r
2

r
=

n− 2r

2r
≥ 2
√
n + 2p2.

The last inequality holds by Inequality 2 using r ≤ 4p3 + 2p2 + 4p.

We break up this interval into its first half of dI/2e vertices and second half of
bI/2c vertices. If there is a ball that contains vertices from both halves, call it B.
Even if B were the largest ball, it occupies at most

√
n vertices in the second half.

Let v be the vertex immediately right of B, or simply the leftmost vertex of the
second half if there is no B. In either case, v is the leftmost vertex in some ball in
the cover. Move all the tiny balls to start at v and shift the balls at v or right, to
the right. Since the tiny balls only cover p2 vertices, and bI/2c ≥

√
n + p2, we can

fit all the tiny balls into the right half of this interval.

In the current situation we have covered roots x1, . . . , xb. Suppose xb is in ball
B and R is the ball immediately right of B. The cover is special from ball R. We
will now carry out shifting in order to tree-cover the roots in ball B (we will repeat a
similar process at two later points in this proof, referring to this process as clearing
the roots). First, for any roots that are left bad in B, by the Weak Left Shift
Lemma 3.6, we can shift at B so that none of these are left bad in B; this will not
decrease the excess. If there are now no left-bad or right-bad vertices in B, then the
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cover is special starting at R as desired. Second, if any of roots are right-bad in B
then we shift at R till R contains them all, and none of these roots remain left-bad
in R (this is possible since all these roots are within distance p of the right endpoint
of B). Such shifting does not decrease the excess, so the worst case is actually if the
only root in B is xb+1 and it is right-bad in B. In this case, we apply the Right Shift
Lemma to xb+1; that is, we do an `-shift for some ` ≤ 2hb+1. In this worst case, this
results in a Tb+1-cover in T̃ , called Cb+1, with excess εb+1 ≥ εb − hp+1 and which is
special starting at the ball containing xb+1.

We next repeatedly apply the Left Shift Lemma or Right Shift Lemma, doing
a shift for each of the roots in the right half. This results in a Tr-cover in T̃ with
excess:

εr ≥ εb −
r∑

i=b+1

hi ≥
b∑

i=1

hi −
r∑

i=b+1

hi ≥ 0.

In order for the prior shifting to work, it is essential that we never shifted at a tiny
ball. Each shift is at most a 2p-shift, so in total we shift at most (4p3 +2p2 +4p)2p ≤√
n, where the last inequality follows from Inequality 1. Since any tiny ball is at

least
√
n to the right of any root, we never in fact shift at a tiny ball.

Case 2: T has r ≥ 4p3 + 2p2 + 4p roots.

In order to simplify some discussion, let q = 2p3 + p2 + 2p. Since the spine of T̃ is
a path on n vertices, without loss of generality, we can assume there are dr/2e ≥ q

roots among the first dn/2e vertices of the spine of T̃ , (if the first half has fewer roots
than the second half, just reverse the meaning of left and right). Let C0 be a special

T0-cover in T̃ which covers the entire spine of T̃ , where the tiny ball region is at the
right. During the initial phase, we will apply the Jump Lemma to the first q roots
x1, . . . , xq, and the Right Shift Lemma to xq+1. Then we will proceed by a process
of combining jumps and shifts for the roots until we get low on balls, at which point
we will shift everything remaining; we now give the details.

We begin the initial phase. We apply Lemma 5.1 with z = q (using above
Inequality 1) to conclude that we have at least qp non-tiny balls entirely in the

rightmost bn/2c vertices of the spine of T̃ . Since we have at least qp non-tiny balls
to the right of the ball containing xq, we can apply the Jump Lemma with z = q and
j = 0. Thus, there is a rearrangement of the balls so that the result is a Tq-cover

in T̃ , called Cq, with excess εq ≥ q (since in the worst case we start with excess
0, and the p jumps happen on roots whose trees are simply single edges, i.e. the
ni = hi = 1).

Suppose xq is now in ball B and R is the ball directly right of B; the Jump Lemma
ensures Cq is special from R. We want to start the inductive process at R, but first
need to deal with other roots that might be in B (i.e. from among xq+1, xq+2 . . .). We
deal with these as we did above when we “cleared the roots.” Like above we consider
the worst case where the next root xq+1 is the only root we cover, and requires the
Right Shift Lemma. So we do an `-shift for some ` ≤ 2p. This results in a Tq+1-cover

in T̃ , called Cq+1, with excess εq+1 ≥ εq − p ≥ q − p and which is special starting at
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the ball containing xq+1.

The initial phase is now complete. The key point is that the excess is large
enough, so that at the end, when we do multiple shifts, the tiny balls will not be
involved in the shifts (details below). We start the inductive process at j = q + 1

(i.e. assuming the worst case start). Suppose we have a Tj-cover in T̃ , called Cj, with
excess at least q − p, which is special starting at the ball containing xj. We have
cases.

If xj+1 is left-bad in its ball then we apply the Left Shift Lemma. That is, we do an

`-shift for ` ≤ hj+1 to obtain a Tj+1-cover Cj+1 in T̃ with excess εj+1 ≥ εj ≥ q−p. By

the Left Shift Lemma, the Tj+1-cover in T̃ is special, starting at the ball containing
xj+1. In the easy case that xj+1 is not bad (neither left nor right), just let Cj+1 = Cj,
so that it is a Tj+1-cover in T̃ with excess εj+1 ≥ εj ≥ q − p.

If xj+1 is right-bad in ball B then we apply the Jump Lemma (with z = p),
followed by the Right Shift Lemma. We use z = p because in the worst case, the
next p roots are roots of single edges. To apply the Jump Lemma, there must be at
least zp = p2 balls to the right of xj+p; for now, we assume we have enough balls.

Applying the Jump Lemma results in a Tj+p-cover in T̃ where xj+p is now in ball

B∗. Note that the Tj+p-cover in T̃ has excess εj+p = εj + p ≥ q − p + p = q and
is special starting at the ball directly to the right of the ball B∗ containing xj+p.
At this point we may have a number of roots in B∗. We deal with these as we did
above when we “cleared the roots.” Like above we consider the worst case where the
next root xj+p+1 is the only one to deal with, and requires the Right Shift Lemma.
Observe that xj+p+1 could be right-bad in B∗ or a ball further to the right; or could
be left-bad in a ball to the right of B∗. We apply the appropriate shift lemma
in order to do an `-shift for ` ≤ 2p resulting in a Tj+p+1-cover in T̃ with excess

εj+p+1 ≥ εj+p − p ≥ q − p. By the shift lemmas, the Tj+p+1-cover in T̃ is special,
starting at the ball containing xj+p+1.

Now consider the case above when the root is right-bad, but we have fewer than
p2 balls to the right. That is, for some j, we have a Tj-cover in T̃ , with excess
εj ≥ q − p which is special starting at the ball containing xj. Furthermore, suppose
the number of (non-tiny) balls to the right of the B (the ball containing xj+1) is
fewer than p2. We can use 2p-shifts to cover the vertices that are right or left-bad in
each remaining ball (including B, these right-bad vertices are in at most p2 balls) in
order to tree-cover all remaining roots, leaving excess at least

q − p− 2p(p2) = 2p3 + p2 + 2p− p− 2p3 = p2 + p.

This excess guarantees that in our shifting we never shift at a tiny ball (which would
be problematic). When we shift we look at the ball the current root is in, or consider
the ball immediately to its right. The tiny balls occupy p2 vertices, so they are all
right of any current root. The excess of p2 +p (i.e. with an extra p) also ensures that
the ball immediately to the right of any current root is not tiny.

Although Theorem 1.2 proves that the BNC holds for sufficiently large p-caterpillars,
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we expect that our bound on n could be significantly improved. Theorem 1.2 proves
there is a cover for any sufficiently large p-caterpillar, which is overkill for proving
the BNC. We also note that in many cases, the number of balls required for the
Jump Lemma is excessive.

Question 5.2. Can the requirement on the number of vertices of a p-caterpillar from
Theorem 1.2 be reduced?

The BNC holds for 1-caterpillars and 2-caterpillars with no restrictions on n. We
conjecture that the shift and jump operations could be used to prove the BNC holds
for p-caterpillars for other small values of p, such as p = 3 or p = 4.

Question 5.3. Can our proof method be modified in order to prove the full BNC for
p-caterpillars, for some small values of p?
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