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Abstract

A shared neighborhood structure (SNS) in a graph is a subgraph induced
by the intersection of the open neighbor sets of two adjacent vertices. If a
SNS is the same for all adjacent vertices in an edge-regular graph, call the
SNS a uniform shared neighborhood structure (USNS). USNS-forbidden
graphs (graphs which cannot be a USNS of an edge-regular graph) and
USNS in graph products of edge-regular graphs are examined.

1 Preliminaries

Let G = (V,E) be a finite, simple graph with vertex set V = V (G) and edge set
E = E(G). If uv ∈ E(G) for vertices u, v ∈ V (G), then their adjacency is denoted
u ∼ v. The degree of a vertex is the number of edges it is incident to. Because G
is simple, the degree of v ∈ V (G) is also the number of vertices it is adjacent to. A
graph G is regular if the degrees of the vertices in V (G) are all the same. The open
neighborhood of a vertex u in G, denoted NG(u), is the set of vertices u is adjacent
to. If G is understood, this open neighborhood will be denoted N(u). A graph G
is edge-regular if G is both regular and, for some λ, every pair of adjacent vertices
in G have exactly λ common (or shared) neighbors. If G is edge-regular, we say
G ∈ ER(n, d, λ), where |V (G)| = n, G is regular of degree d, and |N(u)∩N(v)| = λ
for all uv ∈ E(G).

An induced subgraph of G is a graph H such that V (H) ⊆ V (G), E(H) contains
all of the edges of G among the vertices of V (H), and only those edges. The induced
subgraph H of G is denoted as G[V (H)]. If G[NG(u) ∩ NG(v)] ∼= H for all u ∼ v;
with u, v ∈ V (G), where ∼= denotes a graph isomorphism, then G has a uniform
shared neighborhood structure, abbreviated USNS. For instance, letting Kn denote
the complete graph on n vertices, G = K3 ∈ ER(3, 2, 1) has USNS K1.

For graphs G and H, define G + H to be the graph formed from G and H
where V (G + H) = V (G) ∪ V (H) (such that V (G) and V (H) are disjoint) and
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E(G + H) = E(G) ∪ E(H). Further, for a graph G and positive integer m, define
mG to be the union, or sum, of m disjoint copies of G. That is, mG = G+G+· · ·+G.

Edge-regular graphs do not need to have a USNS. If G is the Cartesian product of
K4 and K6 \ {a perfect matching in K6}, G ∈ ER(24, 7, 2) has two different shared
neighborhood structures (SNS): K2 and 2K1. Also, a SNS for one pair of adjacent
vertices may also be the SNS for a different pair of adjacent vertices. Suppose G is
K6 \ {a perfect matching in K6} as in Fig. 1. Then G ∈ ER(6, 4, 2) has a 2K1 as a
USNS, and each of the three 2K1’s in G is the SNS of two disjoint pairs of adjacent
vertices.

Figure 1: K6 with a perfect matching removed

A number of studies of edge-regular graphs have focused on the parameter λ.
These graphs with λ = 1 have been studied in [1] and [5], while those with λ = 2
have been studied in [4]. Additionally, in [1], [5], and [4], constructions are described
for edge-regular graphs.

Outside of specific λ values, relations amongst the parameters of an edge-regular
graph have also been studied, notably when d = λ + k for k ∈ {1, 2, 3} in [6]. The
research in [7] also examines parameter relations, specifically as it pertains to n, λ,
and the number of vertices missing from any shared neighborhood.

The research presented in this paper will pertain more to the structure of edge-
regular graphs, akin to the research presented in [3], which constructs a specific type
of edge-regular graph, a Neumaier graph. Within the body of this research, there is
an emphasis on families of graphs that cannot be a USNS in any edge-regular graph,
as well as corresponding constructions of graphs in these families.

2 Forbidden USNS

There are families of graphs that cannot be a USNS in any edge-regular graph; call
these USNS-forbidden graphs. Our results about such graphs will be proved by
contradiction. For a graph G and u, v ∈ V (G), let A(u, v) denote the set of vertices
in G that are adjacent to u but not to v, and let B(u, v) denote the set of vertices in
G that are adjacent to v but not to u. Finally, let X(u, v) denote the set of vertices
in G that are adjacent neither to u nor v.

Let Pm be the path graph on m vertices.
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Theorem 2.1. If G ∈ ER(n, d, 3) with a USNS, then the USNS � P3.

Proof. By way of contradiction, let u ∼ v, and let N(u) ∩ N(v) = {w1, w2, w3},
where G[N(u) ∩ N(v)] ∼= P3. Without loss of generality, let w1 ∼ w2 ∼ w3 and
w1 � w3. Then as w1 ∼ w2, G[N(w1) ∩ N(w2)] ∼= P3. As two of w1 and w2’s
common neighbors are u and v, there must exist a third vertex, say z, such that
N(w1) ∩N(w2) = {u, v, z} and G[N(w1) ∩N(w2)] ∼= P3.

Without loss of generality, suppose z ∼ u. Then {w1, v, w3, z} ⊆ N(u) ∩N(w2),
contradicting λ = 3. Thus, G[N(w1) ∩N(w2)] 6∼= P3.

It should be noted that Theorem 2.1 is a special case of Theorem 2.5, found later
in the paper.

Naturally, there are a variety of graphs to sum with P3 to see if it is a possible
USNS for some edge-regular graph. There is a partial result for P3 + H where H is
an arbitrary graph.

Theorem 2.2. Suppose that G is edge-regular with USNS P3 + H for some graph
H. Then H has at least one edge. Further: if, for some u, v ∈ V (G), u ∼ v, and
G[N(u)∩N(v)] contains a P3 component with vertices w1 ∼ w2 ∼ w3, and if the edge
uv is an edge of a P3 component of G[N(w1) ∩ N(w2)], then H has a P4 subgraph
and a K2 component.

Proof. Suppose u, v ∈ V (G), u ∼ v, and w1w2w3 is a P3 component of G[N(u) ∩
N(v)]. Then uv is an edge of G[N(w1)∩N(w2)] ∼= P3 +H. If uv is not an edge of a
P3 component of P3 +H then uv ∈ E(H). Therefore, the theorem will be proven if
we prove that H contains a P4 and a K2 component, under the assumption that uv
is an edge of a P3 component of P3 +H = G[N(w1) ∩N(w2)].

The third vertex of P3 in G[N(w1) ∩ N(w2)] must be an element of A(u, v) or
B(u, v). Without loss of generality, suppose the remaining vertex is a1 ∈ A(u, v) (that
is, a1 is adjacent to u but not to v). Then every vertex of H in G[N(w1) ∩ N(w2)]
must be in X(u, v), as any vertex in A(u, v) or B(u, v) would have an adjacency to
u or v, respectively. Thus, N(w1) ∩N(w2) = {a1, u, v, x1, . . . , x|H|}.

Consider the adjacent vertices u and w2. Notice that {a1, w1, v, w3} ⊆ N(u) ∩
N(w2), and G[a1, w1, v, w3] is connected. As these four vertices are part of the same
component in N(w2) ∩N(u), then they cannot contain the P3 component and thus
are contained in the H component so H must contain a P4.

Now consider the adjacent vertices v and w1. As {w2, u} ⊆ N(v) ∩ N(w1) and
w2 ∼ u, then w2 and u are in the same component of G[N(v) ∩ N(w1)]. The only
other vertices in N(v) ∩ N(w1) are in B(u, v), and none of these can be adjacent
to u, nor to w2, since N(w1) ∩N(w2) has no elements in B(u, v) and no vertices in
B(u, v) are adjacent to u.

Consequently, the single edge uw2 is a component of G[N(v)∩N(w1)] ∼= P3 +H,
and is obviously not a P3. Therefore H has a K2 component.
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A natural corollary follows from the above theorem to forbid a union of isolated
vertices with P3.

Corollary 2.1. If G ∈ ER(n, d, 3 + `), l ≥ 1, with a USNS, then the USNS �
P3 + `K1.

Corollary 2.2. Suppose m is a positive integer. Then mP3 is USNS-forbidden.

Proof. For m = 1, see Theorem 2.1. Assume that m > 1. If G is edge-regular with
USNS mP3, then because every uv ∈ E(G) is in a component of G[N(x)∩N(y)] for
any x ∼ y in N(u) ∩ N(v), every uv ∈ E(G) is in a P3 component of two adjacent
vertices in a P3 component of G[N(u)∩N(v)]. Therefore, by Theorem 2.2, G[N(u)∩
N(v)] ∼= P3 + (m− 1)P3 contains a P4 subgraph. Obviously, this is impossible.

Since P3 is a forbidden USNS, it is natural to ask if longer paths are also forbidden.
The theorem below asserts that P4, like P3, is USNS-forbidden.

Theorem 2.3. If G ∈ ER(n, d, 4) with a USNS, then the USNS � P4.

Proof. Suppose for contradiction there exists G ∈ ER(n, d, 4) with USNS ∼= P4. Let
u ∼ v, and let N(u) ∩ N(v) = {w1, w2, w3, w4}, where G[N(u) ∩ N(v)] ∼= P4 with
endpoints w1 and w4 and w1 ∼ w2. G[N(w1) ∩N(w2)] ∼= P4, as G has a P4 USNS.

Case 1. N(w1)∩N(w2) = {a1, u, v, b1}, such that G[N(w1)∩N(w2)] ∼= P4 having
endpoints a1 and b1, with a1 ∈ A(u, v) and b1 ∈ B(u, v). See Fig. 2 for reference.

Figure 2: Beginning of case 1 in the proof of Theorem 2.3

Consider the vertices u and w1, which are adjacent by assumption. As vertices u
and w1 have common neighbors a1, w2, and v, then there must exist another vertex
in their shared neighborhood adjacent either to a1 or to v. As w1 is not adjacent to
w3 and w4, and u is only adjacent to v, the wi vertices, and vertices in A(u, v), then
the 4th vertex in this common neighborhood must be some a2 ∈ A(u, v). So a2 ∼ a1,
and G[N(u) ∩N(w1)] ∼= P4 with endpoints a2 and v.

Now consider adjacent vertices u and w2. N(u) ∩ N(w2) = {a1, w1, v, w3} is
completely determined from previous assumptions. As G[N(u) ∩N(w2)] ∼= P4, then
this must have endpoints w3 and a1, so w3 � a1.
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Now consider the adjacent vertices v and w1. Then N(v)∩N(w1) = {b2, b1, w2, u},
where b1, b2 ∈ B(u, v). Using similar logic to how N(u) ∩ N(w1) was constructed,
then we conclude that G[N(v)∩N(w1)] ∼= P4 having endpoints b2 and u, with b2 � w2

and b2 ∼ b1.

Now consider the adjacent vertices v and w2. N(v) ∩ N(w2) = {b1, w1, u, w3} is
completely determined from previous assumptions. As G[N(v) ∩N(w2)] ∼= P4, then
this must have endpoints w3 and b1, so w3 � b1.

Lastly, consider the adjacent vertices w2 and w3. As {u, v} ∈ N(w2) ∩ N(w3),
there exists z ∈ {N(w2) ∩N(w3)} \ {u, v} such that z ∈ A(u, v) or z ∈ B(u, v). As
w2 � a2 and w2 � b2 (from N(u) ∩ N(w2) and N(v) ∩ N(w2), respectively), then
z 6= a2 and z 6= b2. As w3 � a1 and w3 � b1 (implied from N(u) ∩ N(w2) and
N(v)∩N(w2), respectively), then z 6= a1 and z 6= b1. Without loss of generality, say
z ∈ A(u, v). Then N(u) ∩N(w2) contains z ∈ A(u, v) \ {a1}, a contradiction. Thus,
N(w1) ∩N(w2) 6= {a1, u, v, b1}.

Case 2. N(w1) ∩ N(w2) = {v, u, a1, x1}, where a1 ∈ A(u, v) and x1 ∈ X(u, v).
By assumption, u ∼ a1, u � x1, and v � x1, so v and x1 are endpoints of G[N(w1)∩
N(w2)].

Consider adjacent vertices w1 and v. Then N(w1) ∩ N(v) = {u,w2, b2, b3} for
some b2, b3 ∈ B(u, v). This follows from the facts that v has no neighbors in A(u, v)∪
X(u, v) and w1 is adjacent to no wj; j > 2. Therefore, the two vertices in N(w1) ∩
N(v) other than u and w2 must be in B(u, v). By assumption, u is not adjacent
to any vertex in B(u, v), so w2 must be adjacent to one of {b2, b3}. Without loss of
generality, w2 ∼ b2. However, this implies N(w1)∩N(w2) contains b2, a contradiction.
So N(w1) ∩N(w2) 6= {v, u, a1, x1}.

Case 3. N(w1) ∩N(w2) = {a2, a1, u, v}, where a1, a2 ∈ A(u, v). By assumption,
u ∼ a2 and u ∼ a1, so u is not an endpoint of G[N(w1) ∩ N(w2)]. v must be an
endpoint, as v is only adjacent to u. Without loss of generality, say a2 is an endpoint
and a1 is not an endpoint in G[N(w1)∩N(w2)]. As a2 ∼ u, then G[N(w1∩N(w2)] �
P4, a contradiction. So N(w1) ∩N(w2) 6= {a2, a1, u, v}.

This exhausts all possibilities for N(w1) ∩ N(w2), so G cannot have P4 as a
USNS.

Theorem 2.4. Let G ∈ ER(n, d, λ) with a Pλ USNS for λ ≥ 5, and let u ∼ v in G
with N(u)∩N(v) = {w1, w2, . . . , wλ}, where w1 is an endpoint of G[N(u)∩N(v)]. If
w1 ∼ w2, then N(w1)∩N(w2) contains exactly one vertex from N(u)\(N(u)∩N(v))
and exactly one vertex from N(v) \ (N(u) ∩N(v)).

Proof. Case 1. We first assume that N(w1)∩N(w2) contains no vertex from A(u, v).
So N(w1) ∩N(w2) contains u, v, a vertex in B(u, v), and λ− 3 vertices in X(u, v).

Consider adjacent vertices u and w1. Then N(u)∩N(w1) contains v and w2. But
as u is not adjacent to any vertex in the set B(u, v) nor X(u, v), the remainder of
the vertices in this common neighborhood must be elements of A(u, v). Yet there is
no adjacency from these vertices in A(u, v) to v. If any of these vertices in A(u, v)
were to be adjacent to w2, then N(w1)∩N(w2) would contain a vertex from A(u, v),
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contradicting our case assumption. As λ ≥ 5, then G[N(u) ∩ N(w1)] � Pλ, a
contradiction.

Case 2. We assume that N(w1) ∩ N(w2) contains more than one vertex from
A(u, v), say m vertices from A(u, v). Then u in G[N(w1)∩N(w2)] has degree m+ 1.
As m ≥ 2, then G[N(w1) ∩N(w2)] � Pλ, a contradiction.

Thus, N(w1) ∩N(w2) must contain exactly one vertex from A(u, v) and exactly
one vertex from B(u, v).

While paths are far from completely decided upon as a family of USNS-forbidden
graphs, there are other families of graphs that are. The following theorems tackle
a few of these families, namely the family of complete bipartite graphs of different
partition sizes, star graphs, and wheel graphs.

Theorem 2.5. If G ∈ ER(n, d,m1 + m2) with a USNS, then for all m1 6= m2, the
USNS � Km1,m2.

Proof. Let u ∼ v, and N(u) ∩ N(v) = {w1, w2, . . . , wm1 , z1, z2, . . . , zm2}, where
G[w1, w2, . . . , wm1 , z1, z2, . . . , zm2 ]

∼= Km1,m2 with w1, . . . , wm1 in one part and
z1, . . . , zm2 in the other part.

Figure 3: A K3,2 shared neighborhood of vertices u and v.

Consider the adjacent vertices w1 and z1. Then without loss of generality,

N(w1) ∩N(z1) = {u, v, a1, . . . , am2−1, b1, . . . , bm1−1},

where a1, . . . , am2−1 ∈ A(u, v) and b1, . . . , bm1−1 ∈ B(u, v). So G[N(w1) ∩ N(z1)] ∼=
Km1,m2 , where v, a1, . . . , am2−1 are in one part and u, b1, . . . , bm1−1 are in the other
part.

Now consider the adjacent vertices u and w1. Then by previous assumptions,
N(u) ∩ N(w1) contains {z1, . . . , zm2 , a1, . . . , am2−1, v}. Further, as λ = m1 + m2 by
assumption and |N(u) ∩N(w1)| ≥ 2m2, then m2 ≤ m1. By symmetry, m1 ≤ m2, so
m1 = m2. Thus, Km1,m2 is only possible as a USNS when m1 = m2.

A graph such as the one in Fig. 3 is a forbidden USNS, where m1 = 3 and m2 = 2.
What immediately follows from Theorem 2.5 is a fact about the star graph Sl, which
is a graph with one central vertex and l − 1 vertices adjacent to it, but not to each
other.
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Corollary 2.3. If G ∈ ER(n, d, `) with a USNS, then for all l ≥ 3, the USNS � S`.

Proof. Let m1 = 1 and m2 = `− 1. Then Km1,m2
∼= S`. So S` cannot be a USNS by

Theorem 2.5.

As noted earlier, Theorem 2.5 generalizes Theorem 2.1, as P3
∼= K1,2.

This is not to suggest that complete bipartite graphs with equal part sizes are
also USNS-forbidden. On the contrary, consider K4, which has a K2

∼= K1,1 USNS.

In the following result, define the wheel graph Wm to be a connected graph on
m + 1 vertices, such that m vertices induce a cycle, and the (m + 1)st vertex is
adjacent to all vertices in the cycle.

Theorem 2.6. If G ∈ ER(n, d,m+ 1), m ≥ 4, has a USNS, then the USNS � Wm.

Proof. Suppose for contradiction u ∼ v such that G[N(u) ∩N(v)] ∼= Wm consisting
of vertices w1, . . . , wm+1 such that w2, . . . , wm+1 are the vertices in the cycle and w1

is adjacent to the vertices in the cycle.

Consider adjacent vertices u and w1. N(u) ∩N(w1) = {w2, w3, . . . , wm+1, v}. So
w1 is not adjacent to any vertex in A(u, v).

Similarly, w1 is not adjacent to any vertex in B(u, v).

As G[u, v, w1] ∼= K3 and N(w2) ∩ N(w3) contain u, v, w1, then this K3 is an
induced subgraph of G[N(w2)∩N(w3)]. As m ≥ 4, one of u, v, w1 must be the center
of this wheel.

If u is the center, the other m−2 vertices in N(w2)∩N(w3) besides u, v, w1 must
be in A(u, v), so w1 ∼ ai for some ai ∈ A(u, v), a contradiction.

If v is the center, the other m−2 vertices in N(w2)∩N(w3) besides u, v, w1 must
be in B(u, v), so w1 ∼ bi for some bi ∈ B(u, v), a contradiction.

If w1 is the center, then as m−2 > 0, u and v are adjacent vertices on a cycle Cm
in G[N(w2) ∩N(w3)] of length m ≥ 4 which cannot contain any wj, j > 3 (because
w2 6∼ wj). Then there is a P4 auvb on Cm with a ∈ A(u, v), b ∈ B(u, v). But then w1,
as the center of the wheel, is adjacent in G to both a and b, whereas either adjacency
contradicts a previous inference.

Thus, Wm is not a possible USNS when m ≥ 4.

A component-regular graph is a graph such that each component is regular. Every
known USNS graph is component-regular, and every aforementioned USNS-forbidden
graph is not component-regular. Is it true that every USNS graph is component-
regular?

3 Constructions of ER(n, d, λ) with USNS

Given graphs G1 and G2, the Cartesian product of G1 and G2 is denoted G1�G2.
The vertex set is defined by V (G1�G2) = V (G1) × V (G2). The edge set is defined
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by, given two vertices (u, u′) and (v, v′) ∈ V (G1�G2), (u, u′) ∼ (v, v′) if and only if
either u = v and u′ ∼ v′ (in G2) or u ∼ v (in G1) and u′ = v′.

It was shown in [4] that if G1 ∈ ER(n1, d1, λ) and G2 ∈ ER(n2, d2, λ), then
G1�G2 ∈ ER(n1n2, d1 +d2, λ). However, it is rare that the Cartesian product of two
edge-regular graphs that each have a USNS will have a USNS.

Theorem 3.1. Let n1, n2 ≥ 1 and d1, d2 ≥ 0. If G1 ∈ ER(n1, d1, λ) with a USNS
∼= X and G2 ∈ ER(n2, d2, λ) with a USNS ∼= Y , then G1�G2 ∈ ER(n1n2, d1 + d2, λ)
has a USNS if and only if X ∼= Y , in which case the USNS of G1�G2 is X(∼= Y ).

Proof. Let G1 ∈ ER(n1, d1, λ) with USNS ∼= X and G2 ∈ ER(n2, d2, λ) with USNS
∼= Y .

We assume that G1�G2 ∈ ER(n1n2, d1 + d2, λ) has a USNS. Suppose (u, v) ∼
(x, y) in G1�G2. Then by the definition of the Cartesian product, either u = x in
G1 and v ∼ y in G2 or u ∼ x in G1 and v = y in G2.

If u = x in G1 and v ∼ y in G2, then NG1�G2(u, v) ∩ NG1�G2(x, y) = {(u, z)|z ∈
NG2(v) ∩NG2(y)} which induces, in G1�G2, a graph isomorphic to Y .

Similarly, if u ∼ x in G1 and v = y in G2, then NG1�G2((u, v), (x, y)) induces, in
G1�G2, a graph isomorphic to X. However, G1�G2 has a USNS, by assumption.
Thus, X ∼= Y .

In the other direction, we assume that X ' Y . Then the argument above about
SNS’s in G1�G2 shows that G1�G2 has X ' Y as USNS.

The tensor product of G1 and G2 is denoted G1 ⊗G2. The vertex set is V (G1 ⊗
G2) = V (G1) × V (G2). The edge set is defined by, given two vertices (u, u′) and
(v, v′) ∈ V (G1 ⊗ G2), (u, u′) ∼ (v, v′) if and only if u ∼ v in G1 and u′ ∼ v′ in
G2. By previous work in [4], if G1 ∈ ER(n1, d1, λ1) and G2 ∈ ER(n2, d2, λ2), then
G1 ⊗ G2 ∈ ER(n1n2, d1d2, λ1λ2). The following theorem extends the work in [4] to
include the preservation and structure of the USNS in G1 ⊗G2.

Theorem 3.2. If G1 ∈ ER(n1, d1, λ1) with a USNS ∼= H1 and G2 ∈ ER(n2, d2, λ2)
with a USNS ∼= H2, then G1 ⊗G2 ∈ ER(n1n2, d1d2, λ1λ2) with a USNS ∼= H1 ⊗H2.

Proof. Suppose that (u, v) ∼ (x, y) in G1 ⊗ G2. Then (s, t) ∈ NG1⊗G2(u, v) ∩
NG1⊗G2(x, y) if and only if u ∼ s, x ∼ s in G1 and v ∼ t, y ∼ t in G2. Thus,
NG1⊗G2(u, v) ∩ NG1⊗G2(x, y) = (NG1(u) ∩ NG1(x)) × (NG1(v) ∩ NG1(y)) = V (H1) ×
V (H2), and this set induces H1 ⊗H2 in G1 ⊗G2.

For example, Kn⊗Km
∼= Km,m,...,m\{n−1)-factor edges}, an n-partite graph with

uniform part size m where the edges of a (n− 1)-factor are the column edges when
the vertices are arranged in a n×m matrix. Therefore, the USNS of (Kn ⊗Km) ∼=
Kn−2 ⊗ Km−2 ∼= Km−2,m−2,...,m−2 \ {(n − 3)-factor edges}, an (n − 2)-partite graph
with uniform part size m− 2, where the edges of a (n− 3)-factor are column edges
when the vertices are arranged in a (n− 2)× (m− 2) matrix.
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From this, it follows that given G ∈ ER(n, d, λ) with USNS ∼= H where |H| = λ,
K3⊗G has a USNS of |H|K1. In other words, the tensor product of an edge-regular
graph G with some USNS and a K3 removes all of the edges of the USNS of G as a
new USNS.

Another example: G1 ⊗ G2, where G1 ∈ ER(n, d, λ) and G2 is a triangle-free
regular graph, has an empty graph USNS. That is, G1 ⊗G2 is also triangle-free.

Another useful graph construction for edge-regular graphs is the shadow of a
graph. For any positive integer n, let [n] = {1, . . . , n}. Enlarging the definition in
[8], given a graph G, define Dm(G) to be the mth shadow graph of G, by V (Dm(G)) =
{vij|i ∈ [m]; j ∈ [n]}, given that V (G) = {v1, . . . , vn}; for j, l ∈ [n] and i, k ∈ [m], the
vertices vij and vkl are adjacent in Dm(G) if vj ∼ vl in G. See Fig. 4 for an example.

Theorem 3.3. If G ∈ ER(n, d, λ) with a USNS ∼= H, then Dm(G) ∈ ER(mn,md,
mλ) with a USNS ∼= Dm(H).

Proof. Let G ∈ ER(n, d, λ). Then by construction the mth shadow of G contains m
copies of every vertex of G, so |Dm(G)| = mn.

Now suppose NG(vi) = {u1, . . . , ud}. Then vki is adjacent to each of {u11, . . . , u1d,
u21, . . . , u

2
d, . . . , u

m
1 , . . . , u

m
d } for k ∈ [m]. So Dm(G) is regular of degree md.

Using similar logic, say vi ∼ vj in G such that N(vi) ∩ N(vj) = {u1, . . . , uλ}.
Then N(vki ) ∩ N(vlj) = {uαβ |α ∈ [m]; β ∈ [λ]} for k, l ∈ [m]. Thus, every pair of
adjacent vertices in Dm(G) share exactly mλ vertices.

Further, as G[{v1, . . . , vλ}] ∼= H, then N(vki ) ∩ N(vlj) contains exactly m copies
of H, one in each shadow. The edge set among these m copies of H are as defined
in the mth shadow graph. Thus, Dm(G) has a USNS ∼= Dm(H).

Iteration of a USNS with the shadow graph function allows for additional infinite
families of USNS.

Theorem 3.4. Dq(Dm(G)) ∼= Dqm(G) for integers q,m ≥ 2.

Proof. Suppose V (G) = {v1, . . . , vn} and V (Dm(G)) = {vij | i = 1, . . . ,m; j =

1, . . . , n}. Then V (Dq(Dm(G))) = {vi,kj | i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , q};
for all 1 ≤ i ≤ m, 1 ≤ k ≤ q, 1 ≤ j ≤ n, vi,kj is adjacent in Dq(Dm(G)) to every vs,tr
such that vj ∼ vr in G.

Arrange the qm copies of G in an n×m× q array and label the vertices so that,
with reference to a fixed list v1, . . . , vn of the vertices of G, for (s, t) ∈ [m]× [q], the
appearance of vi in the line of the array consisting of places with coordinates (−, s, t)
is vs,ti . Now it is clear that adjacency in this incarnation of Dqm(G) is the same as
in Dq(Dm(G)).

Alternatively, in V (Dqm(G)) = {v1, . . . , vqm}, relabel the vertices such that the ith

vertex in the qth copy of the mth copy of the vertices is denoted vm,qi for i = 1, . . . , n.
So {vqm} = V (Dq(Dm(G))).
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In both cases, vm1,q1
i ∼ vm2,q2

j if vi ∼ vj in G for i 6= j; 1 ≤ i, j ≤ n; 1 ≤ m1,m2 ≤
m; 1 ≤ q1, q2 ≤ q. Then E(Dq(Dm(G))) = E(Dqm(G)). So Dq(Dm(G)) ∼= Dqm(G)
for all q,m ≥ 2.

For example, Dm(Kn) ∼= Km,m,...,m
∼= Tmn,n ∈ ER(mn,m(n − 1),m(n − 2)),

a complete n-partite graph with uniform partition size m, commonly known as a
(regular) Turán graph. D3(K3) ∼= T9,3 is shown in Fig. 4. So the USNS of Dm(Kn)
is Dm(Kn−2) ∼= Km,m,...,m

∼= Tm(n−2),n−2, the Turán graph on m(n− 2) vertices with
partition size m and n− 2 parts.

Figure 4: D3(K3) ∼= T9,3 with USNS of D3(K1) ∼= T3,1 = K3

As stated in the preliminaries of the paper, not all edge-regular graphs have a
connected USNS.

Consider P , the Petersen graph; P ∈ ER(10, 3, 0). The complement of the
Petersen graph, however, is the interesting case. This graph is also already known
to be edge-regular, as discussed in the d = λ + 3 case of [6]: P ∈ ER(10, 6, 3) with
a USNS of K2 +K1.

4 Conway’s 99-graph Problem

A strongly regular graph in SR(n, d, λ, µ) is a graph in ER(n, d, λ) such that every
pair of non-adjacent vertices share exactly µ common neighbors. Conway’s 99-graph
problem is an open problem that asks about the existence of a strongly regular graph
in SR(99, 14, 1, 2) [2]. Here we will show the non-existence of the 99-graph among
Cartesian or tensor products of two edge-regular graphs.

A regular clique assembly is a regular graph in which each maximal clique (a
complete subgraph) is maximum. The set of (isomorphism types of) regular clique
assemblies on n vertices, of degree d > 0, with clique number = maximum order
of a complete subgraph = ω(G) = k will be denoted RCA(n, d, k). Observe that if
G ∈ RCA(n, d, k), then k ≥ 2 and each edge of G is in exactly one maximum clique
in G [5].

Next, we list results from [5] to use in the following theorem as lemmas.

Lemma 4.1. RCA(n, d, k) ⊆ ER(n, d, k − 2), with equality when k ∈ {2, 3}.

Lemma 4.2. Suppose ER(n, d, 1) 6= ∅. Then
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1. d is even;

2. 3|nd;

3. for each G ∈ ER(n, d, 1) and v ∈ V (G), NG[v] induces in G a friendship graph,
{v} ∨ d

2
K2;

4. if d > 2, each G ∈ ER(n, d, 1) is the clique graph of its clique graph, CL(G) ∈
RCA(nd

6
, 3
2
(d− 2), d

2
).

Lemma 4.3. ER(3(d− 1), d, 1) 6= ∅ if and only if d ∈ {2, 4, 6, 10}.

If the 99-graph G exists, then it is necessarily an edge-regular graph in ER(99, 14,
1). This is equivalent to a regular clique assembly on the parameters RCA(99, 14, 3)
by Lemma 4.3. The idea here is to try to construct RCA(99, 14, 3) by a product of
two graphs G1 and G2, and to show that there is no such combination if the product
is either the Cartesian or the tensor product.

Theorem 4.1. If Conway’s 99-graph exists, then it cannot be constructed as the
Cartesian product of two RCA graphs.

Proof. Suppose G1 ∈ RCA(n1, d1, 3) and G2 ∈ RCA(n2, d2, 3). Then G1�G2 ∈
RCA(n1n2, d1 + d2, 3) by Theorem 3.1. Since G1 and G2 are regular graphs of odd
order, 2 | di, i = 1, 2. There are only two options for n1 and n2, namely the pairs
{33, 3} and {11, 9}.

Let n1 = 3 and n2 = 33. As with all regular graphs, n > d, so G1 must have
degree 2. So, G1 ∈ RCA(3, 2, 3) = ER(3, 2, 1) ∼= K3. Then G2 ∈ RCA(33, 12, 3) =
ER(33, 12, 1). By Lemma 4.3, ER(33, 12, 1) = ∅. So {33, 3} is not a possible pair of
orders of G1 and G2.

Let n1 = 9 and n2 = 11. Then for G1 the only possible d1 are {2, 4, 6, 8} since
n1 = 9 > d1.

If G1 ∈ RCA(9, 2, 3), then G2 ∈ RCA(11, 12, 3), impossible as n2 < d2. If
G1 ∈ RCA(9, 4, 3), then G2 ∈ RCA(11, 10, 3) = ER(11, 10, 1). Given that n2 =
d2 + 1, then G2 would need to be K11, of which λ = 9 6= 1, so RCA(11, 10, 3) =
ER(11, 10, 1) = ∅. If G1 ∈ RCA(9, 6, 3), then G2 ∈ RCA(11, 8, 3) = ER(11, 8, 1).
By Lemma 4.2, since 3 - nd = 88, it follows that ER(11, 8, 1) = ∅.

Finally, if G1 ∈ RCA(9, 8, 3) = ER(9, 8, 1), then as n1 = d1 + 1, G1 is K9. Yet
K9 = ER(9, 8, 7), so ER(9, 8, 1) = ∅.

Thus, the 99-graph cannot be the Cartesian product of two RCA graphs.

Using similar logic, it is straightforward to show that the tensor product of two
edge-regular graphs cannot yield Conway’s 99-graph.

Theorem 4.2. If Conway’s 99-graph exists, then it cannot be constructed with the
tensor product of edge-regular graphs.

Proof. Suppose G1 ∈ ER(n1, d1, λ1) and G2 ∈ ER(n2, d2, λ2) such that G1 ⊗ G2 ∈
ER(99, 14, 1). It is straightforward to see that if G1 or G2 is disconnected, then



J. DELEO/AUSTRALAS. J. COMBIN. 93 (1) (2025), 48–59 59

G1 ⊗ G2 is disconnected, so we may assume that both G1 and G2 are connected
graphs. By Theorem 3.2, n1n2 = 99, d1d2 = 14, and λ1λ2 = 1. Thus, λ1 = λ2 = 1.
Further, d1d2 = 1 · 14 or d1d2 = 2 · 7.

Suppose d1d2 = 1 · 14 and without loss of generality, d1 = 1. Then λ1 = 1 = d1,
a contradiction as d > λ for all edge-regular graphs. Thus, {d1, d2} 6= {1, 14}.

Suppose {d1, d2} = {2, 7} and without loss of generality, d1 = 2. Then λ1 = 1
and d1 = 2 imply n1 = 3. So n2 = 33, d2 = 7, and λ2 = 1. An edge-regular graph
ER(33, 7, 1) = RCA(33, 7, 3) by Lemma 4.1. Yet RCA(33, 7, 3) would be a regular
graph of odd order and odd degree, an impossibility.
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