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Abstract

The r-neighbor bootstrap percolation process is a process defined on a
graph which begins with an initial set of infected vertices. In each sub-
sequent round, an uninfected vertex becomes infected if it is adjacent to
at least r previously infected vertices. If, starting with A as an initially
infected set of vertices, every vertex of the graph eventually becomes in-
fected, then we say that A percolates. The set of infected vertices at
the end of the percolation process (whether or not all of V (G) becomes
infected) is called the closure of A and is denoted 〈A〉. In this article,
we investigate 2-neighbor percolation in 2-connected, diameter 2 graphs.
This process is equivalent to P3-convexity in graphs. We begin with
some sufficient conditions on a special class of graphs in which every pair
of vertices percolates. We then present some necessary conditions on a
maximal closure when |A| ≥ 3. We determine the minimum cardinalities
for 2-percolating sets in three infinite families of graphs and end with a
discussion on strongly regular graphs.
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1 Introduction

The r-neighbor bootstrap percolation process is a process defined on a graph, G.
The process begins with an initial set of infected vertices A0 ⊆ V (G). In each
subsequent round, an uninfected vertex, v, becomes infected if v is adjacent to at
least r previously infected vertices. Once infected, vertices remain infected. We use
At to denote the set of all infected vertices as of round t. Symbolically,

At = At−1 ∪ {v ∈ V (G) : |N(v) ∩ At−1| ≥ r}.

The parameter r is called the percolation threshold. If G is a finite graph, then
after a finite number of rounds, either all vertices ofG become infected or the infection
stops at some proper subset of V (G). The set of infected vertices after the percolation
process finishes is called the closure of A0, denoted 〈A0〉. If 〈A0〉 = V (G), then we
say that A0 is contagious or A0 percolates.

Bootstrap percolation was introduced by Chalupa et al. [20]. One model that has
received much attention is when the vertices of A0 are selected randomly; each vertex
is selected independently and every vertex of G has probability p of being initially
selected. After the initial step, the infection proceeds deterministically. This model
has been studied extensively, for example in [2, 3, 5, 6, 7, 39].

Another area of study is extremal problems. The minimum size of a percolating
set in a graph G with percolation threshold r is called the r-percolation number of
G and denoted m(G, r). When |V (G)| is at least r, m(G, r) ≥ r (if m(G, r) was less
than r, no additional vertices could become infected).

A natural problem is determining the r-percolation number of particular graph
classes. The d-dimensional lattice on nd vertices, denoted [n]d, has been studied in
[4, 6, 34, 46, 47].

Minimum 3-percolating sets in grids have been investigated in [9, 26, 36, 49].
Dreyer and Roberts determined the value of m(G, 4) for the grid and toroidal grid
graphs [25]. Minimum percolation sets have also been investigated for trees in [8, 48].
Bidgoli et al. studied minimum percolating sets of Hamming graphs and line graphs
of both complete and complete bipartite graphs [10].

Percolation in graph products has been discussed in [12, 13, 22]. Bushaw et al. [15]
studied graphs for which the 2-percolation number is equal to 2, calling such graphs
2-bootstrap good or 2-BG for short. The 2-percolation number is also referred to as
the P3 hull number and has been studied in this context in [18, 31, 37, 43].

Cappelle et al. [18] studied 2-percolation in diameter 2 graphs. This is a natural
area of investigation because when r = 1, any vertex in a connected graph percolates,
and when the diameter of a graph is 1, the graph is complete and any set of r vertices
is an r-percolating set. Hence, r = 2 and diameter 2 are the smallest nontrivial
parameters for percolation threshold and diameter. Cappelle et al. proved that if G
is diameter 2 and G contains a cut vertex, then that cut vertex, v, is the unique cut
vertex of G and m(G, 2) = cc(G), where cc(G) is the number of components of G−v.
The proof of this fact is straightforward. However, the case for 2-connected, diameter
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2 graphs is more difficult. Cappelle et al. proved that for 2-connected, diameter 2
graphs the 2-percolation number is at most dlog(∆(G) + 1)e+ 1, where ∆(G) is the
maximum degree of G. In this article, we continue this line of investigation, focusing
on 2-percolation in diameter 2, 2-connected graphs.

We start with some results on a special class of diameter 2, 2-connected graphs,
the strongly 2-BG graphs. These are the graphs for which every pair of vertices
percolates. Next, we prove a result on some properties of maximal closures of an
initial set of infected vertices, A, where |A| ≥ 3. After this, we continue Cappelle
et al.’s investigation into 2-percolation in strongly regular graphs. In particular, we
determine the 2-percolation number of one infinite family of strongly regular graphs
and two other infinite families which are built up from the first family of graphs. We
conclude with a discussion of our results and some further lines of research.

Before presenting our results, we begin with some definitions. The diameter of
a graph G, denoted diam(G), is the greatest distance between a pair of vertices of
G. The open neighborhood of a vertex v is the set of vertices adjacent to v, denoted
by N(v), and the closed neighborhood of v, the set vertices adjacent to v along
with v itself, denoted by N [v]. We will denote the mutual open neighborhood of u
and v by N(u, v) and the mutual closed neighborhood of u and v by N [u, v]. The
second neighborhood of v is the vertices at distance 2 from v, denoted N2(v). The ith

neighborhood of v is the vertices at distance i from v and denoted Ni(v).

The connectivity of G, denoted κ(G), is the minimum number of vertices needed
to remove from G to disconnect G. If κ(G) > k − 1, then G is k-connected. A
dominating set of G is a subset, D, of V (G) such that every vertex of G is either in
D or adjacent to a member of D. If a graph G contains a dominating set consisting
of a single vertex, then we say such a vertex is a dominating vertex.

An r-forbidden subgraph of G is a subgraph H of G such that every vertex of H
is joined to G − H by less than r edges. If A is a percolating set of G, then each
r-forbidden subgraph, H, of G must contain at least one vertex of A (see Lemma
3.3). If not, no vertex of H could become infected from G−H and A would not be
a percolating set. Let F be the set of r-forbidden subgraphs of G. The complement
of each r-forbidden subgraph is the closure of some set of vertices of G. Let C be the
set of closures of G when r = 2.

When r = 2, the set of closures of G, C, is identical to the collection of convex
sets in the P3 convexity. A graph convexity is a collection, S, of subsets of V (G) such
that both V (G) and ∅ are elements of S and S is closed under intersection. The sets
in S are the convex sets of G. The P3-interval of a set T ⊆ V (G), denoted I[T ], is T
along with all vertices which have at least two neighbors in T . When I[T ] = T , T is
P3-convex. If I[T ] 6= T , we can take the interval set of I[T ], denoted I[I[T ]] or I2[T ],
and we can repeat this process until Ik[T ] is convex (the process must terminate in a
P3-convex set because V (G) is P3-convex). The P3-convex sets are all the sets formed
in this manner. The P3-convex hull of T is the smallest P3-convex set containing T ,
denoted H(T ). When H(T ) = V (G), we say that T is a P3 hull set of G. The P3

hull number of G, denoted hP3(G), is the cardinality of a minimum hull set of G.



R. IBRAHIM ET AL. /AUSTRALAS. J. COMBIN. 93 (1) (2025), 60–89 63

The P3 hull number is equivalent to the 2-pecolation number. Although we do not
use the framework of P3 convexity in this article, we mention the connection because
some papers have investigated the 2-percolation number from the perspective of P3

convexity, for example [14, 18, 31].

Although the closure of a set A under r percolation is a set of vertices, we shall
occasionally refer to G[〈A〉], the subgraph induced by the closure of A, as the closure
of A.

2 Strongly 2-BG Graphs

An r-BG graph is a graph for which m(G, r) = r. We define a strongly r-BG graph
as a graph in which every set of r vertices percolates. In this section, we investigate
r-BG and strongly r-BG graphs with a particular focus on the case when r = 2.

The following three conditions are necessary for a graph of order at least 3 to
be strongly 2-BG: G must be diameter 2, every edge of G must be contained in at
least one triangle, and G must be 2-connected. If the diameter of G exceeds 2, then
we could select a pair of vertices at distance at least 3, which cannot percolate. If
there is an edge of G which is not contained in a triangle, then we could infect the
vertices incident with that edge and the infection would stop. Lastly, if G contained
a cut vertex, one could infect the cut vertex v and a vertex in some component, C,
of G − v. It is possible that all of V (C) might become infected, but no vertex in
G− V (C) would be infected.

These conditions are not sufficient, however: all three hold for the n×m rook’s
graph (provided that both n,m ≥ 3), yet while every pair of non-adjacent vertices
percolates in these graphs, no pair of adjacent vertices percolates. The n×m rook’s
graph is the graph whose vertex set is a rectangular n×m chessboard and where two
squares are adjacent if a rook on one square can attack a rook on another square.
The rook’s graph is also a Cartesian product. The Cartesian product of graphs G
and H, denoted G�H, is the graph whose vertex set is V (G) × V (H) and where
the vertices (g1, h1), (g2, h2) are adjacent if g1 = g2 and h1 is adjacent to h2 (in H)
or h1 = h2 and g1 is adjacent to g2 (in G). The n×m rook’s graph is isomorphic to
Kn�Km.

We will begin our investigation by looking at three sufficient conditions from
[15] for a graph to be 2-BG. First, we describe the class of graphs these results are
concerned with. A block of a graph G is a maximal 2-connected subgraph of G. In
[15], it was shown that a graph with more than 2 blocks cannot be 2-BG. All graphs
on less than 3 vertices are trivially 2-BG and no disconnected graph on more than 2
vertices is 2-BG. Let G be the class of connected graphs on at least 3 vertices with
at most 2 blocks.

Each of the sufficient conditions concerns a particular class of graphs. The stan-
dard definition of a cograph is any graph which can be recursively built up from other
cographs by complementation and disjoint union and where the initial cograph is K1.
Cographs can additionally be characterized as the graphs which do not contain an
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induced P4. A graph is locally connected if the open neighborhood of every vertex
induces a connected graph. A graph is chordal if it does not contain any induced
cycles on more than 3 vertices.

We have the following theorems from [15]:

Theorem 2.1. If G ∈ G is a cograph, then G is 2-BG.

Theorem 2.2. If G ∈ G is locally connected, then G is 2-BG.

Theorem 2.3. If G ∈ G and G is chordal, then G is 2-BG.

Cographs in general are not strongly 2-BG, but in 2-connected cographs, every
pair of non-adjacent vertices percolates.

Theorem 2.4. If G is a cograph and G is 2-connected, then every pair of non-
adjacent vertices percolates.

Proof. The diameter of a P4-free graph is at most 2. This is because if x, y ∈ G and
d(x, y) ≥ 3, then a shortest x, y-path contains an induced P4. Clearly, every pair of
vertices percolates in complete graphs, so we may assume the diameter of G is 2.

Let u, v be a pair of non-adjacent vertices of a 2-connected graph. Our proof will
use the contrapositive. We will show that if 〈{u, v}〉 6= V (G), then G must contain
an induced P4. Let H = 〈{u, v}〉 and suppose H 6= V (G). Then, because G is
connected, there is some vertex, a, in H such that a has a neighbor, x, outside H.
We now have two cases

Case 1: a is distance 2 from some vertex, c, of H.

Any common neighbor, b, of a and c is adjacent to two vertices of H, so b must
also be contained in H. Since x can only be adjacent to one vertex inside of H, the
set of vertices {x, a, b, c} induces a P4.

Case 2: Only dominating vertices of H have neighbors outside H.

Since G is 2-connected, there must be more than one vertex with a neighbor
outside H. If there was only a single such vertex, then that vertex would be a cut
vertex of G, since its removal would separate H and G − H. Let a, b be two such
vertices and let x, y be their respective neighbors outside H (we know that x and y are
distinct because any vertex outside H can only be adjacent to a single vertex in H).
If x, y are not adjacent, then because a, b are dominating vertices, a, b are adjacent, so
{x, a, b, y} induces a P4. Since G has diameter 2 and our initial infected vertices u, v
were assumed to be non-adjacent, u and v must have at least one common neighbor.
Hence, |H| ≥ 3. Thus, there must exist some c ∈ H, such that c is adjacent to both
a and b. Since x, y 6∈ H and both x and y are already adjacent to a vertex of H,
neither x nor y is adjacent to c. In this case, either {x, y, b, c} or {y, x, a, c} induces
a P4.

These are all the possibilities, so u, v must percolate. A diagram of Case 1 is
shown on the left of Figure 1 and Case 2 is shown on the right.
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Case 1

H
a b c

x

Case 2

a b c

x y

Figure 1

Theorem 2.2 showed that not only are locally connected graphs 2-BG, but in fact,
any pair of adjacent vertices percolates in a locally connected graph.

From this we have the following corollary:

Corollary 2.5. If G is diameter 2 and locally connected, then G is strongly 2-BG.

Proof. Suppose G is locally connected, v is a vertex of G, and w0 ∈ N(v). Because
N(v) is connected, there is some w1 ∈ N(v) such that w1 is adjacent to w0. Since
w1 is adjacent to both v and w0, w1 becomes infected. If N(v) 6= {w0, w1}, then
there is some other w2 ∈ N(v) which is adjacent to w1. This vertex likewise becomes
infected. Eventually, all of N(v) will become infected. For any wi ∈ N(v), N(wi)
contains both wi and some other wj from N(v) (by the connectedness of N(v)). By
the same reasoning as with N(v), N(wi) eventually becomes infected. From this, we
can see that eventually all of N2(v) will become infected and by induction, Ni(v) will
eventually become infected for all i.

We have two choices for an initial pair of infected vertices: either u, v are adjacent
or u, v are non-adjacent. If u, v are adjacent, then by the above reasoning, u, v
percolate. If u, v are non-adjacent, then because G is diameter 2, u, v have at least
one common neighbor. Let w be a common neighbor of u and v. Either of u,w or
v, w are a pair of infected adjacent vertices, so the infection must percolate to all
of G.

If G is a 2-connected chordal graph, then G is locally connected. We have the
following lemma:

Lemma 2.6. Let G be a 2-connected graph. If G is chordal, then G is locally con-
nected.

Proof. We will use the contrapositive. Suppose G fails to be locally connected. This
implies that there is some v ∈ G such that G[N(v)], the graph induced by the open
neighborhood of v, contains at least two components, C1 and C2. Since G is 2-
connected N [v] 6= V (G) (otherwise, v would be a cut vertex). Since v is not a cut
vertex, there must some path from C1 to C2 which does not contain v. Let P be a
shortest such path. Since there is no edge from C1 to C2, there must be some vertex
of u ∈ C1 such that every vertex on P between u and the first vertex of C2 on P
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must be from G−N [v]. Let w ∈ C2 be the first vertex of C2 on P and let Q be the
section of P between u and w.

Since P is a shortest C1, C2 path, Q cannot contain any chords. Hence, u, v, w,Q
induces a cycle on at least 4 vertices and G fails to be chordal.

From this and Corollary 2.5 we have the following result:

Corollary 2.7. If G is a 2-connected, diameter 2 chordal graph, then G is strongly
2-BG.

Proof. Since G is 2-connected, Lemma 2.6 implies that G is locally connected. G is
diameter 2, so Corollary 2.5 implies that G is strongly 2-BG.

Although all 2-connected chordal graphs are locally connected, the converse is
not true. The wheel graphs, denoted Wn, consist of an outer cycle on n− 1 vertices
and a central vertex which is adjacent to every vertex of the outer cycle. The wheel
graphs are 2-connected, diameter 2, and locally connected, but fail to be chordal
when n ≥ 5 because the outer vertices induce a cycle on more than 3 vertices. The
wheel graphs are also strongly 2-BG. If we infect the central vertex and a vertex on
the outer cycle, then these two infect the two neighbors of the outer vertex. The
infection then spreads across the outer cycle. If we infect two outer vertices, these
infect the central vertex and then the infection continues from there. W5 is shown
on the right in Figure 2.

It is also possible for a graph to fail to be locally connected, but to be strongly
2-BG. The graph on the left of Figure 2 is such a graph.

2K2 ∨ 2K1 W5

Figure 2: 2K2 ∨ 2K1 is strongly 2-BG but not locally connected, while W5 is strongly
2-BG but not chordal

The join of two graphs G and H, denoted G ∨ H, is the graph formed by the
disjoint union of G and H along with an edge between every vertex of G and every
vertex of H. The graph on the left in Figure 2 is a join and the wheel graphs can also
be described as joins: Wn = Cn−1 ∨K1. Using joins, it is possible to show that there
can be no forbidden induced subgraph characterization of strongly 2-BG graphs and,
indeed for strongly r-BG graphs.
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Theorem 2.8. Let H be a graph. There exists a strongly r-BG graph containing H
as an induced subgraph.

Proof. Form the graph G = H ∨ Kr. We show that G is strongly r-BG. Infect k
vertices in H and r − k vertices in the Kr. If k = 0, then the Kr infects the rest of
G in the next round. If k 6= 0, then the vertices in H together with the vertices in
the Kr infect the remaining vertices of the Kr and then the vertices of the Kr infect
the rest of the graph.

Since all strongly r-BG graphs are also r-BG, note that this implies that there can
be no forbidden induced subgraph characterization of r-BG graphs. Alternatively,
we can show this directly by forming the graph H ∨ rK1, where the r copies of K1

form a percolating set of size r.

3 Maximal k-closures

Lemma 3.1 ([17, Lemma 2.2], [18, Lemma 4]). Let G be a 2-connected graph with
diameter 2 and A ⊆ V (G). If 〈A〉 is a dominating set, then m(G, 2) ≤ |A|+ 1.

A set of cardinality k is a k-set. If there is a k-set of vertices which percolates,
then m(G, 2) ≤ k. However, if no k-set percolates the graph, then it may be useful
to define a notion of maximal in relation to closures. We may gain some insight into
the structure of G through the closure of k-sets of vertices which are not properly
contained in the closure of another k-set.

The closure of a k-set A ⊆ G is a maximal k-closure if there is no other k-set
A′ ⊆ V (G) such that 〈A〉 ⊂ 〈A′〉.

Maximal k-closures (or maximal closure if k is clear from the context) are a
natural object to define and study. The following Lemma 3.4 allows us to narrow
down the structure of the subgraphs induced by maximal k-closures, along with their
interaction with the rest of the graph. We begin with an observation.

Observation 3.2. If G has diameter 2, then G[〈A〉] has diameter at most 2 for any
k-set A ⊆ V (G) with k ≥ 2.

If x, y ∈ 〈A〉 are not adjacent, then because G is diameter 2, x and y must have
a common neighbor z. Since z is adjacent to both x and y, it must be that z ∈ 〈A〉.
Thus every pair of vertices in 〈A〉 are adjacent or share a common neighbor.

Lemma 3.3 ([36]). Let A ⊆ V (G) such that 〈A〉 = V (G). If H is an r-forbidden
subgraph of G, then V (H) must contain at least one vertex of A.

A set I ⊆ V (G) is independent if no two vertices in I are adjacent. Let α(G)
denote the cardinality of the largest independent set in G.

Lemma 3.4. Let G be a 2-connected graph with diameter 2, let A ⊆ V (G) be a
maximal k-closure with 〈A〉 6= V (G) and k ≥ 3, and let H = G[〈A〉]. Then
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(i) H is 2-connected.

(ii) Every vertex in V (H) has at least one neighbor in G−H.

(iii) A is an independent set.

(iv) Every vertex in V (H)− A has at most two neighbors in A.

v

ℓ1
B3

B2

B1

G−H
x

X

H

Z ′ Z

Figure 3: Cases in the proof of Lemma 3.4. Left: Case (i), blocks are highlighted without
their common cut-vertex v. Right: Case (ii).

Proof. (i) Suppose toward a contradiction that H is not 2-connected. By Observation
3.2, the diameter of H is 2. Thus H must have a unique cut-vertex v with at least two
blocks mutually intersecting at v, and v must be dominating [50, Exercise 2.1.44].
Since each block minus v induces a 2-forbidden subgraph of H, by Lemma 3.3 each
block contains at least one vertex from A. Since there are at least two blocks and v
dominates H, the vertices from A will also infect v. Thus, since 〈A〉 is a maximal
k-closure, v 6∈ A. As v is dominating, each block along with v induces a graph which
is locally connected with diameter 2 and thus strongly 2-BG by Corollary 2.5. That
is, each block only requires exactly one vertex ` ∈ A to become completely infected
from ` and v. In other words, if a block contained more than one vertex from A,
then 〈A〉 would not be not a maximal k-closure, a contradiction. Thus each block
contains exactly one vertex of A, and so there are k blocks. Let V (H) = {v}∪⋃k

i=1Bi

where Bi is the set of vertices in the ith block not including v (see Figure 3.) Let
A = {`1, `2, . . . , `k} with `i ∈ Bi.

We claim that 〈A〉 is not a maximal k-closure. Indeed, if every vertex of H−v has
no neighbor in G−H, then v is a cut-vertex of G, a contradiction. So without loss
of generality, we let `1 ∈ B1 be a vertex with a neighbor x in G −H. Since k ≥ 3,
`2, . . . , `k would infect v, and in turn v and x would then infect `1. This implies
that 〈{x, `2, . . . , `k}〉 contains A (and thus 〈A〉). This shows 〈A〉 is not a maximal
k-closure, a contradiction. So, H must be 2-connected. If k = 2, this argument does
not hold, as v would not become infected.

(ii) Let X ⊆ V (G−H) be the vertices with a neighbor in H. Note since G−H
is 2-forbidden, vertices in X have exactly one neighbor in H. Let V (H) = Z ∪ Z ′
such that vertices in Z have no neighbor in G−H, and vertices in Z ′ have at least
one neighbor in G−H.



R. IBRAHIM ET AL. /AUSTRALAS. J. COMBIN. 93 (1) (2025), 60–89 69

Since G has diameter 2, each z ∈ Z has a common neighbor with every vertex
in X, and since each z ∈ Z has no neighbors in G−H, the common neighbor must
be in Z ′. Notice that for z′, z′′ ∈ Z ′, we have NX(z′) ∩NX(z′′) = ∅ (otherwise there
is x ∈ X where x has two neighbors in Z ′.) So, for any z ∈ Z, it must be that z
dominates Z ′.

If |Z| ≥ 2, then we claim any two vertices percolate H and thus 〈A〉 is not
a maximal k-closure. If |Z ′| = 1 then the lone vertex in Z ′ is a cut-vertex of G
(disconnecting Z and G − Z). So |Z ′| ≥ 2. So infecting any two vertices of Z will
infect all of Z ′, and in turn the infected vertices of Z ′ will infect any uninfected
vertices remaining in Z. This contradicts the fact that 〈A〉 is a maximal k-closure,
as |A| ≥ 3.

If Z = {z} then by (i) notice H − z is connected. Since z dominates H − z and
H is 2-connected, H must be locally connected. By Observation 3.2, the diameter of
H is 2. Thus by Corollary 2.5 〈{x, z}〉 contains H for any x ∈ H−z, a contradiction
to the assumption that 〈A〉 is a maximal k-closure.

(iii) Suppose two vertices x, y ∈ A are adjacent. By (ii), every vertex in A has a
neighbor in G−H. Let z be the neighbor of x in G−H and let A′ = {z} ∪A \ {x}.
Notice that infecting A′ results in x becoming infected from z and y. Then 〈A′〉
contains A and thus 〈A〉 is not a maximal k-closure, a contradiction.

(iv) Suppose there is a vertex x ∈ V (H)− A with at least three neighbors in A.
Let a ∈ A be a neighbor of x. By (ii) a has a neighbor z ∈ G − H, and similar to
the proof of (iii), we let A′ = {z} ∪ A \ {a}. Then x becomes infected by A \ {a},
and a becomes infected by x and z. That is, 〈A′〉 contains 〈A〉, a contradiction.

Theorem 3.5 (Cappelle et al. [18]). Let G be 2-connected and diameter 2. If G is
C6-free then m(G, 2) ≤ 4

Using the idea of maximal k-closures, we can improve the upper bound here by
one.

Theorem 3.6. Let G be 2-connected and diameter 2. If G is C6-free then m(G, 2)≤3.

Proof. First assume α(G) ≤ 2. Any maximal independent set is a dominating set,
so by Lemma 3.1 we have m(G, 2) ≤ α(G) + 1 ≤ 3. So we may assume α(G) ≥ 3.

Let A = {v1, v2, v3} be a 3-set of vertices in G such that 〈A〉 is a maximal 3-
closure. If 〈A〉 = V (G) then we are done. Otherwise, 〈A〉 6= V (G) and by Lemma
3.4 we may assume A is an independent set of size three. Since G has diameter 2, each
pair of vertices vi, vj ∈ A must have a common neighbor vij ∈ V (G)−A (e.g. v1 and
v2 have common neighbor v12.) In particular vij ∈ 〈A〉 − A. Let A′ = {v12, v13, v23}.
By Lemma 3.4 (iv) since 〈A〉 is a maximal closure, there is no vertex in A′ adjacent
to all of A. This implies that the vertices of A′ are distinct; for any x, y ∈ A′ we have
x 6= y. Notice since 〈A〉 is a maximal closure and A ⊆ 〈A′〉, we have 〈A〉 = 〈A′〉.
This implies that 〈A′〉 is a maximal closure, and thus an independent set. But then
A ∪ A′ induces a copy of C6 in G, a contradiction.
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4 Strongly Regular Graphs

4.1 Background and definitions

Continuing our study of 2-percolation in diameter 2, 2-connected graphs, we now
investigate a special class of diameter 2 graphs, the strongly regular graphs. A
strongly regular graph, srg(n, k, λ, µ), is a k-regular graph of order n, where every
pair of adjacent vertices has λ common neighbors and every pair of non-adjacent
vertices has µ common neighbors. If G is a strongly regular graph with µ = 0, then
G must be a disjoint union of copies of Kλ+2. If G is such a graph, then clearly
m(G, 2) = 2t, where t is the number of copies of Kλ+2.

Since µ is the number of common neighbors between non-adjacent vertices, when
G is a strongy regular graph with µ 6= 0, every pair of non-adjacent vertices has at
least one common neighbor, hence G has diameter 2. We claim that when µ 6= 0,
strongly regular graphs are 2-connected. Suppose G is a diameter 2, k-regular graph
with a cut vertex, c. Let B be a block of G and suppose u is a vertex where u ∈ B,
but u 6= c. Since c must be a dominating vertex of G, deg(c) > |B| (because there is
at least one other block of G), but deg(u) ≤ |B|, contradicting the assumption that
G is k-regular.

Cappelle et al. studied bootstrap percolation in strongly regular graphs as part
of their investigation of 2-percolation in diameter 2, 2-connected graphs [18]. They
gave two bounds on the 2-percolation number of strongly regular graphs. When G
is a strongly regular graph with parameters (n, k, λ, µ), then m(G, 2) ≤ d k

λ+1
e + 1

and m(G, 2) ≤ dlogµ+1(kµ+ 1)e+ 1. Cappelle et al. also included a table of strongly
regular graphs comparing their bounds with the 2-percolation number of the graphs
found by computation.

We continue the investigation of special classes of diameter 2, 2-connected graphs
by determining the 2-percolation number of three infinite families of graphs. Before
introducing these families, we begin with some basic facts about strongly regular
graphs. For a reference, see [30].

The adjacency matrix of a diameter 2 graph has at least 3 eigenvalues and the
strongly regular graphs can be characterized as those diameter 2 graphs which have
exactly 3 eigenvalues. One of the eigenvalues is the degree, k, which always has
multiplicity 1, while the other two eigenvalues, θ1 and θ2, are dependent on λ, µ,
and k. When θ1 and θ2 have the same multiplicities, the resulting graph is called a
conference graph.

In particular, we note the following:

Lemma 4.1 ([30]). Conference graphs have parameters

(n, (n− 1)/2, (n− 5)/4, (n− 1)/4).

Our first infinite family of graphs is the conference graphs. We present some
context for our study of the 2-percolation number of these graphs. Let σ2(G) denote
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the minimum sum of degrees over all pairs of non-adjacent vertices of G. If G has
order n and σ2(G) ≥ n, then G satisfies Ore’s condition. Freund et al. proved the
following result in 2018:

Theorem 4.2 ([28]). If G is a graph of order n and σ2(G) ≥ n, then m(G, 2) = 2.

Dairyko et al. extended Theorem 4.2:

Theorem 4.3 ([23]). Suppose G is a graph of order n ≥ 2 such that G is not in
G0,G1,G2,G3, orX , where G0,G1,G2,G3 are infinite families of exceptional graphs and
X is a finite family of exceptional graphs. Then, σ2(G) ≥ n−2 implies m(G, 2) = 2.

Dairyko et al. noted the following corollary of their result:

Corollary 4.4 ([23]). C5 is the only graph with σ2(G) = n− 1 and m(G, 2) > 2.

From Lemma 4.1 all conference graphs have σ2(G) = n − 1, so Corollary 4.4
implies the following result:

Theorem 4.5 ([23]). If G is a conference graph, then m(G, 2) = 2 unless G = C5,
in which case m(G, 2) = 3.

In the next subsection, we will provide an alternative proof of Theorem 4.5, based
on a lemma concerning 2-percolation in strongly regular graphs.

Our second infinite family of graphs is built up from a particular class of confer-
ence graphs: the Paley graphs. Let q be a prime power congruent to 1 mod 4. The
vertices of the Paley graph of order q are the elements of the finite field of order q
and two vertices are adjacent if their difference is a quadratic residue. The Paley
graph of order q is denoted QR(q) (where QR stands for quadratic residue).

The complement of a graph, G, denoted G is the graph formed from deleting
the edges between pairs of adjacent vertices of G and adding edges between non-
adjacent vertices of G. A graph is self-complementary if G ∼= G. Paley graphs
are self-complementary. A complementary prism (introduced in [35]), is a graph
constructed by taking G and the complement of G and joining each vertex of G to
the corresponding vertex of G. The complementary prism of G is denoted GG. We
will determine the 2-percolation number of complementary prisms of Paley graphs:

Theorem 4.6. If G = QR(q)QR(q) and q is a prime power congruent to 1 (mod 4)
such that q 6= 5, 9 then m(G, 2) = 2. If q = 5, 9, then m(G, 2) = 3.

Our third family of graphs is built up from multiple complementary prisms of
Paley graphs. Before describing this graph class, we provide some further context.
Given a graph, G, with maximum degree ∆ and diameter d, the maximum number of
vertices of G is 1 + ∆

∑d
i=1(∆− 1)i−1. This expression is known as the Moore bound

and the graphs with order equal to the Moore bound are known as Moore graphs.
Hoffman and Singleton introduced Moore graphs and showed that Moore graphs of
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diameter 2 can have degrees 2,3,7, or 57 [38]. In addition, Hoffman and Singleton
showed that there is a unique Moore graph for degrees 3 and 7: the Petersen graph
and Hoffman-Singleton graph, respectively (the proof of the uniqueness of the Moore
graph of degree 2, the 5-cycle, is elementary). The existence of a Moore graph of
degree 57 is unknown and such a hypothetical graph is known as the missing Moore
graph. See [24] for a survey of properties of the missing Moore graph.

The Moore bound is related to two well-known problems in graph theory: the
cage problem and the degree diameter problem. A (k, g)-cage is a k-regular graph
of girth g with smallest possible order amongst all k-regular graphs of girth g. The
Moore bound provides a lower bound for the order of a cage, so Moore graphs are
also cages [21] (Chapter 12). The degree-diameter problem is to find the largest
possible order of a k-regular graph of diameter d. The following surveys provide
more information on these problems [27, 45].

McKay–Miller–Širáň graphs were introduced in the context of the degree diameter
problem as a class of regular, diameter 2 graphs with large order [44]. McKay–Miller–
Širáň graphs have order 2q2 where q is a prime power congruent to 3, 1 or 0 (mod
4). The original construction used voltage graphs, but we will describe a different
construction, due to Hafner [33], which illustrates how certain McKay–Miller–Širáň
graphs are built up from Paley graphs.

Before presenting this construction, we provide an example. The cycle on 5 ver-
tices is a Paley graph and the complementary prism of C5 is the Petersen graph. Fig-
ure 4 shows the Petersen graph. Robertson constructed the Hoffman-Singleton graph
using 5 pentagons and 5 pentagrams. Label 5 pentagons clockwise with {0, 1, 2, 3, 4}.
Label 5 more pentagons in the same way, but then take their complements, keeping
the same labeling. Label the 5 pentagrams F1, F2, F3, F4, F5 and the 5 pentagons
H1, H2, H3, H4, H5. Join each pentagon to each pentagram with a perfect matching
as follows: the vertex labeled i in Fj is adjacent to the vertex i+ jk (mod 5) in Hk

[21] (Chapter 12). Each pentagon-pentagram pair forms a Petersen graph, so the
Hoffman-Singleton graph can be viewed as being constructed from 25 copies of the
Petersen graph.

Hafner generalized this construction for the McKay–Miller–Širáň graphs. Let q
be a prime power and let Vq = Z2 × Fq × Fq, where Fq is the finite field of order q.
The bipartite graph Bq has Vq as its vertex set where (0, x, y) is adjacent to (1,m, c)
if and only if y = mx+ c [33].

A primitive element of a finite field is an element that generates the field multi-
plicatively. Let α be a primitive element of Fq. When q ≡ 1 mod 4, define

X = {1, α2, ..., αq−3} and X ′ = {α, α3, ..., αq−2}. From the construction of Bq, we
can think of the vertex set as being partitioned into two rows of q2 vertices where each
row has the same first coordinate. Each row in turn is split into q independent sets
of q vertices, where each set of q vertices has the same first and second coordinate.
Pick one row and within each set of q vertices, add each element of X to the last
coordinate of each vertex, adding a directed edge between each vertex and the vertex
corresponding to the sum. Suppress any directed or multiple directed edges. We then
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Figure 4: The Petersen graph

do the same thing with X ′ to each set of q vertices in the other row. This turns each
such set of q vertices into a Paley graph or its complement [33]. Hafner also defines
an X and X ′ for the cases when q ≡ 0, 3 mod 4, but we are only concerned with the
1 mod 4 case. The resulting graph consists of a row of q copies of QR(q) and then a
row of q copies of QR(q), where each QR(q) is connected with each complement of
QR(q) by a perfect matching. See Figure 5 for a diagram.

q

{

q

{

Figure 5

In Hafner’s notation, a McKay–Miller–Širáň graph of order 2q2 is denoted Hq.
The Hoffman-Singleton graph is H5. We determine the 2-percolation number of every
McKay–Miller–Širáň graph where q ≡ 1 mod 4, except for the Hoffman-Singleton
graph.

Theorem 4.7. If G is a McKay–Miller–Širáň of order 2q2 where q is a prime power
congruent to 1 (mod 4) and G is not the Hoffman-Singleton graph, then m(G, 2) = 3.

Cappelle et al. determined the 2-percolation number of the Hoffman-Singleton
graph by computation, while the only graph in their table whose 2-percolation num-
ber was not determined by computation is the Games graph, the unique strongly
regular graph with parameters (729,112,1,20) [11]. In the last subsection, we de-
termine the 2-percolation of the Hoffman-Singleton graph by hand and sketch how
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to use our methods to show that the 2-percolation number of the Games graph is
2. We also use percolation to provide an alternative proof of a known result on the
maximum number of induced Petersen graphs that can be contained in the missing
Moore graph.

4.2 The 2-percolation number of three infinite families of graphs

We begin this subsection with a lemma about percolation in strongly regular graphs.
Before presenting this lemma, we introduce some terminology from [29]: G is a (λ, µ)-
graph if every pair of adjacent vertices of G has λ neighbors in common and every
pair of non-adjacent vertices of G has µ neighbors in common. If G is not regular
and G is a (λ, µ)-graph, then we say G is an irregular (λ, µ)-graph. If a graph, G,
consists of k disjoint copies of H, then we may write G as kH.

Gera and Shen characterized irregular (λ, µ)-graphs:

Theorem 4.8 ([29],Theorem 1). If G is an irregular (λ, µ)-graph, then either µ = 0
and G is a collection of m disjoint copies of Kλ+2 and t disjoint copies of K1 (where
n = m(λ+ 2) + t), or µ = 1 and G = K1 ∨mKλ+1, where n = m(λ+ 1) + 1.

In the second case, G is a generalization of the friendship graph, where a central
vertex is adjacent to each vertex of m mutually disjoint copies of Kλ+1.

Lemma 4.9. If G is an srg(n, k, λ, µ) and A ⊆ V (G), then 〈A〉 under 2-percolation
is either Kλ+2, a strongly regular graph with the same λ and µ as G, or an irregular
(λ, µ)-graph.

Proof. Suppose that A is an initial set of infected vertices of a strongly regular graph
G and that 〈A〉 is the closure of A.

Since 〈A〉 is the closure of A, we know that for every pair of vertices u, v ∈ 〈A〉,
the common neighbors of u, v must be contained in 〈A〉.

We have two cases:

Case 1: 〈A〉 contains only of pairs of adjacent vertices, i.e., 〈A〉 is a complete
graph.

Pick any pair of vertices u, v ∈ 〈A〉. Since G is a strongly regular graph,
|N(u, v)| = λ. Also, 〈A〉 = N(u, v) ∪ {u, v}. Hence, 〈A〉 consists of λ + 2 vertices
and 〈A〉 ∼= Kλ+2.

Case 2: 〈A〉 contains pairs of both adjacent and non-adjacent vertices.

If u, v ∈ 〈A〉 are adjacent, then N(u, v) ∈ 〈A〉 and |N(u, v)| = λ . If u, v are non-
adjacent, then N(u, v) ∈ 〈A〉 and |N(u, v)| = µ . Either way, 〈A〉 is a (λ, µ)-graph.
So, 〈A〉 is either an irregular (λ, µ)-graph or a regular (λ, µ)-graph, i.e., a strongly
regular graph.

Corollary 4.10. If G is an srg(n, k, λ, µ) and A ⊆ V (G) with |A| ≥ 3 is such that
〈A〉 is a maximal k-closure, then 〈A〉 under 2-percolation is a strongly regular graph
with the same λ and µ as G.
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Proof. By Lemma 4.9, there are three possibilities for 〈A〉. By Lemma 3.4 (i) and
the fact that |A| ≥ 3, 〈A〉 is 2-connected, so 〈A〉 cannot be an irregular (λ, µ)-graph.
By Lemma 3.4 (iv), each vertex in 〈A〉 has at most two neighbors in A, so 〈A〉 cannot
be a complete graph. Thus, the only remaining possibility is that 〈A〉 is a strongly
regular graph with the same λ and µ as G.

We remark that Theorem 4.8 and Lemma 4.9 are unpublished results of Brouwer,
but in the context of vertices fixed by an automorphism of G. These results were
presented by Wilbrink in [51]. A special case of this result for diameter 2 Moore
graphs was earlier shown by Aschbacher in [1].

Using Lemma 4.9, we can determine the 2-percolation number of three infinite
families of graphs. We begin by providing an alternative proof for the following
result:

Theorem 4.5 ([23]). If G is a conference graph, then m(G, 2) = 2 unless G = C5,
in which case m(G, 2) = 3.

Proof. Suppose G is a conference graph. Let A = {u, v} be a pair of non-adjacent
vertices of G. Because G is diameter 2, u, v have a common neighbor, so A is a proper
subset of 〈A〉. By Lemma 4.9, the set 〈A〉 induces a Kλ+2, an irregular (λ, µ)-graph,
or a strongly regular graph. The vertices of A are not adjacent, so 〈A〉 cannot be a
copy of Kλ+2.

By Theorem 4.8, the set 〈A〉 can only induce an irregular (λ, µ)-graph when
µ = 0, 1. We are only concerned with connected graphs, so we can ignore the case
when µ = 0. If µ = 1 and G is a conference graph, then by Lemma 4.1, n = 5, λ = 0,
and k = 2. Hence G is a 2-regular, girth 5 graph on 5 vertices and so G = C5.

If G 6= C5, 〈A〉 cannot be an irregular (λ, µ)-graph and hence can only be a
strongly regular graph with the same λ, µ as G. By Lemma 4.1, λ, µ determine
n so that any two conference graphs with the same λ, µ have the same order and
hence neither can be an induced subgraph of the other. In addition, A is a pair of
non-adjacent vertices, so 〈A〉 cannot be a Kλ+2.

We have now ruled out all cases where 〈A〉 could be a proper subset of V (G), so
〈A〉 must be V (G).

We now determine the 2-percolation number of complementary prisms of Paley
graphs:

Theorem 4.6. If G = QR(q)QR(q) and q is a prime power congruent to 1 (mod 4)
such that q 6= 5, 9 then m(G, 2) = 2. If q = 5, 9, then m(G, 2) = 3.

Before proving this theorem, we introduce three lemmas. The following lemma
was proved by Cappelle et al.

Lemma 4.11 ([18], Lemma 4). Suppose G is a 2-connected, diameter 2 graph, A ⊆
V (G) is an initial set of infected vertices of G and 〈A〉 dominates G − 〈A〉. When
r = 2, we can infect one vertex of G − 〈A〉 and the infection will percolate to the
remaining vertices of G.
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Lemma 4.12 (P3 trick). If G is a 2-connected, diameter 2 graph which can be
decomposed into two connected subgraphs H1, H2 such that V (H1) ∪ V (H2) = V (G),
and H1 is joined to H2 by a perfect matching, then m(G, 2) = 2 if either H1 or H2

contains an adjacent pair of vertices which percolates within H1 or H2, respectively.

Proof. Suppose G,H1, and H2 are as described and without loss of generality, as-
sume H1 contains a pair of adjacent vertices, u1, v1 which percolate within H1, i.e.,
〈{u1, v1}〉 = V (H1). Since H1 and H2 are joined by a perfect matching, there must
be a vertex v2 ∈ H2 such that v2 is adjacent to v1. Infect v2 and u1. These two
vertices infect v1, then u1, v1 infect H1. By Lemma 4.11, since v2 is infected, H2 also
becomes infected. See Figure 6 for a diagram.

H1

H2

u1 v1

v2

Figure 6: The P3 trick

A clique in a graph, G, is a complete subgraph of G. The clique number of G,
denoted ω(G), is the order of the largest clique of G. A coclique is another word for
an independent set of a graph G, which forms a clique in the complement of G.

Lemma 4.13 (Clique-coclique bound, Corollary 4 of [16]). If a graph G is vertex-
transitive, then α(G)ω(G) ≤ |G|

We now prove Theorem 4.6.

Proof. We first show that m(G, 2) = 3 for the Petersen graph and QR(9)QR(9).
The Petersen graph is girth 5 and hence any pair of vertices either has no mutual
neighbors (if the two vertices are adjacent) or one mutual neighbor (if the two vertices
are not adjacent). Hence, any girth 5 graph with more than 3 vertices must have
2-percolation number greater than 2. Any independent set of 3 vertices which are
not all contained in the same neighborhood will percolate in the Petersen graph, so
its 2-percolation number is 3.

The graph QR(9)QR(9) is the complementary prism of the 3 x 3 rook’s graph
(which is also K3�K3 and the line graph of K3,3). We show that m(QR(9)QR(9), 2)
> 2. We can choose a pair of vertices from the complementary prism in two ways.
Either both vertices can be from the same complement or one vertex can be from
each complement. Paley graphs are self-complementary, so it suffices to show that
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a pair of vertices in QR(9) will not percolate. By Theorem 4.5, m(QR(9), 2) = 2
(in fact, any pair of non-adjacent vertices percolates). But even if we infect one of
the QR(9)’s, the perfect matching implies that any vertex from the other is only
adjacent to a single vertex in the first QR(9) and so cannot become infected.

If we infect one vertex in each complement, we have two cases.

Case 1: The two vertices are adjacent.

Since each vertex is only adjacent to a single vertex in each complement, the
infection must stop here.

Case 2: The two vertices are not adjacent. Since QR(9)QR(9) is diameter 2, our
initial infected vertices must have a common neighbor. Without loss of generality,
let us call the initially infected vertices u1, v2 and their counterparts u2, v1, where
two vertices have the same subscript if they are in the same complement. If u1v1
is an edge in QR(9), then u2, v2 is not an edge in QR(9). Hence, u1 and v2 can
have at most one mutual neighbor. See Figure 7 for a diagram of this situation.
In the second round, u1 and v2 infect v1. In QR(9), each pair of adjacent vertices
is contained in a unique triangle, so the closure of any pair of adjacent vertices in
QR(9) is a triangle. Let w1 be the third vertex of the triangle containing u1, w1 and
w2 be the counterpart of w1 in the complement. Then, w1 is infected in the third
round. The infection cannot percolate further because u1, v1, w1 is a triangle, so u2
in the complement is not adjacent to either v2 or w2.

However, if we were to infect a pair of non-adjacent vertices in the QR(9) and a
single vertex in the complement, then by Lemma 4.11 QR(9)(QR(9)) would become
infected, so the 2-percolation number of this graph is 3.

Now, we show that m(QR(q)QR(q), 2) = 2 when q is a prime power congruent
to 1 (mod 4) such that q 6= 5, 9. Let G be a complementary prism for some QR(q),
where q > 9. If QR(q) contains a pair of adjacent vertices which percolate, then we
can infect G by the P3 trick (Lemma 4.12). Thus, we will show that every Paley
graph with q > 9 contains a pair of adjacent vertices which percolate.

By Lemma 4.9, the only way that a pair of adjacent vertices can fail to percolate
in a Paley graph is if they percolate to a Kλ+2. We will demonstrate that this
cannot happen if q > 9. It is well-known that the clique number of the Paley graphs
is bounded above by

√
q. This can be shown directly from properties of quadratic

residues [52]. Alternatively, we can use Lemma 4.13. Since Paley graphs are self-
complementary in addition to being vertex transitive, their independence and clique
numbers are equal. Hence, ω(QR(q))2 ≤ q, which implies ω(QR(q)) ≤ √q.

For a Paley graph, λ + 2 = q−5
4

+ 2 = q+3
4

. We want to show that if q > 9, then
q+3
4

exceeds
√
q. We first determine when q+3

4
=
√
q, i.e., when q2+6q+9

16
= q. This

equation can be transformed into q2−10q+9 = 0. The quadratic function on the left
hand side has roots at 9 and 1 and is positive when q < 1 and q > 9. In other words,
when q exceeds 9, λ+ 2 exceeds the clique number of QR(q). Hence, QR(q) contains
no clique of order λ+ 2 and thus every pair of adjacent vertices must percolate.

Before determining the 2-percolation number of the McKay–Miller–Širáň graphs,
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u1 v1 w1

u2 v2 w2

Figure 7: Attempting to infect QR(9)QR(9) with 2 vertices, where black vertices are
initially infected

we note the following useful facts about these graphs:

1. Each vertex of a QR(q) is adjacent to exactly one vertex in each complement
and each vertex in a complement is adjacent to exactly one vertex in each copy of
QR(q).

2. If u, v are a pair of vertices in distinct QR(q)’s or distinct QR(q)’s, then u, v
are not adjacent.

3. If u, v are a pair of vertices where each is in a distinct copy of QR(q), then u, v
have exactly one common neighbor, contained in a QR(q). In fact, if v is a vertex in
a fixed QR(q) and S is in a different QR(q), then v has a distinct common neighbor
with each vertex of S, each one in a different complement. Likewise, if each vertex
of the pair is in a different QR(q), then they have exactly one common neighbor,
contained in a QR(q). See Figure 5 for a diagram illustrating these features of these
graphs.

During the following proof, we will refer to these properties by their numbers.

Theorem 4.7. If G is a McKay–Miller–Širáň of order 2q2 where q is a prime power
congruent to 1 (mod 4) and G is not the Hoffman-Singleton graph, then m(G, 2) = 3.

Proof. Let Hq be a McKay–Miller–Širáň graph with q ≡ 1 (mod 4) and q 6= 5 (i.e.,
Hq is not the Hoffman-Singleton graph). We will first show that m(Hq, 2) > 2. Let
u, v be a pair of infected vertices in Hq. We have three cases. Since Paley graphs are
self-complementary, it suffices to consider these cases from the perspective of QR(q).

Case 1: Both u, v are contained in the same QR(q).

Let S be the QR(q) containing u and v. In this case, u, v could potentially infect
QR(q). However, each vertex outside S is adjacent to one or zero vertices in S (by
1. and 2.), so the infection must stop there.

Case 2: One vertex is in a QR(q) and one vertex is in a QR(q).

Let S be the QR(q) and T be the QR(q). By Theorem 4.6, it is possible that
these two vertices might infect the entire complementary prism S ∪ T . But then,
each vertex in some QR(q) 6= S is adjacent to no vertices in S and one vertex of T
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and each vertex in a QR(q) 6= T is adjacent to no vertices of T and one vertex of S
(by 1. and 2.). Either way, no vertex outside S ∪ T is adjacent to more than one
vertex inside S ∪ T , so the infection cannot spread further.

Case 3: One vertex is in one QR(q) and one vertex is in another QR(q)

Let S1 be the first QR(q) and S2 be the second QR(q). There are no common
neighbors of u, v amongst the QR(q)’s and u, v have only one common neighbor in
a single QR(q) (by 3.), so while u, v infect one more vertex, the infection must stop
after that.

Now, we will show that if Hq is not the Hoffman-Singleton graph, then we can
always find a percolating set with 3 vertices. Select u, v, w such that u, v are a
percolating set of one QR(q) and w is in a different QR(q). Let S1 be the QR(q)
containing u, v, S2 be the QR(q) containing w and T1 be some QR(q). w has a
common neighbor, y, with a vertex, x, of S1 in T1, so together w and x infect y. S1 is
joined to each complement by a perfect matching, so S1 dominates each complement.
By Lemma 3.1, x together with S1 infects all of T1. T1 dominates S2, so by Lemma
3.1, T1 and w infect all of S2.

Recall that w has a distinct common neighbor with each vertex of S1, each in
a different one of the complements. Hence, by the aforementioned lemma, these
common neighbors and S1 infect the rest of the QR(q)’s. Likewise, if T2 is some
other complement, then x along with its common neighbors with each vertex of T2
infect the rest of the QR(q)’s.

Since m(Hq, 2) > 2 and m(Hq, 2) ≤ 3, we conclude that m(Hq, 2) = 3.

4.3 Other results

In this subsection, we give some other applications of Lemma 4.9. Cappelle et.
al found that the 2-percolation number of the Hoffman-Singleton graph is 4 using
computation. Lemma 4.9 allows us to show m(H5, 2) = 4 by hand, as well as
determine the 2-percolation number of the Games graph. In addition, the lemma
also allows us to find an upper bound on the 2-percolation number of hypothetical
graphs, such as the missing Moore graph. We also can find an upper bound on the
number of induced strongly regular subgraphs of strongly regular graphs with the
same λ and µ.

Lemma 4.14. If the order of G is more than 3 and G has girth 5 or greater, then
m(G, 2) > 2.

Proof. Suppose G has girth at least 5 and G has order at least 4. A pair of adjacent
vertices forms a triangle with each of their common neighbors, while a pair of non-
adjacent vertices forms a C4 with every two common neighbors. Since G contains
no cycles on less than 5 vertices, each pair of adjacent vertices of G cannot have any
common neighbors, while each pair of non-adjacent vertices of G can have at most
one common neighbor. Hence, any pair of initially infected verties of G can infect
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at most a P3, but the order of G is at least 4, so G needs at least three vertices to
become infected.

Proposition 4.15. The 2-percolation number of the Hoffman-Singleton graph is 4.

Before beginning the proof, we present a definition. If I is an independent set
of a graph G such that every vertex of I is contained in the neighborhood of some
vertex, v, then I is a type I independent set. If I is an independent set of a graph
where every vertex of I is not all contained in the same neighborhood, then I is a
type II independent set.

Proof. First, we show that m(H5, 2) > 3. The Hoffman-Singleton graph has girth
5, so by Lemma 4.14, m(H5, 2) > 2. Triples of vertices can have 0, 1, or 2 edges (3
edges is impossible because the graph is girth 5). Let x, y, z be a triple of vertices
of H5. If x, y, z has 2 edges, then the vertices induce a P3. Since no pair of adjacent
vertices has a common neighbor, no more vertices can be infected.

If x, y, z have one edge, then the vertices induce a disjoint union of K2 and K1.
Within the Hoffman-Singleton graph the closure of K2+K1 is C5, but by Lemma 4.9,
once we percolate to a girth 5 Moore graph within another girth 5 Moore graph, the
percolation process halts. If x, y, z have 0 edges, but all are contained in the same
neighborhood, then x, y, z infect one more vertex. But the infection must stop there
because each pair of non-adjacent vertices has only one common neighbor. Hence,
〈{x, y, z}〉 = K1,3.

The other case when x, y, z have 0 edges is when x, y, z are not all in the same
neighborhood. We claim that all such triples of vertices percolate to a Petersen
graph. First, let A = {x, y, z} be a type II independent set of H5. Because G is
diameter 2 and girth 5, each pair of vertices in A has exactly one common neighbor,
so after one round, A percolates to a 6-cycle. Each of x, y, z, then is distance 3 from
the vertex directly opposite to it in the C6, so the infection will continue to proceed.
It is not hard to verify that because H5 is girth 5, each of these three pairs of vertices
must have a distinct common neighbor, so we infect 3 more vertices. This scenario
is shown on the left in Figure 8. In order to show that this percolation process stops
at a Petersen graph, we must show that the 3 last infected vertices are all contained
in the same neighborhood of another vertex. Girth 5 and diameter 2 alone are not
enough to show this, so we make use of a result of James [41].

James showed that the Hoffman-Singleton graph is unique, i.e., any girth 5, di-
ameter 2, 7-regular graph must be isomorphic to the Hoffman-Singleton graph. In
particular, James proved that any 5-cycle in the Hoffman-Singleton graph divides the
graph into 5 pentagons and 5 pentagrams, which in turn are related by Robertson’s
equations. The 5 pentagrams are formed from the vertices adjacent to the C5 which
has been picked out and the four remaining pentagons are formed from the vertices
at distance 2 from the C5.

Let H be the 9 vertex graph formed in the percolation process from a type II
independent set described above. Pick out some 5-cycle in H and call it F . Denote
the vertices of F by 1,2,3,4,5. Each of the four remaining vertices of H is adjacent
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to exactly one vertex of F , so label these vertices from the set {a, b, c, d, e} where a
would be adjacent to 1, b to 2, etc. An example of such a labelling of H is shown in
Figure 8. The black vertices in the diagram are the initially infected vertices, here
labelled with 1, 3 and d. By James’s result the 4 vertices of H not contained in F
must be contained in a pentagram in the Hoffman-Singleton graph. Furthermore,
since no two pentagrams have any adjacent vertices and these 4 vertices induce a
P4, they must be contained in the same pentagram. This is shown on the right of
Figure 8. This implies that H consists of 9 vertices all contained in the same Petersen
graph. Hence, the last 3 vertices infected (5, b, c in Figure 8) must have a common
neighbor within the same Petersen graph (e in Figure 8) and hence the percolation
process halts there.

We now show that m(H5, 2) ≤ 4. Let a, b, c be an independent set of vertices
of H5 which are not all contained in a single neighborhood. We have shown that
the closure of a, b, c is a Petersen graph. Let d be a vertex not contained in the
closure of a, b, c. If we infect d, there is no girth 5 Moore graph other than the
Hoffman-Singleton graph where the infection can stop, so a, b, c, d form a percolating
set.

F
1

2 3

4

5

a d

c b

1

2 3

4

5

a

b c

d

e

Figure 8: 3 vertices percolating to a Petersen graph in the Hoffman-Singleton graph

The Games graph is the unique strongly regular graph with parameters (729, 112,
1, 20) [11]. This was the only graph in Cappelle et al.’s table whose 2-percolation
number was not determined. Using Lemma 4.9, we can determine the 2-percolation
number of the Games graph by hand. We perform eigenvalue calculations of the same
kind as those used by Hoffman and Singleton [38] but with the parameters λ = 1 and
µ = 20, rather than λ = 0 and µ = 1. We do not reproduce the calculations here, but
it is straightforward to show that the Games graph has the smallest possible order
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among graphs with λ = 1 and µ = 20. Hence m(Games, 2) = 2. We corroborated
this result by computation and list it in Table 6.

Next, we show that the missing Moore graph has 2-percolation number either 3
or 4.

Proposition 4.16. Let MMG be the missing Moore graph. 3 ≤ m(MMG, 2) ≤ 4.

Proof. The MMG is girth 5, so m(MMG, 2) 6= 2. To show that m(MMG, 2) ≤ 4,
recall that by Lemma 4.9, a closure of a diameter 2 Moore graph can only be a star or
another diameter 2 Moore graph. Let a, b, c be an independent set of vertices of type
II. Because these vertices form an independent set of type II, they cannot percolate
to a star. The independence number of C5 is 2, so this set cannot percolate to a C5.
It is possible that 〈{a, b, c}〉 is a Petersen graph. If 〈{a, b, c}〉 is not a Petersen graph,
then a, b, c must be a percolating set of MMG. This is because every cardinality
3 independent set not contained in the same neighborhood percolates to a Petersen
graph in the Hoffman-Singleton graph. So, a, b, c are contained in neither a Petersen
graph nor a Hoffman-Singleton graph.

It is also possible that the missing Moore graph is not unique, but since all such
graphs have the same number of vertices none can be a proper subset of another,
so the percolation cannot stop at any Moore graph and must infect all vertices. If
H = 〈{a, b, c}〉 is a Petersen graph, then let d be a vertex at distance 2 from every
vertex of H. Because H is a closure, every vertex of MMG adjacent to H is adjacent
to only a single vertex of H. Since d is at distance 2 from every vertex of H, d must
have a common neighbor with every vertex of H. The degree of d in 〈{a, b, c, d}〉 is at
least 10, so our percolation cannot stop at a copy of the 7-regular Hoffman-Singleton
and a, b, c, d is a percolating set of the missing Moore graph.

It is also possible to prove Proposition 4.16 by using a fact about the percolating
sets of the Hoffman-Singleton graph, along with Lemma 3.4, and Corollary 4.10. If
A ⊆ V (MMG) with |A| = 4 and 〈A〉 is a maximal 4-closure, then by Corollary
4.10 the subgraph induced by 〈A〉 is isomorphic to the Hoffman-Singleton graph.
However, it is a fact that any edge of the Hoffman-Singleton graph can be extended
to a percolating 4-set. Hence, there is a 4-set A′ whose closure is equal to that of A
and where two vertices in A′ are adjacent. Using the adjacent vertices in A′ and the
P3-trick, we can then show that 〈A〉 was in fact not a maximal 4-closure.

It is unknown whether the missing Moore graph contains even a single copy of
the Petersen graph [24]. However, it is known that the missing Moore graph can
contain at most 266,266,000 induced Petersen graphs. This upper bound was found
by Kováčiková using an algorithmic approach [42]. Using percolation, we can provide
an alternative proof of this result.

First, we prove a lemma:

Lemma 4.17. Suppose J,K ⊆ V (G) are both closures under 2-percolation, i.e.,
J = 〈A〉 and K = 〈B〉. Then, if J ∩K ⊇ A, J ⊆ K.
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Proof. When A percolates, the process stops at J . Since K is a closure and K
contains A, K must also contain the closure of A. Hence, J ⊆ K.

Theorem 4.18. The missing Moore graph has between 0 and 266, 266, 000 induced
copies of the Petersen graph. Furthermore, the following hold:

1. The missing Moore graph has 266, 266, 000 Petersen graphs if and only if its
2-percolation number is 4.

2. The missing Moore graph has 0 copies of the Petersen graph if and only if every
type II independent set of size 3 is a percolating set of the Missing Moore graph.

Proof. Claim: Each type II independent set of cardinality 3 is contained in at most
one induced Petersen graph.

Each induced Petersen graph of the MMG is a closure in the MMG by Lemma
4.9. Suppose that P and Q are induced Petersen subgraphs of the missing Moore
graph and both P and Q contain the same type II independent set with 3 vertices.
Then, by Lemma 4.17 either V (P ) ⊆ V (Q) or V (Q) ⊆ V (P ), but since both graphs
are induced Petersen subgraphs, this is only possible if V (P ) = V (Q).

The claim implies that the number of type II independent sets of cardinality 3 in
the missing Moore graph provides an upper bound on the number of induced Petersen
subgraphs. The missing Moore graph contains

(
3250
3

)
subsets of cardinality 3. We

will count the number of type II independent sets by subtracting all other subsets
of 3 vertices from this number. Since the missing Moore graph is girth 5, all sets
of 3 vertices contain 2,1, or 0 edges. The number of such sets with 2 edges is the
same as the number of induced P3’s, which is the same as the number of pairs
of non-adjacent vertices, which is 5,187,000. The missing Moore graph contains
92625 edges, each of which has 3136 vertices at distance 2 from it, which counts the
number of sets of 3 vertices with 1 edge: 290,472,000. The sets with 0 edges are
either type II independent sets or type I independent sets. Each type I independent
set corresponds to a claw, of which there are 3250

(
57
3

)
= 95,095,000. Altogether, we

have 5,325,320,000 type II independent sets of size 3 in the missing Moore graph.
The Petersen graph contains 20 such independent sets, so the missing Moore graph
must contain at most 266,266,000 induced Petersen graphs.

We showed in Theorem 4.16 that if a type II independent set of cardinality 3
does not percolate to the Petersen graph, then it is a percolating set of the missing
Moore graph. Hence, m(MMG, 2) = 4 only when every type II independent set
of cardinality 3 in the missing Moore graph is contained in a Petersen graph. This
occurs when the MMG contains the maximum number of Petersen graphs. This
proves 1.

On the other hand, if every type II independent set of cardinality 3 is a percolating
set of the missing Moore graph, then none is contained in a Petersen graph. Since
each Petersen graph contains 20 such sets, in this scenario, the missing Moore graph
would contain no induced Petersen graphs. This proves 2.
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In general, Lemma 4.9 can be used to bound the number of strongly regular graphs
contained within other strongly regular graphs with the same λ and µ. Suppose
G is an srg(n, k, λ, µ) and H is an srg(n′, k′, λ, µ). If we know the structure of a
minimum 2-percolating set of H, then Lemma 4.17 implies that each such minimum
2-percolating set is contained in a unique copy of H. Hence, the total number of
such sets in G divided by the number of such sets in H bounds above the number of
induced copies of H in G. We provide another example:

It is unknown whether there is a strongly regular graph with parameters (99, 14,
1, 2) [51]. Analogous to the problem of whether the missing Moore graph contains
a Petersen graph is the question of whether a (99,14,1,2) graph contains a copy of
K3�K3, the unique (9,4,1,2) graph [19, 32]. The minimum 2-percolating sets of
K3�K3 are pairs of non-adjacent vertices, of which there are 18. Hence, by finding
the total number of pairs of non-adjacent vertices in a hypothetical (99,14,1,2) graph
and dividing by 18, we can bound above the number of induced copies of K3�K3.
By adapting the methods of Theorem 4.18, we have the following result.

Theorem 4.19. Let NNG be a hypothetical strongly regular graph with parameters
(99, 14, 1, 2). The following hold:

1. 2 ≤ m(NNG, 2) ≤ 3.

2. The NNG contains at most 231 copies of K3�K3 and contains the maximum
number of copies of K3�K3 if and only if m(NNG, 2) = 3.

3. The NNG contains 0 copies of K3�K3 if and only if every pair of non-adjacent
vertices is a percolating set of the NNG.

5 Open Problems

In this article, we have investigated the effects of diameter and connectivity on the
cardinality of minimum 2-percolating sets of graphs. There are still many unanswered
questions about 2-percolation in general and even about 2-percolation specifically in
diameter 2, 2-connected graphs. We present a few problems here:

1. Does there exist a constant c such that if G is a diameter 2, 2-connected graph,
then m(G, 2) ≤ c?

The Hoffman-Singleton graph is the only diameter 2, 2-connected graph which
we are aware of with 2-percolation number equal to 4, so this leads to the
problem:

2. Find another diameter 2, 2-connected graph with 2-percolation number equal
to 4 or more.

Ibrahim [40] showed that m(G, r) is unbounded in general, but the construction
depends on having a large number of vertex disjoint r-forbidden subgraphs.
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3. If G is a graph such that every two r-forbidden subgraphs of G intersect, i.e., G
does not contain even 2 vertex disjoint r-forbidden subgraphs, then is m(G, r)
bounded above by a constant?

4. It would also be interesting to investigate 2-percolation in diameter 3 graphs.
It is challenging to find natural examples of 2-connected, diameter 3 graphs
with high 2-percolation numbers.

We determined the 2-percolation numbers of the unique (6, 5)-cage (which can
be formed by deleting a Petersen graph from the Hoffman-Singleton graph) and
the four (5, 5)-cages by computation. These graphs are all diameter 3 and their
2-percolation numbers are shown in Table 6. Grippo et al. [31] determined that
the 2-percolation number of the diameter 3 Kneser graph K(7, 3) is 5.

The McKay–Miller–Siran graphs provide an infinite family of diameter 2, 2-
connected graphs with m(G, 2) = 3.

5. Find infinite families of 2-connected, diameter 3 graphs with 2-percolation num-
bers above 2.

6. Is it possible to find constant upper or lower bounds on r-percolation number
for families containing graphs with multiple diameters?

6 Data

Here is a table of the 2-percolation numbers for some cages.

Graph m(G, 2) URL
(6, 5)-cage 4 Link

(5, 5)-cage (Wong Graph) 3 Link
(5, 5)-cage (Foster Cage) 3 Link

(5, 5)-cage (Meringer graph) 4 Link
(5, 5)-cage (Robertson-Wegner graph) 4 Link

srg(729, 112, 1, 20) (Games Graph) 2 Link
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Morales Jiménez, On the P3-hull number and infecting times of generalize
Petersen graphs, ArXiv preprint: arXiv:2201.00078 [math.CO]; available at
https://arxiv.org/abs/2201.00078 .

[38] A. J. Hoffman and R. R. Singleton, On Moore graphs with diameters 2 and 3,
IBM J. Res. Develop. 4 (1960), 497–504.

[39] A. E. Holroyd, Sharp metastability threshold for two-dimensional bootstrap per-
colation, Probab. Theory Related Fields 125.2 (2003), 195–224.

[40] R. Ibrahim, Problems in Graph Theory With Applications to Topology and
Modeling RNA, PhD thesis, Virginia Commonwealth University, 2024.

[41] L. O. James, A combinatorial proof that the Moore (7,2) graph is unique, Utilitas
Math. 5 (1974), 79–84.

https://figshare.com/articles/preprint/Five_New_Results_on_Conway_s_99-Graph_Problem/23732622/2?file=41679612
https://figshare.com/articles/preprint/Five_New_Results_on_Conway_s_99-Graph_Problem/23732622/2?file=41679612
https://arxiv.org/abs/2201.00078


R. IBRAHIM ET AL. /AUSTRALAS. J. COMBIN. 93 (1) (2025), 60–89 89
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