Online 3-choosability of a planar graph without certain cycles

Hemlata Y. Pawar* S.B. Dhotre

Department of Mathematics Savitribai Phule Pune University (Center for Advanced Study in Mathematics), Pune, 411007 India

hemlatayeole@gmail.com dsantosh2@yahoo.co.in

Abstract

Online list coloring of a graph G is a dynamic version of list coloring in which lists are not predetermined. It has been proven that planar graphs without cycles of length 4, r, s, 9, where r < s and $r, s \in \{5, 6, 7, 8\}$, are 3-choosable. In this paper, we extend the above results by proving that planar graphs without cycles of length 4, r, s, 9, where r < s and $r, s \in \{5, 6, 7, 8\}$ (except r = 5 and s = 7), are online 3-choosable.

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). A function $\phi:V(G)\to\{1,2,3,\ldots,k\}$ is called a proper k-coloring of a graph G if $\phi(u)\neq\phi(v)$ for all edges $uv\in E(G)$. The chromatic number $\chi(G)$ of a graph G is the smallest integer k such that G has a proper k-coloring.

Vizing [9] and Erdős et al. [3] independently introduced the concept of list coloring in graphs.

Definition 1.1. For a given function $f:V(G)\to\mathbb{N}$, each vertex $u\in V(G)$ is assigned a list of f(u) available colors. If there exists a proper coloring for every such list assignment then G is said to be f-choosable. If f(u)=k for all $u\in V(G)$, then G is said to be k-choosable. The choice number of G is the smallest integer k such that G is k-choosable, and is denoted by $\chi_{\ell}(G)$ or Ch(G).

Schauz [4] and Zhu [14] independently introduced the concept of online list coloring (paintability) in the form of a game. Online list coloring is a Marker-Remover game played on a graph G. For a function $f: V(G) \to \mathbb{N}$, there are f(u) - 1 erasers

 $^{^{\}ast}~$ Also at: Dr. D.Y. Patil Institute of Technology, Pune, 411018, India.

allotted to each vertex $u \in V(G)$. In the *i*-th round, Marker marks a non-empty subset M_i of the uncolored vertices of V(G) with color *i*. After that, Remover colors and removes a maximal independent subset R_i of M_i . For every vertex marked with color *i*, but not removed, Remover needs to use one of its allotted erasers to remove its mark. Marker wins if, at the end of some round, there is a vertex u for which no eraser is left, and Remover wins if all the vertices are removed giving a proper coloring.

Definition 1.2. For a function $f: V(G) \to \mathbb{N}$, if Remover wins whenever f(u) - 1 erasers are allotted to each vertex u, then G is called online f-choosable. A graph G is called online k-choosable if f(u) = k.

Definition 1.3. The online choice number of G is the minimum value of k such that G is online k-choosable. Online choice number is denoted by $\chi_p(G)$ or $ch^{OL}(G)$.

The recursive definition of online list coloring is given by Schauz [4].

Definition 1.4. Online f-choosability of a graph G for a given function $f:V(G)\to\mathbb{N}$ is defined as follows:

- (1) Empty graph is online f-choosable.
- (2) A non-empty graph G is online f-choosable if every non-empty subset $V_M \subseteq V(G)$ contains an independent subset V_R such that $(G V_R)$ is online $f \mathbf{1}_{(V_M \setminus V_R)}$ choosable, where characteristic function $\mathbf{1}_X$ of a set X is defined as $\mathbf{1}_X(v) = 1$ if $v \in X$ and $\mathbf{1}_X(v) = 0$ if $v \notin X$.

Suppose that Marker writes down all the colors used to mark the vertex u in a list L(u). When the game is over, the list L(u) has at most f(u) entries, since Remover can erase the mark at u at most f(u)-1 times. The color assigned to a vertex u of a graph G belongs to the list L(u). Thus online list coloring may be seen as a dynamic version of list coloring where the lists L(u) for $u \in V(G)$ are not predetermined. Since we have the natural inequalities $\chi_p(G) \geq \chi_\ell(G) \geq \chi(G)$, extending the known results from choosability to online choosability strengthens those results. Thomassen [6] proved that a planar graph is 5-choosable. He also proved that a planar graph with girth at least 5 is 3-choosable [7], and gave a short list-color proof of Grötzsch's theorem [8]. Schauz [4] proved that a planar graph is online 5-choosable. Chang and Zhu [2] proved that a planar graph with no 3-cycle and no 4-cycle adjacent to a 4-cycle or 5-cycle, is online 3-choosable.

We begin by introducing the terminology and definitions used throughout this paper. A graph is called planar if it can be embedded in the plane so that its edges do not cross each other and intersect only at their endpoints. Let G be a planar graph with vertex set V(G), edge set E(G), and face set F(G). For a positive integer k, a cycle of length k is called a k-cycle. The boundary of a face f is a closed walk around f. The number of edges on the boundary of f is called the degree of f. We call a face f a k-face if its degree is equal to k. A face f is called simple if its boundary forms a cycle. Let V(f) and E(f) denote the set of vertices and edges, respectively,

on the boundary of the face f. If $v \in V(f)$ then a vertex v is said to be incident with a face f. In a plane graph, a simple face is specified by the sequence of its vertices traversed in either the clockwise or counterclockwise direction. We call a vertex v a k-vertex, k^- -vertex, or k^+ -vertex if its degree d(v) is equal to k, at most k, or at least k, respectively. An edge uv is denoted by (d(u), d(v)). The minimum degree of a vertex in a graph G is denoted by $\delta(G)$. For $A \subset V(G)$, G-A denotes the subgraph of G induced by the vertex set $V(G) \setminus A$. G-v denotes the induced subgraph of G obtained by deleting a vertex $v \in V(G)$. Function $f|_A$ denotes the restriction of the function f to the set A. The set of neighbors of a vertex v in a graph G is denoted by $N_G(v)$, i.e., $N_G(v) = \{u \mid u \in V(G), uv \in E(G)\}$. A chord of a cycle C is an edge that connects two non-adjacent vertices of C. A chord xy is called an internal chord if it lies entirely within the region enclosed by C. Otherwise, xy is called an external chord of C. A directed graph is a graph where each edge is assigned a direction. In a directed edge xy, the vertex x is the tail, and the vertex y is the head. Vertex x is an in-neighbor of y, and y is an out-neighbor of x. A directed cycle $(v_1, v_2, v_3, \dots, v_n, v_1)$ is a sequence of directed edges $v_1v_2, v_2v_3, v_3v_4, \ldots, v_nv_1$, forming a closed path in which each vertex appear exactly once, except for the first and last, which coincide.

2 Some results in 3-choosbility

Borodin [1] proved the following theorem:

Theorem 2.1. A planar graph without cycles of length k, for $4 \le k \le 9$, is 3-colorable.

Forbidding cycles of certain lengths provides sufficient conditions for 3-choosability.

Theorem 2.2. A planar graph is 3-choosable if it contains no cycles of length

- (1) [13] 4, 5, 6, 7, 8 and 9; or
- (2) [13] 4, 5, 6 and 9; or
- (3) [12] 4, 7, 8 and 9; or
- (4) [5] 4, 6, 8 and 9; or
- (5) [10] 4, 6, 7 and 9; or
- (6) [11] 4, 5, 8 and 9.

If a certain structure appears in a minimal counterexample G and leads to a contradiction with the assumed property, then it is called a reducible structure. The reducible structure in the above results is an even cycle C in which all vertices have degree 3. Since an even cycle C is 2-choosable, the list coloring of G - C can be extended to the list coloring of G. In this paper, we prove that the absence of cycles of certain lengths gives sufficient conditions for online 3-choosability.

3 Lemmas

Using the recursive definition of online f-choosability, Schauz [4] proved the following lemmas. For a graph G, let f, g, g_1 , and g_2 be functions from V(G) to the set of natural numbers \mathbb{N} .

Lemma 3.1. If $g(v) \leq f(v)$ for all $v \in V(G)$ then online g-choosability of G implies online f-choosability of G.

Lemma 3.2. Let $H = \{v : deg(v) < f(v)\}$ be a subset of V(G). G is online f-choosable if G - H is online $f|_{G \setminus H}$ choosable.

Lemma 3.3. Let G be a graph with a function $g: V(G) \to \mathbb{N}$. Let A be an independent subset of V(G) such that g(v) = 1 for all $v \in A$. Let $f: V(G) \setminus A \to \mathbb{N}$ be defined as $f(v) = g(v) - |A \cap N_G(v)|$ then G is online g-choosable if and only if G - A is online f-choosable.

Lemma 3.4. Let $G = A \cup B$ such that A and B are online g-choosable and h-choosable respectively, where h(v) = 1 for all $v \in V(A) \cap V(B)$. Let a function $f: (V(A) \cup V(B)) \to \mathbb{N}$ be defined as $f(v) = g(v)\mathbf{1}_{V(A)}(v) + h(v)\mathbf{1}_{[V(B)\setminus V(A]}(v)$. Then $A \cup B$ is online f-choosable.

4 Main results

Theorem 4.1. A planar graph G without k-cycles for $4 \le k \le 9$ is online 3-choosable.

Proof. Suppose G is a graph of least order that does not contain k-cycles for $4 \le k \le 9$ and G is not online 3-choosable. For such a graph G, we have $\delta(G) \ge 3$. Otherwise, there exists a vertex $v \in V(G)$ such that d(v) < 3. As G is the smallest counterexample, G - v is online 3-choosable. By Lemma 3.2, G is online 3-choosable. This is a contradiction.

Borodin [1] proved that a planar graph G with $\delta(G) \geq 3$ and no adjacent triangles contains either a cycle of length between 4 to 9, or a 10-face incident with ten 3-vertices and adjacent to five triangles. Since counterexample G does not contain k-cycles for $4 \leq k \leq 9$ and has minimum vertex degree $\delta(G) \geq 3$, the graph G must contain a 10-face F that is incident with ten 3-vertices and adjacent to five triangles. Let $V_1 = \{v_1, v_2, \dots, v_{10}\}$ be the set of 3-vertices incident to the 10-face F. Let $A = \{u \mid u \in N_G(v), v \in V(F)\} \setminus V(F)$. Thus, $A = \{u_1, u_2, u_3, u_4, u_5\}$ is the set of vertices incident with 3-faces adjacent to the 10-face F, but do not lie on the boundary of F (see Figure 1).

Let $G_1 = G - V(F)$ be the subgraph of G induced by $V(G) \setminus V(F)$. Let $g_1 : V(G_1) \to \mathbb{N}$ be defined by $g_1(v) = 3$ for all $v \in V(G_1)$. Since G is the smallest counterexample, it follows that the subgraph G_1 is online g_1 -choosable.

Let G_2 be the subgraph of G with $V(G_2) = V(F) \cup A$ and $E(G_2) = E(F) \cup \{vu \mid v \in V(F), u \in A, vu \in E(G)\}$ (see Figure 1). Observe that the set A forms an independent set in G_2 . Let $g_2 : V(G_2) \to \mathbb{N}$ be defined by $g_2(v) = 1$ for all $v \in A$ and $g_2(v) = 3$ for all $v \in V(F)$. We prove that G_2 is online g_2 -choosable.

Let $H = G_2 - A$ be the subgraph of G_2 induced by $V(G_2) \setminus A$, with $h : V(H) \to \mathbb{N}$ defined by $h(v) = g_2(v) - |A \cap N_{G_2}(v)|$. Therefore, h(v) = 2 for all $v \in V(H)$. The subgraph H is an even cycle C_{10} . Zhu [14] proved that the even cycle C_{2n} is online 2-choosable. Hence, H is online 2-choosable. It follows from Lemma 3.3 that G_2 is online g_2 -choosable.

Note that $G = G_1 \cup G_2$ and $V(G_1) \cap V(G_2) = A$. Let $f : V(G) \to \mathbb{N}$ be defined by $f(v) = g_1(v) \mathbf{1}_{V(G_1)}(v) + g_2(v) \mathbf{1}_{[V(G_2) \setminus V(G_1)]}(v)$. Thus, f(v) = 3 for all $v \in V(G)$. By Lemma 3.4, $G = G_1 \cup G_2$ is online f-choosable. Hence, we obtain a contradiction. \square

Figure 1: G_2 :10-face with adjacent 3-faces

Zhang and Wu [13] proved that the absence of cycles of length 4, 5, 6 and 9 in a graph G is sufficient to have a 10-face incident with ten vertices of degree three and adjacent to five triangles. Proceeding as in Theorem 4.1, we obtain the following result.

Theorem 4.2. A planar graph G without 4, 5, 6 and 9-cycles is online 3-choosable.

Theorem 4.3. A planar graph G without 4, 7, 8 and 9-cycles is online 3-choosable.

Proof. Suppose G is a graph of least order that does not contain 4, 7, 8 and 9-cycles, and G is not online 3-choosable. If $\delta(G) < 3$, then there exists a vertex $v \in V(G)$ such that d(v) < 3. Since G is smallest counterexample, it follows that G - v is online 3-choosable. By Lemma 3.2, G is online 3-choosable. Hence, we obtain a contradiction. It follows that $\delta(G) \geq 3$. A θ -graph consists of two distinct vertices connected by three internally pairwise disjoint paths. It was shown in [12] that G contains either a 10-face incident with ten 3-vertices, or a special θ -like induced subgraph S with the following properties (see Figure 2):

- (1) $\delta(S) = 2$;
- (2) S contains a cycle C that spans all the vertices of S;

- (3) the removal of external chords of C, if any, leaves C with only one internal chord, which is the edge $(3, 4^-)$ in G;
- (4) all vertices of the subgraph S have degree 3 in G, with the possible exception of one endpoint of the internal chord $(3, 4^-)$.

- (a) 10-face with ten 3-vertices
- (b) v_1v_6 as an external chord

Figure 2: Subgraphs of G

Case 4.3.1. Suppose G contains a 10-face F incident with ten 3-vertices. Let $V_1 = \{v_1, v_2, \ldots, v_{10}\}$ be the set of 3-vertices incident with the face F. Let A be the set of neighbors in G of vertices in V_1 , excluding those in V_1 itself, i.e., $A = \{u \mid u \in N_G(v), v \in V_1\} \setminus V_1$.

Let $G_1 = G - V_1$ be the subgraph of G induced by $V(G) \setminus V_1$. We define a function $g_1 : V(G_1) \to \mathbb{N}$ by $g_1(v) = 3$ for all $v \in V(G_1)$. Since G is the smallest counterexample, it follows that the subgraph G_1 is online g_1 -choosable.

Let G_2 be the subgraph of G with $V(G_2) = V_1 \cup A$ and $E(G_2) = E(F) \cup \{vu \mid v \in V_1, u \in A, vu \in E(G)\}$. Note that the set A forms an independent set in G_2 . Let $g_2: V(G_2) \to \mathbb{N}$ be a function defined by $g_2(v) = 1$ for all $v \in A$ and $g_2(v) = 3$ for all $v \in V(G_2) \setminus A$. We prove that G_2 is online g_2 -choosable.

Let $H = G_2 - A$ be the subgraph of G_2 induced by $V(G_2) \setminus A$. Let $h : V(H) \to \mathbb{N}$ be defined by $h(v) = g_2(v) - |A \cap N_{G_2}(v)|$. Therefore, h(v) = 2 for all $v \in V(H)$. Since H = G - A is an even cycle C_{10} , it follows that H is online 2-choosable. By Lemma 3.3, G_2 is online g_2 -choosable.

Note that $G = G_1 \cup G_2$, with $V(G_1) \cap V(G_2) = A$. Let $f : V(G) \to \mathbb{N}$ be defined by $f(v) = g_1(v)\mathbf{1}_{V(G_1)}(v) + g_2(v)\mathbf{1}_{[V(G_2)\setminus V(G_1)]}(v)$. Thus, f(v) = 3 for all $v \in V(G)$. By Lemma 3.4, $G = G_1 \cup G_2$ is online f-choosable. Thus, we arrive at a contradiction.

Case 4.3.2. Since there are no cycles of length 4, 7, 8 and 9, G may contain a 10-face F with exactly one external chord that divides F into two equal parts. Let $V_1 = \{v_1, v_2, \ldots, v_{10}\}$ be the set of 3-vertices incident to the face F. Without loss of generality, we may relabel the vertices of F so that they appear in the cyclic order $(v_1, v_2, \ldots, v_{10})$, with the external chord being v_1v_6 . Let F be the set of neighbors in F of vertices in F of vertices in F and F itself, i.e., F is an F in F in

Let $G_1 = G - V_1$ be the subgraph of G induced by $V(G) \setminus V_1$. Let $g_1 : V(G_1) \to \mathbb{N}$ = be defined by $g_1(v) = 3$ for all $v \in V(G_1)$. Since G is the smallest counterexample, it follows that the subgraph G_1 is online g_1 -choosable.

Let G_2 be the subgraph of G with $V(G_2) = V_1 \cup A$ and $E(G_2) = E(F) \cup \{vu \mid v \in V_1, u \in A, vu \in E(G)\} \cup \{v_1v_6\}$. Let $g_2 : V(G_2) \to \mathbb{N}$ be a function defined by $g_2(v) = 1$ for all $v \in A$, and $g_2(v) = 3$ for all $v \in V(G_2) \setminus A$. We prove that G_2 is online g_2 -choosable.

Let $H = G_2 - A$ be the subgraph of G_2 induced by $V(G_2) \setminus A$. Let $h: V(H) \to \mathbb{N}$ defined by $h(v) = g_2(v) - |A \cap N_{G_2}(v)|$. It follows that h(v) = 2 for all $v \in V(H)$, except for the endpoints of the external chord v_1v_6 , which evenly divides the face F. For these endpoints, $h(v_1) = 3$ and $h(v_6) = 3$. The subgraph $H = G_2 - A$ consists of an even cycle $C_{10} = (v_1, v_2, v_3, \dots, v_9, v_{10}, v_1)$ and an external chord v_1v_6 . We orient the cycle C_{10} to form a directed cycle (see Figure 2(b)). The external chord v_1v_6 is oriented from v_1 to v_6 . In the *i*-th round, Marker marks a non-empty subset M_i of the uncolored vertices in V(H) with color i. Remover colors and removes the maximal independent subset R_i of M_i , selected greedily with respect to the given orientation. Thus, a vertex $v \in M_i$ is in R_i if and only if it has no in-neighbor in M_i under a given orientation. Every vertex $v \in V(H)$ has exactly one in-neighbor, except for v_6 , which has v_1 and v_5 as its two in-neighbors. Remover wins by applying this strategy. A vertex $v \in V(H) \setminus \{v_6\}$ is marked without being removed at most once for its in-neighbor. The endpoint v_6 of the external chord v_1v_6 , is marked at most twice but not removed, once for each of its two in-neighbors. Hence, H is online h-choosable. By Lemma 3.3, G_2 is online g_2 -choosable.

Note that $G = G_1 \cup G_2$, with $V(G_1) \cap V(G_2) = A$. Let $f : V(G) \to \mathbb{N}$ be defined by $f(v) = g_1(v)\mathbf{1}_{V(G_1)}(v) + g_2(v)\mathbf{1}_{[V(G_2)\setminus V(G_1)]}(v)$. Thus, f(v) = 3 for all $v \in V(G)$. By Lemma 3.4, $G = G_1 \cup G_2$ is online f-choosable. Hence, we obtain a contradiction.

Case 4.3.3. Suppose G contains the special subgraph S. Let V_1 be the vertex set of the subgraph S. Let $C = (v_1, v_2, v_3, \ldots, v_k, v_{k+1}, v_{k+2}, v_{k+3}, \ldots, v_r, v_1)$ be a spanning cycle of S. After deleting all external chords of the cycle C, we obtain a cycle with exactly one internal chord $(3, 4^-)$. Without loss of generality, let v_1v_k be the internal

chord with v_1 as 4⁻-vertex and v_k as 3-vertex in G. Let $A = \{u \mid u \in N_G(v), v \in V_1\} \setminus V_1$.

Let $G_1 = G - V_1$ be the subgraph of G induced by $V(G) \setminus V_1$. We define a function $g_1 : V(G_1) \to \mathbb{N}$ by $g_1(v) = 3$ for all $v \in V(G_1)$. Since G is the smallest counterexample, it follows that the subgraph G_1 is online g_1 -choosable.

Let G_2 be the subgraph of G with $V(G_2) = V_1 \cup A$ and $E(G_2) = E(S) \cup \{vu \mid v \in V_1, u \in A, vu \in E(G)\}$. Let $g_2 : V(G_2) \to \mathbb{N}$ be defined by $g_2(v) = 1$ for all $v \in A$ and $g_2(v) = 3$ for all $v \in V(G_2) \setminus A$. We prove that G_2 is online g_2 -choosable.

Let $H = G_2 - A$ be the subgraph of G_2 induced by $V(G_2) \setminus A$. Let $h: V(H) \to \mathbb{N}$ be defined by $h(v) = g_2(v) - |A \cap N_{G_2}(v)|$. Therefore, h(v) = 2 for all $v \in V(H)$, except for the endpoint v_k of the internal chord v_1v_k , for which $h(v_k) = 3$. We orient the spanning cycle C in S to form a directed cycle. The internal chord v_1v_k is oriented from v_1 to v_k . In the *i*-th round, Marker marks a non-empty subset M_i of the uncolored vertices in V(H) with color i. Remover colors and removes the maximal independent subset R_i of M_i , selected greedily with respect to the given orientation. Thus, a vertex $v \in M_i$ is in R_i if and only if it has no in-neighbor in M_i under a given orientation. Every vertex $v \in V(H)$ has exactly one in-neighbor, except for the endpoint v_k of the internal chord v_1v_k , which has v_1 and v_{k-1} as its two in-neighbors. Remover wins applying this strategy, since $v \in V(H) \setminus \{v_k\}$ is marked without being removed at most once for its in-neighbor. The endpoint v_k of the internal chord v_1v_k , is marked at most twice but not removed, once for each of its two in-neighbors. If there is an external chord uv then h(u) = 3 and h(v) = 3. For a directed arc uv, the possibility of vertex v being marked twice but not removed, does not pose a problem, since h(v) = 3. For example, in case of the directed external chord $v_{k+3}v_{k+5}$, the vertex v_{k+5} may be marked twice without being removed as it has two in-neighbors v_{k+3} and v_{k+4} . Remover still wins, since $h(v_{k+5}) = 3$ (see Figure 2(c)). Hence, $H = G_2 - A$ is online h-choosable. By applying Lemma 3.3, we conclude that G_2 is online g_2 -choosable.

Note that $G = G_1 \cup G_2$, with $V(G_1) \cap V(G_2) = A$. Let $f : V(G) \to \mathbb{N}$ be defined by $f(v) = g_1(v)\mathbf{1}_{V(G_1)}(v) + g_2(v)\mathbf{1}_{[V(G_2)\setminus V(G_1)]}(v)$. Thus, f(v) = 3 for all $v \in V(G)$. By Lemma 3.4, $G = G_1 \cup G_2$ is online f-choosable. Hence, we arrive at a contradiction.

Hence, a planar graph G without 4, 7, 8 and 9-cycles is online 3-choosable. \Box

Theorem 4.4. A planar graph G without 4, 6, 8 and 9-cycles is online 3-choosable.

Proof. Suppose G is a graph of least order that does not contain 4, 6, 8 and 9-cycles, and G is not online 3-choosable. For such a graph G, we have $\delta(G) \geq 3$. Otherwise, there exists a vertex $v \in V(G)$ such that d(v) < 3. Since G is smallest counterexample, G - v is online 3-choosable. By Lemma 3.2, G is online 3-choosable. Hence, we obtain a contradiction.

As proved by Shen and Wang [5], G contains a 10-face incident with ten 3-vertices. Then following a similar strategy as in Case 4.3.1 of Theorem 4.3, we prove that a planar graph G with no cycles of length 4, 6, 8 and 9 is online 3-choosable.

Theorem 4.5. A planar graph G without 4, 6, 7 and 9-cycles is online 3-choosable.

Proof. Suppose G is a graph of least order that does not contain 4, 6, 7 and 9-cycles, and G is not online 3-choosable. As proved in Theorem 4.4, $\delta(G) \geq 3$. Wang, Lu and Chen [10] proved that a planar graph G without 4, 6, 7 and 9-cycles contains either an 8-face incident with eight 3-vertices, or an 8-face incident with eight 3-vertices and containing exactly one external chord that divides an 8-face into two equal parts, or a 10-face with ten 3-vertices.

Case 4.5.1. Suppose G contains an 8-face F incident with eight 3-vertices. Let the vertex set of F be $V_1 = \{v_1, v_2, v_3, \ldots, v_8\}$. Since the face F is an even cycle, we proceed as in Case 4.3.1 of Theorem 4.3.

Case 4.5.2. Since there are no cycles of length 4, 6, 7 and 9, G may contain an 8-face F that is incident with eight 3-vertices and has exactly one external chord, which divides F into two equal parts. Let $V_1 = \{v_1, v_2, \ldots, v_8\}$ be the vertex set of the face F. Without loss of generality, we may relabel the vertices of F so that they appear in the cyclic order (v_1, v_2, \ldots, v_8) , with the external chord being v_1v_5 . Let $A = \{u \mid u \in N_G(v), v \in V_1\} \setminus V_1$.

Let $G_1 = G - V_1$ be the subgraph of G induced by $V(G) \setminus V_1$. Let $g_1 : V(G_1) \to \mathbb{N}$ be defined by $g_1(v) = 3$ for all $v \in V(G_1)$. Since G is the smallest counterexample, it follows that the subgraph G_1 is online g_1 -choosable.

Let G_2 be the subgraph of G with $V(G_2) = V_1 \cup A$ and $E(G_2) = E(F) \cup \{vu \mid v \in V_1, u \in A, vu \in E(G)\} \cup \{v_1v_5\}$. We define a function $g_2 : V(G_2) \to \mathbb{N}$ by $g_2(v) = 1$ for all $v \in A$ and $g_2(v) = 3$ for all $v \in V(G_2) \setminus A$. We prove that G_2 is online g_2 -choosable.

Let $H = G_2 - A$ be the subgraph of G_2 induced by $V(G_2) \setminus A$, with $h: V(H) \to \mathbb{N}$ defined by $h(v) = g_2(v) - |A \cap N_{G_2}(v)|$. Therefore, h(v) = 2 for all $v \in V(H)$, except for the endpoints of the external chord v_1v_5 which evenly divides 8-face. For these endpoints, $h(v_1) = 3$ and $h(v_5) = 3$. The subgraph induced by H consists of an even cycle C_8 and external chord v_1v_5 . We orient the cycle C_8 such that it forms a directed cycle. The external chord v_1v_5 is oriented from v_1 to v_5 . In the *i*-th round, Marker marks a non-empty subset M_i of the uncolored vertices in V(H) with color i. Remover colors and removes the maximal independent subset R_i of M_i , selected greedily with respect to the given orientation. Thus, a vertex $v \in M_i$ is in R_i if and only if it has no in-neighbor in M_i under a given orientation. Every vertex $v \in V(H)$ has exactly one in-neighbor, except for the endpoint v_5 of the external chord v_1v_5 , which has v_1 and v_4 as its two in-neighbors. Remover wins by applying this strategy because $v \in V(H) \setminus \{v_5\}$ is marked but not removed, at most once for its in-neighbor. The endpoint v_5 of the external chord v_1v_5 , is marked at most twice, but is not removed, once for each of its two in-neighbors. Hence, H is online h-choosable. Lemma 3.3 implies that G_2 is online g_2 -choosable.

Note that $G = G_1 \cup G_2$, with $V(G_1) \cap V(G_2) = A$. Let $f : V(G) \to \mathbb{N}$ be defined by $f(v) = g_1(v)\mathbf{1}_{V(G_1)}(v) + g_2(v)\mathbf{1}_{[V(G_2)\setminus V(G_1)]}(v)$. Thus, f(v) = 3 for all $v \in V(G)$. By Lemma 3.4, $G = G_1 \cup G_2$ is online f-choosable. Thus, we arrive at a contradiction.

Case 4.5.3. Suppose G contains a 10-face F incident with ten 3-vertices. We proceed as in case 4.3.1 of Theorem 4.3.

Theorem 4.6. A planar graph G without 4, 5, 8 and 9-cycles is online 3-choosable.

Proof. Suppose G is a graph of least order that does not contain 4, 5, 8 and 9-cycles, and G is not online 3-choosable.

A θ -graph consists of two distinct vertices joined by three internally disjoint paths. An induced subgraph S_{θ} of G is a special θ -graph, isomorphic to an r-cycle with one internal chord. All vertices of S_{θ} are of degree 3 in G, except for one endpoint of its internal chord, which is a 4^- -vertex (see Figure 3(a)).

An induced subgraph T_{θ} is an altered version of S_{θ} in which two endpoints of the internal chord are replaced by two 3-faces. All vertices of T_{θ} are of degree 3, except for two vertices lying on the outer cycle, which are incident to one of the two 3-faces and can possibly have degree 4 in G (v_1 and v_r in Figure 3(b)).

Wang, Lu, and Chen [11] proved the following structural property. If a connected graph G satisfies the following properties:

- (1) $3 \le \delta(G)$;
- (2) G does not contain 4, 5, 8 and 9-cycles;
- (3) every simple even face contains at least one 4^+ -vertex,

then G contains either S_{θ} or T_{θ} .

We prove that $\delta(G) \geq 3$. If $\delta(G) < 3$, then there exists a vertex $v \in V(G)$ such that d(v) < 3. Since G is smallest counterexample, G - v is online 3-choosable. By Lemma 3.2, G is online 3-choosable. Thus, we obtain a contradiction.

Every simple even face F of G contains at least one 4^+ vertex. Otherwise, boundary of a face F is an even cycle C with all vertices of degree 3. Let V_1 be the set of vertices incident to the face F. Let $A = \{u \mid u \in N_G(v), v \in V_1\} \setminus V_1$.

Let $G_1 = G - V_1$ be the subgraph of G induced by $V(G) \setminus V_1$. Let $g_1 : V(G_1) \to \mathbb{N}$ be defined by $g_1(v) = 3$ for all $v \in V(G_1)$. Since G is the smallest counterexample, it follows that the subgraph G_1 is online g_1 -choosable.

Let G_2 be the subgraph of G with $V(G_2) = V(F) \cup A$ and $E(G_2) = E(F) \cup \{vu \mid v \in V_1, u \in A, vu \in E(G)\}$. Let $g_2 : V(G_2) \to \mathbb{N}$ be defined by $g_2(v) = 1$ for all $v \in A$ and $g_2(v) = 3$ for all $v \in V(G_2) \setminus A$. We prove that G_2 is online g_2 -choosable.

Let $H = G_2 - A$ be the subgraph of G_2 induced by $V(G_2) \setminus A$. Let $h : V(H) \to \mathbb{N}$ defined by $h(v) = g_2(v) - |A \cap N_{G_2}(v)|$. Therefore, h(v) = 2 for all $v \in V(H)$. Since H = G - A is an even cycle C, H is online 2-choosable, i.e., online h-choosable. It follows from Lemma 3.3, G_2 is online g_2 -choosable.

Note that $G = G_1 \cup G_2$, with $V(G_1) \cap V(G_2) = A$. Let $f : V(G) \to \mathbb{N}$ be defined by $f(v) = g_1(v)\mathbf{1}_{V(G_1)}(v) + g_2(v)\mathbf{1}_{[V(G_2)\setminus V(G_1)]}(v)$. Thus, f(v) = 3 for all $v \in V(G)$. By Lemma 3.4, $G = G_1 \cup G_2$ is online f-choosable. Hence, we obtain a contradiction.

Figure 3: Reducible structures

Case 4.6.1. Suppose G contains an induced subgraph S_{θ} . Let V_1 be the vertex set of S_{θ} . Let $A = \{u \mid u \in N_G(v), v \in V_1\} \setminus V_1$. Without loss of generality, we may relabel the vertices of S_{θ} so that they appear in the cyclic order $(v_1, v_2, \ldots, v_k, v_{k+1}, v_{k+2}, \ldots, v_r)$, with the external chord being v_1v_k , where v_1 is a 4^- -vertex.

Let $G_1 = G - V_1$ be the subgraph of G induced by $V(G) \setminus V_1$. Define a function $g_1 : V(G_1) \to \mathbb{N}$ such that $g_1(v) = 3$ for all $v \in V(G_1)$. Since G is the smallest counterexample, it follows that the subgraph G_1 is online g_1 -choosable.

Let G_2 be the subgraph of G with $V(G_2) = V(S_\theta) \cup A$ and $E(G_2) = E(S_\theta) \cup \{vu \mid v \in V_1, u \in A, vu \in E(G)\}$. Let $g_2 : V(G_2) \to \mathbb{N}$ be defined by $g_2(v) = 1$ for all $v \in A$ and $g_2(v) = 3$ for all $v \in V(G_2) \setminus A$. We show that G_2 is online g_2 -choosable.

Let $H = G_2 - A$ be the subgraph of G_2 induced by $V(G_2) \setminus A$, with $h: V(H) \to \mathbb{N}$ defined by $h(v) = g_2(v) - |A \cap N_{G_2}(v)|$. Therefore, h(v) = 2 for all $v \in V(H)$, except for the endpoint v_k of the internal chord v_1v_k . For this endpoint, $h(v_k)=3$. We orient the edges of H, i.e., S_{θ} as v_1v_2 , v_2v_3 , v_3v_4 ,..., v_kv_{k+1} , $v_{k+1}v_{k+2}$,..., $v_{r-1}v_r$, v_rv_1 to form a directed cycle. The internal chord v_1v_k is oriented from the 4⁻-vertex v_1 to v_k (see Figure 3(a)). The winning strategy for Remover is as follows. In the i-th round, Marker marks a non-empty subset M_i of the uncolored vertices in V(H)with color i. Remover colors and removes the maximal independent subset R_i of M_i , selected greedily with respect to the given orientation. Thus, a vertex $v \in M_i$ is in R_i if and only if it has no in-neighbor in M_i under a given orientation. Every vertex $v \in V(H)$ has exactly one in-neighbor, except for v_k , which has v_1 and v_{k-1} as its two in-neighbors. Remover wins by applying this strategy because $v \in V(H) \setminus \{v_k\}$ is marked, but not removed, at most once for its in-neighbor. The endpoint v_k of the internal chord v_1v_k , is marked at most twice but not removed, once for each of its two in-neighbors. Hence, H is online h-choosable. By applying Lemma 3.3, we conclude that G_2 is online g_2 -choosable.

Note that $G = G_1 \cup G_2$, with $V(G_1) \cap V(G_2) = A$. Let $f : V(G) \to \mathbb{N}$ be defined by $f(v) = g_1(v)\mathbf{1}_{V(G_1)}(v) + g_2(v)\mathbf{1}_{[V(G_2)\setminus V(G_1)]}(v)$. Thus, f(v) = 3 for all $v \in V(G)$. By Lemma 3.4, $G = G_1 \cup G_2$ is online f-choosable. Hence, we obtain a contradiction.

Case 4.6.2. Suppose G contains an induced subgraph T_{θ} . Let V_1 be the vertex set

of a subgraph T_{θ} . Let $A = \{u \mid u \in N_G(v), v \in V_1\} \setminus V_1$.

Let $G_1 = G - V_1$ be the subgraph of G induced by $V(G) \setminus V_1$. Define a function $g_1 : V(G_1) \to \mathbb{N}$ such that $g_1(v) = 3$ for all $v \in V(G_1)$. Since G is the smallest counterexample, it follows that the subgraph G_1 is online g_1 -choosable.

Let G_2 be the subgraph of G with $V(G_2) = V(T_\theta) \cup A$ and $E(G_2) = E(T_\theta) \cup \{vu \mid v \in V_1, u \in A, vu \in E(G)\}$. Define a function $g_2 : V(G_2) \to \mathbb{N}$ by $g_2(v) = 1$ for all $v \in A$ and $g_2(v) = 3$ for all $v \in V(G_2) \setminus A$. We prove that G_2 is online g_2 -choosable.

Let $H = G_2 - A$ be the subgraph of G_2 induced by $V(G_2) \setminus A$. Let $h : V(H) \to \mathbb{N}$ be defined by $h(v) = g_2(v) - |A \cap N_{G_2}(v)|$. Thus, h(v) = 2 for all $v \in V(H)$, except for vertices x, y, v_k , and v_{k+1} . Note that h(x) = 3, h(y) = 3, $h(v_k) = 3$ and $h(v_{k+1}) = 3$.

We orient the edges of H, i.e., T_{θ} such that each vertex with h(v) = 2 has exactly one in-neighbor, and each vertex with h(v) = 3 has at most two in-neighbors. We orient an outer cycle of T_{θ} as directed cycle $(v_1, v_2, v_3, \ldots, v_k, v_{k+1}, v_{k+2}, \ldots, v_{r-1}, v_r, v_1)$. Then, we orient the remaining edges inside the outer cycle of T_{θ} as v_1x , v_rx , xy, yv_k , and yv_{k+1} (see Figure 3(b)).

This provides the following winning strategy for Remover. In the *i*-th round, Marker marks a non-empty subset M_i of the uncolored vertices in V(H) with color i. Remover colors and removes the maximal independent subset R_i of M_i , selected greedily with respect to the given orientation. Thus, a vertex $v \in M_i$ is in R_i if and only if it has no in-neighbor in M_i under a given orientation. Every vertex $v \in V(T_\theta)$ has only one preceding neighbor, except for x, v_k , and v_{k+1} , each of which has two inneighbors. Remover wins by applying this strategy because $v \in V(T_\theta) \setminus \{x, v_k, v_{k+1}\}$ is marked but not removed, at most once for its in-neighbor. The vertices x, v_k , and v_{k+1} are marked at most twice, without being removed, once for each of its two in-neighbors. Hence, $H = G_2 - A$ is online h-choosable. Lemma 3.3 implies that G_2 is online g_2 -choosable.

Note that $G = G_1 \cup G_2$, with $V(G_1) \cap V(G_2) = A$. Let $f : V(G) \to \mathbb{N}$ be defined by $f(v) = g_1(v)\mathbf{1}_{V(G_1)}(v) + g_2(v)\mathbf{1}_{[V(G_2)\setminus V(G_1)]}(v)$. Thus, f(v) = 3 for all $v \in V(G)$. By Lemma 3.4, $G = G_1 \cup G_2$ is online f-choosable. Thus, we obtain a contradiction. Therefore a planar graph G without 4, 5, 8 and 9-cycles is online 3-choosable.

5 Conclusion

Using properties of reducible structure and greedy vertex coloring after orienting the edges of reducible structures as a winning strategy for Remover, we proved that planar graphs without cycles of length 4 to 9 or cycles of length 4, r, s, and 9, where r < s and r, $s \in \{5, 6, 7, 8\}$ (except r = 5 and s = 7), are online 3-choosable. Future work may be determining whether every planar graph without cycles of length 4, i, j, and k for i < j < k and i, j, $k \in \{5, 6, 7, 8, 9\}$, is online 3-choosable.

Acknowledgments

The authors thank anonymous referees for careful reading and pointing out inaccuracies in an earlier version.

References

- [1] O. V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, *J. Graph Theory* **21**(2) (1996), 183–186.
- [2] T.-P. Chang and X. Zhu, On-line 3-choosable planar graphs, *Taiwanese J. Math.* **16**(2) (2012), 511–519.
- [3] P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979), 125–157.
- [4] U. Schauz, Mr. Paint and Mrs. Correct, Electron. J. Combin. 16(1) (2009), R77, 18pp.
- [5] L. Shen and Y. Wang, A sufficient condition for a planar graph to be 3-choosable, *Inform. Process. Lett.* **104**(4) (2007), 146–151.
- [6] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B **62**(1) (1994), 180–181.
- [7] C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B **64**(1) (1995), 101–107.
- [8] C. Thomassen, A short list color proof of Grötzsch's theorem, J. Combin. Theory Ser. B 88(1) (2003), 189–192.
- [9] V. G. Vizing, Vertex colorings with given colors, Diskret. Analiz 29 (1976), 3–10.
- [10] Y. Wang, H. Lu and M. Chen, A note on 3-choosability of planar graphs, *Inform. Process. Lett.* **105**(5) (2008), 206–211.
- [11] Y. Wang, H. Lu and M. Chen, Planar graphs without cycles of length 4, 5, 8, or 9 are 3-choosable, *Discrete Math.* **310**(1) (2010), 147–158.
- [12] Y. Wang, Q. Wu and L. Shen, Planar graphs without cycles of length 4, 7, 8, or 9 are 3-choosable, *Discrete Appl. Math.* **159**(4) (2011), 232–239.
- [13] L. Zhang and B. Wu, A note on 3-choosability of planar graphs without certain cycles, *Discrete Math.* **297**(1–3) (2005), 206–209.
- [14] X. Zhu, On-line list colouring of graphs, *Electron. J. Combin.* **16**(1) (2009), R127.