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Abstract

Online list coloring of a graph G is a dynamic version of list coloring in
which lists are not predetermined. It has been proven that planar graphs
without cycles of length 4, r, s, 9, where r < s and r, s ∈ {5, 6, 7, 8},
are 3-choosable. In this paper, we extend the above results by proving
that planar graphs without cycles of length 4, r, s, 9, where r < s and
r, s ∈ {5, 6, 7, 8} (except r = 5 and s = 7), are online 3-choosable.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). A function
φ : V (G) → {1, 2, 3, . . . , k} is called a proper k-coloring of a graph G if φ(u) 6= φ(v)
for all edges uv ∈ E(G). The chromatic number χ(G) of a graph G is the smallest
integer k such that G has a proper k-coloring.

Vizing [9] and Erdős et al. [3] independently introduced the concept of list coloring
in graphs.

Definition 1.1. For a given function f : V (G) → N, each vertex u ∈ V (G) is
assigned a list of f(u) available colors. If there exists a proper coloring for every
such list assignment then G is said to be f -choosable. If f(u) = k for all u ∈ V (G),
then G is said to be k-choosable. The choice number of G is the smallest integer k
such that G is k-choosable, and is denoted by χℓ(G) or Ch(G).

Schauz [4] and Zhu [14] independently introduced the concept of online list col-
oring (paintability) in the form of a game. Online list coloring is a Marker-Remover
game played on a graph G. For a function f : V (G) → N, there are f(u)− 1 erasers
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allotted to each vertex u ∈ V (G). In the i-th round, Marker marks a non-empty
subset Mi of the uncolored vertices of V (G) with color i. After that, Remover colors
and removes a maximal independent subset Ri of Mi. For every vertex marked with
color i, but not removed, Remover needs to use one of its allotted erasers to remove
its mark. Marker wins if, at the end of some round, there is a vertex u for which
no eraser is left, and Remover wins if all the vertices are removed giving a proper
coloring.

Definition 1.2. For a function f : V (G) → N, if Remover wins whenever f(u) − 1
erasers are allotted to each vertex u, then G is called online f -choosable. A graph G
is called online k-choosable if f(u) = k.

Definition 1.3. The online choice number of G is the minimum value of k such that
G is online k-choosable. Online choice number is denoted by χp(G) or chOL(G).

The recursive definition of online list coloring is given by Schauz [4].

Definition 1.4. Online f -choosability of a graph G for a given function f : V (G) →
N is defined as follows:

(1) Empty graph is online f -choosable.

(2) A non-empty graph G is online f -choosable if every non-empty subset VM ⊆
V (G) contains an independent subset VR such that (G − VR) is online f −
1(VM\VR) choosable, where characteristic function 1X of a set X is defined as
1X(v) = 1 if v ∈ X and 1X(v) = 0 if v /∈ X.

Suppose that Marker writes down all the colors used to mark the vertex u in a list
L(u). When the game is over, the list L(u) has at most f(u) entries, since Remover
can erase the mark at u at most f(u)−1 times. The color assigned to a vertex u of a
graph G belongs to the list L(u). Thus online list coloring may be seen as a dynamic
version of list coloring where the lists L(u) for u ∈ V (G) are not predetermined.
Since we have the natural inequalities χp(G) ≥ χℓ(G) ≥ χ(G), extending the known
results from choosability to online choosability strengthens those results. Thomassen
[6] proved that a planar graph is 5-choosable. He also proved that a planar graph
with girth at least 5 is 3-choosable [7], and gave a short list-color proof of Grötzsch’s
theorem [8]. Schauz [4] proved that a planar graph is online 5-choosable. Chang
and Zhu [2] proved that a planar graph with no 3-cycle and no 4-cycle adjacent to a
4-cycle or 5-cycle, is online 3-choosable.

We begin by introducing the terminology and definitions used throughout this
paper. A graph is called planar if it can be embedded in the plane so that its edges do
not cross each other and intersect only at their endpoints. Let G be a planar graph
with vertex set V (G), edge set E(G), and face set F (G). For a positive integer k, a
cycle of length k is called a k-cycle. The boundary of a face f is a closed walk around
f . The number of edges on the boundary of f is called the degree of f . We call a
face f a k-face if its degree is equal to k. A face f is called simple if its boundary
forms a cycle. Let V (f) and E(f) denote the set of vertices and edges, respectively,
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on the boundary of the face f . If v ∈ V (f) then a vertex v is said to be incident with
a face f . In a plane graph, a simple face is specified by the sequence of its vertices
traversed in either the clockwise or counterclockwise direction. We call a vertex v a
k-vertex, k−-vertex, or k+-vertex if its degree d(v) is equal to k, at most k, or at least
k, respectively. An edge uv is denoted by (d(u), d(v)). The minimum degree of a
vertex in a graph G is denoted by δ(G). For A ⊂ V (G), G−A denotes the subgraph
of G induced by the vertex set V (G) \A. G− v denotes the induced subgraph of G
obtained by deleting a vertex v ∈ V (G). Function f |A denotes the restriction of the
function f to the set A. The set of neighbors of a vertex v in a graph G is denoted
by NG(v), i.e., NG(v) = {u | u ∈ V (G), uv ∈ E(G)}. A chord of a cycle C is an edge
that connects two non-adjacent vertices of C. A chord xy is called an internal chord
if it lies entirely within the region enclosed by C. Otherwise, xy is called an external
chord of C. A directed graph is a graph where each edge is assigned a direction. In a
directed edge xy, the vertex x is the tail, and the vertex y is the head. Vertex x is an
in-neighbor of y, and y is an out-neighbor of x. A directed cycle (v1, v2, v3, . . . , vn, v1)
is a sequence of directed edges v1v2, v2v3, v3v4, . . . , vnv1, forming a closed path in
which each vertex appear exactly once, except for the first and last, which coincide.

2 Some results in 3-choosbility

Borodin [1] proved the following theorem:

Theorem 2.1. A planar graph without cycles of length k, for 4 ≤ k ≤ 9, is 3-
colorable.

Forbidding cycles of certain lengths provides sufficient conditions for 3-choosability.

Theorem 2.2. A planar graph is 3-choosable if it contains no cycles of length

(1) [13] 4, 5, 6, 7, 8 and 9; or

(2) [13] 4, 5, 6 and 9; or

(3) [12] 4, 7, 8 and 9; or

(4) [5] 4, 6, 8 and 9; or

(5) [10] 4, 6, 7 and 9; or

(6) [11] 4, 5, 8 and 9.

If a certain structure appears in a minimal counterexample G and leads to a
contradiction with the assumed property, then it is called a reducible structure. The
reducible structure in the above results is an even cycle C in which all vertices have
degree 3. Since an even cycle C is 2-choosable, the list coloring of G − C can be
extended to the list coloring of G. In this paper, we prove that the absence of cycles
of certain lengths gives sufficient conditions for online 3-choosability.
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3 Lemmas

Using the recursive definition of online f -choosability, Schauz [4] proved the following
lemmas. For a graph G, let f , g, g1, and g2 be functions from V (G) to the set of
natural numbers N.

Lemma 3.1. If g(v) ≤ f(v) for all v ∈ V (G) then online g-choosablility of G implies
online f -choosablility of G.

Lemma 3.2. Let H = {v : deg(v) < f(v)} be a subset of V (G). G is online
f -choosable if G−H is online f |G\H choosable.

Lemma 3.3. Let G be a graph with a function g : V (G) → N. Let A be an inde-
pendent subset of V (G) such that g(v) = 1 for all v ∈ A. Let f : V (G) \ A → N

be defined as f(v) = g(v) − |A ∩ NG(v)| then G is online g-choosable if and only if
G− A is online f -choosable.

Lemma 3.4. Let G = A ∪ B such that A and B are online g-choosable and h-
choosable respectively, where h(v) = 1 for all v ∈ V (A) ∩ V (B). Let a function
f : (V (A)∪V (B)) → N be defined as f(v) = g(v)1V (A)(v)+h(v)1[V (B)\V (A](v). Then
A ∪ B is online f -choosable.

4 Main results

Theorem 4.1. A planar graph G without k-cycles for 4 ≤ k ≤ 9 is online 3-
choosable.

Proof. Suppose G is a graph of least order that does not contain k-cycles for 4 ≤
k ≤ 9 and G is not online 3-choosable. For such a graph G, we have δ(G) ≥ 3.
Otherwise, there exists a vertex v ∈ V (G) such that d(v) < 3. As G is the smallest
counterexample, G−v is online 3-choosable. By Lemma 3.2, G is online 3-choosable.
This is a contradiction.

Borodin [1] proved that a planar graph G with δ(G) ≥ 3 and no adjacent triangles
contains either a cycle of length between 4 to 9, or a 10-face incident with ten 3-
vertices and adjacent to five triangles. Since counterexample G does not contain
k-cycles for 4 ≤ k ≤ 9 and has minimum vertex degree δ(G) ≥ 3, the graph G
must contain a 10-face F that is incident with ten 3-vertices and adjacent to five
triangles. Let V1 = {v1, v2, . . . , v10} be the set of 3-vertices incident to the 10-face
F . Let A = {u | u ∈ NG(v), v ∈ V (F )} \ V (F ). Thus, A = {u1, u2, u3, u4, u5} is the
set of vertices incident with 3-faces adjacent to the 10-face F , but do not lie on the
boundary of F (see Figure 1).

Let G1 = G − V (F ) be the subgraph of G induced by V (G) \ V (F ). Let g1 :
V (G1) → N be defined by g1(v) = 3 for all v ∈ V (G1). Since G is the smallest
counterexample, it follows that the subgraph G1 is online g1-choosable.
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Let G2 be the subgraph of G with V (G2) = V (F )∪A and E(G2) = E(F )∪{vu |
v ∈ V (F ), u ∈ A, vu ∈ E(G)} (see Figure 1). Observe that the set A forms an
independent set in G2. Let g2 : V (G2) → N be defined by g2(v) = 1 for all v ∈ A
and g2(v) = 3 for all v ∈ V (F ). We prove that G2 is online g2-choosable.

Let H = G2−A be the subgraph of G2 induced by V (G2)\A, with h : V (H) → N

defined by h(v) = g2(v) − |A ∩NG2
(v)|. Therefore, h(v) = 2 for all v ∈ V (H). The

subgraph H is an even cycle C10. Zhu [14] proved that the even cycle C2n is online
2-choosable. Hence, H is online 2-choosable. It follows from Lemma 3.3 that G2 is
online g2-choosable.

Note that G = G1∪G2 and V (G1)∩V (G2) = A. Let f : V (G) → N be defined by
f(v) = g1(v)1V (G1)(v) + g2(v)1[V (G2)\V (G1)](v). Thus, f(v) = 3 for all v ∈ V (G). By
Lemma 3.4, G = G1∪G2 is online f -choosable. Hence, we obtain a contradiction.

v1
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v5
v6

v7

v8
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u5

Figure 1: G2:10-face with adjacent 3-faces

Zhang and Wu [13] proved that the absence of cycles of length 4, 5, 6 and 9 in a
graph G is sufficient to have a 10-face incident with ten vertices of degree three and
adjacent to five triangles. Proceeding as in Theorem 4.1, we obtain the following
result.

Theorem 4.2. A planar graph G without 4, 5, 6 and 9-cycles is online 3-choosable.

Theorem 4.3. A planar graph G without 4, 7, 8 and 9-cycles is online 3-choosable.

Proof. Suppose G is a graph of least order that does not contain 4, 7, 8 and 9-cycles,
and G is not online 3-choosable. If δ(G) < 3, then there exists a vertex v ∈ V (G)
such that d(v) < 3. Since G is smallest counterexample, it follows that G − v is
online 3-choosable. By Lemma 3.2, G is online 3-choosable. Hence, we obtain a
contradiction. It follows that δ(G) ≥ 3. A θ-graph consists of two distinct vertices
connected by three internally pairwise disjoint paths. It was shown in [12] that
G contains either a 10-face incident with ten 3-vertices, or a special θ-like induced
subgraph S with the following properties (see Figure 2):

(1) δ(S) = 2;

(2) S contains a cycle C that spans all the vertices of S;
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(3) the removal of external chords of C, if any, leaves C with only one internal
chord, which is the edge (3, 4−) in G;

(4) all vertices of the subgraph S have degree 3 in G, with the possible exception
of one endpoint of the internal chord (3, 4−).
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(a) 10-face with ten 3-vertices
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(b) v1v6 as an external chord
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Figure 2: Subgraphs of G

Case 4.3.1. Suppose G contains a 10-face F incident with ten 3-vertices. Let V1 =
{v1, v2, . . . , v10} be the set of 3-vertices incident with the face F . Let A be the set
of neighbors in G of vertices in V1, excluding those in V1 itself, i.e., A = {u | u ∈
NG(v), v ∈ V1} \ V1.

Let G1 = G − V1 be the subgraph of G induced by V (G) \ V1. We define a
function g1 : V (G1) → N by g1(v) = 3 for all v ∈ V (G1). Since G is the smallest
counterexample, it follows that the subgraph G1 is online g1-choosable.

Let G2 be the subgraph of G with V (G2) = V1 ∪ A and E(G2) = E(F ) ∪ {vu |
v ∈ V1, u ∈ A, vu ∈ E(G)}. Note that the set A forms an independent set in G2.
Let g2 : V (G2) → N be a function defined by g2(v) = 1 for all v ∈ A and g2(v) = 3
for all v ∈ V (G2) \ A. We prove that G2 is online g2-choosable.
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Let H = G2−A be the subgraph of G2 induced by V (G2)\A. Let h : V (H) → N

be defined by h(v) = g2(v) − |A ∩ NG2
(v)|. Therefore, h(v) = 2 for all v ∈ V (H).

Since H = G − A is an even cycle C10, it follows that H is online 2-choosable. By
Lemma 3.3, G2 is online g2-choosable.

Note that G = G1 ∪G2, with V (G1)∩ V (G2) = A. Let f : V (G) → N be defined
by f(v) = g1(v)1V (G1)(v) + g2(v)1[V (G2)\V (G1)](v). Thus, f(v) = 3 for all v ∈ V (G).
By Lemma 3.4, G = G1∪G2 is online f -choosable. Thus, we arrive at a contradiction.

Case 4.3.2. Since there are no cycles of length 4, 7, 8 and 9, G may contain a
10-face F with exactly one external chord that divides F into two equal parts. Let
V1 = {v1, v2, . . . , v10} be the set of 3-vertices incident to the face F . Without loss of
generality, we may relabel the vertices of F so that they appear in the cyclic order
(v1, v2, . . . , v10), with the external chord being v1v6. Let A be the set of neighbors in
G of vertices in V1, excluding those in V1 itself, i.e., A = {u | u ∈ NG(v), v ∈ V1}\V1.

Let G1 = G− V1 be the subgraph of G induced by V (G) \ V1. Let g1 : V (G1) →
N = be defined by g1(v) = 3 for all v ∈ V (G1). Since G is the smallest counterex-
ample, it follows that the subgraph G1 is online g1-choosable.

Let G2 be the subgraph of G with V (G2) = V1 ∪ A and E(G2) = E(F ) ∪ {vu |
v ∈ V1, u ∈ A, vu ∈ E(G)} ∪ {v1v6}. Let g2 : V (G2) → N be a function defined by
g2(v) = 1 for all v ∈ A, and g2(v) = 3 for all v ∈ V (G2) \ A. We prove that G2 is
online g2-choosable.

Let H = G2−A be the subgraph of G2 induced by V (G2)\A. Let h : V (H) → N

defined by h(v) = g2(v) − |A ∩ NG2
(v)|. It follows that h(v) = 2 for all v ∈ V (H),

except for the endpoints of the external chord v1v6, which evenly divides the face F .
For these endpoints, h(v1) = 3 and h(v6) = 3. The subgraph H = G2−A consists of
an even cycle C10 = (v1, v2, v3, . . . , v9, v10, v1) and an external chord v1v6. We orient
the cycle C10 to form a directed cycle (see Figure 2(b)). The external chord v1v6
is oriented from v1 to v6. In the i-th round, Marker marks a non-empty subset Mi

of the uncolored vertices in V (H) with color i. Remover colors and removes the
maximal independent subset Ri of Mi, selected greedily with respect to the given
orientation. Thus, a vertex v ∈ Mi is in Ri if and only if it has no in-neighbor in
Mi under a given orientation. Every vertex v ∈ V (H) has exactly one in-neighbor,
except for v6, which has v1 and v5 as its two in-neighbors. Remover wins by applying
this strategy. A vertex v ∈ V (H) \ {v6} is marked without being removed at most
once for its in-neighbor. The endpoint v6 of the external chord v1v6, is marked at
most twice but not removed, once for each of its two in-neighbors. Hence, H is online
h-choosable. By Lemma 3.3, G2 is online g2-choosable.

Note that G = G1 ∪G2, with V (G1)∩ V (G2) = A. Let f : V (G) → N be defined
by f(v) = g1(v)1V (G1)(v) + g2(v)1[V (G2)\V (G1)](v). Thus, f(v) = 3 for all v ∈ V (G).
By Lemma 3.4, G = G1∪G2 is online f -choosable. Hence, we obtain a contradiction.

Case 4.3.3. Suppose G contains the special subgraph S. Let V1 be the vertex set of
the subgraph S. Let C = (v1, v2, v3, . . . , vk, vk+1, vk+2, vk+3, . . . , vr, v1) be a spanning
cycle of S. After deleting all external chords of the cycle C, we obtain a cycle with
exactly one internal chord (3, 4−). Without loss of generality, let v1vk be the internal
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chord with v1 as 4−-vertex and vk as 3-vertex in G. Let A = {u | u ∈ NG(v), v ∈
V1}\V1.

Let G1 = G − V1 be the subgraph of G induced by V (G) \ V1. We define a
function g1 : V (G1) → N by g1(v) = 3 for all v ∈ V (G1). Since G is the smallest
counterexample, it follows that the subgraph G1 is online g1-choosable.

Let G2 be the subgraph of G with V (G2) = V1 ∪ A and E(G2) = E(S) ∪ {vu |
v ∈ V1, u ∈ A, vu ∈ E(G)}. Let g2 : V (G2) → N be defined by g2(v) = 1 for all
v ∈ A and g2(v) = 3 for all v ∈ V (G2) \A. We prove that G2 is online g2-choosable.

Let H = G2−A be the subgraph of G2 induced by V (G2)\A. Let h : V (H) → N

be defined by h(v) = g2(v) − |A ∩ NG2
(v)|. Therefore, h(v) = 2 for all v ∈ V (H),

except for the endpoint vk of the internal chord v1vk, for which h(vk) = 3. We
orient the spanning cycle C in S to form a directed cycle. The internal chord v1vk
is oriented from v1 to vk. In the i-th round, Marker marks a non-empty subset Mi

of the uncolored vertices in V (H) with color i. Remover colors and removes the
maximal independent subset Ri of Mi, selected greedily with respect to the given
orientation. Thus, a vertex v ∈ Mi is in Ri if and only if it has no in-neighbor in
Mi under a given orientation. Every vertex v ∈ V (H) has exactly one in-neighbor,
except for the endpoint vk of the internal chord v1vk, which has v1 and vk−1 as its
two in-neighbors. Remover wins applying this strategy, since v ∈ V (H) \ {vk} is
marked without being removed at most once for its in-neighbor. The endpoint vk of
the internal chord v1vk, is marked at most twice but not removed, once for each of its
two in-neighbors. If there is an external chord uv then h(u) = 3 and h(v) = 3. For a
directed arc uv, the possibility of vertex v being marked twice but not removed, does
not pose a problem, since h(v) = 3. For example, in case of the directed external
chord vk+3vk+5, the vertex vk+5 may be marked twice without being removed as
it has two in-neighbors vk+3 and vk+4. Remover still wins, since h(vk+5) = 3 (see
Figure 2(c)). Hence, H = G2−A is online h-choosable. By applying Lemma 3.3, we
conclude that G2 is online g2-choosable.

Note that G = G1 ∪ G2, with V (G1) ∩ V (G2) = A. Let f : V (G) → N be
defined by f(v) = g1(v)1V (G1)(v) + g2(v)1[V (G2)\V (G1)](v). Thus, f(v) = 3 for all
v ∈ V (G). By Lemma 3.4, G = G1 ∪ G2 is online f -choosable. Hence, we arrive at
a contradiction.

Hence, a planar graph G without 4, 7, 8 and 9-cycles is online 3-choosable.

Theorem 4.4. A planar graph G without 4, 6, 8 and 9-cycles is online 3-choosable.

Proof. Suppose G is a graph of least order that does not contain 4, 6, 8 and 9-
cycles, and G is not online 3-choosable. For such a graph G, we have δ(G) ≥ 3.
Otherwise, there exists a vertex v ∈ V (G) such that d(v) < 3. Since G is smallest
counterexample, G−v is online 3-choosable. By Lemma 3.2, G is online 3-choosable.
Hence, we obtain a contradiction.

As proved by Shen and Wang [5], G contains a 10-face incident with ten 3-vertices.
Then following a similar strategy as in Case 4.3.1 of Theorem 4.3, we prove that a
planar graph G with no cycles of length 4, 6, 8 and 9 is online 3-choosable.
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Theorem 4.5. A planar graph G without 4, 6, 7 and 9-cycles is online 3-choosable.

Proof. Suppose G is a graph of least order that does not contain 4, 6, 7 and 9-cycles,
and G is not online 3-choosable. As proved in Theorem 4.4, δ(G) ≥ 3. Wang, Lu and
Chen [10] proved that a planar graph G without 4, 6, 7 and 9-cycles contains either
an 8-face incident with eight 3-vertices, or an 8-face incident with eight 3-vertices
and containing exactly one external chord that divides an 8-face into two equal parts,
or a 10-face with ten 3-vertices.

Case 4.5.1. Suppose G contains an 8-face F incident with eight 3-vertices. Let the
vertex set of F be V1 = {v1, v2, v3, . . . , v8}. Since the face F is an even cycle, we
proceed as in Case 4.3.1 of Theorem 4.3.

Case 4.5.2. Since there are no cycles of length 4, 6, 7 and 9, G may contain an
8-face F that is incident with eight 3-vertices and has exactly one external chord,
which divides F into two equal parts. Let V1 = {v1, v2, . . . , v8} be the vertex set of
the face F . Without loss of generality, we may relabel the vertices of F so that they
appear in the cyclic order (v1, v2, . . . , v8), with the external chord being v1v5. Let
A = {u | u ∈ NG(v), v ∈ V1} \ V1.

Let G1 = G−V1 be the subgraph of G induced by V (G)\V1. Let g1 : V (G1) → N

be defined by g1(v) = 3 for all v ∈ V (G1). Since G is the smallest counterexample,
it follows that the subgraph G1 is online g1-choosable.

Let G2 be the subgraph of G with V (G2) = V1 ∪ A and E(G2) = E(F ) ∪ {vu |
v ∈ V1, u ∈ A, vu ∈ E(G)} ∪ {v1v5}. We define a function g2 : V (G2) → N by
g2(v) = 1 for all v ∈ A and g2(v) = 3 for all v ∈ V (G2) \ A. We prove that G2 is
online g2-choosable.

Let H = G2−A be the subgraph of G2 induced by V (G2)\A, with h : V (H) → N

defined by h(v) = g2(v)−|A∩NG2
(v)|. Therefore, h(v) = 2 for all v ∈ V (H), except

for the endpoints of the external chord v1v5 which evenly divides 8-face. For these
endpoints, h(v1) = 3 and h(v5) = 3. The subgraph induced by H consists of an
even cycle C8 and external chord v1v5. We orient the cycle C8 such that it forms a
directed cycle. The external chord v1v5 is oriented from v1 to v5. In the i-th round,
Marker marks a non-empty subset Mi of the uncolored vertices in V (H) with color
i. Remover colors and removes the maximal independent subset Ri of Mi, selected
greedily with respect to the given orientation. Thus, a vertex v ∈ Mi is in Ri if
and only if it has no in-neighbor in Mi under a given orientation. Every vertex
v ∈ V (H) has exactly one in-neighbor, except for the endpoint v5 of the external
chord v1v5, which has v1 and v4 as its two in-neighbors. Remover wins by applying
this strategy because v ∈ V (H) \ {v5} is marked but not removed, at most once
for its in-neighbor. The endpoint v5 of the external chord v1v5, is marked at most
twice, but is not removed, once for each of its two in-neighbors. Hence, H is online
h-choosable. Lemma 3.3 implies that G2 is online g2-choosable.

Note that G = G1 ∪G2, with V (G1)∩ V (G2) = A. Let f : V (G) → N be defined
by f(v) = g1(v)1V (G1)(v) + g2(v)1[V (G2)\V (G1)](v). Thus, f(v) = 3 for all v ∈ V (G).
By Lemma 3.4, G = G1∪G2 is online f -choosable. Thus, we arrive at a contradiction.
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Case 4.5.3. SupposeG contains a 10-face F incident with ten 3-vertices. We proceed
as in case 4.3.1 of Theorem 4.3.

Theorem 4.6. A planar graph G without 4, 5, 8 and 9-cycles is online 3-choosable.

Proof. Suppose G is a graph of least order that does not contain 4, 5, 8 and 9-cycles,
and G is not online 3-choosable.

A θ-graph consists of two distinct vertices joined by three internally disjoint paths.
An induced subgraph Sθ of G is a special θ-graph, isomorphic to an r-cycle with one
internal chord. All vertices of Sθ are of degree 3 in G, except for one endpoint of its
internal chord, which is a 4−-vertex (see Figure 3(a)).

An induced subgraph Tθ is an altered version of Sθ in which two endpoints of the
internal chord are replaced by two 3-faces. All vertices of Tθ are of degree 3, except
for two vertices lying on the outer cycle, which are incident to one of the two 3-faces
and can possibly have degree 4 in G (v1 and vr in Figure 3(b)).

Wang, Lu, and Chen [11] proved the following structural property. If a connected
graph G satisfies the following properties:

(1) 3 ≤ δ(G);

(2) G does not contain 4, 5, 8 and 9-cycles;

(3) every simple even face contains at least one 4+-vertex,

then G contains either Sθ or Tθ.

We prove that δ(G) ≥ 3. If δ(G) < 3, then there exists a vertex v ∈ V (G) such
that d(v) < 3. Since G is smallest counterexample, G− v is online 3-choosable. By
Lemma 3.2, G is online 3-choosable. Thus, we obtain a contradiction.

Every simple even face F of G contains at least one 4+ vertex. Otherwise, bound-
ary of a face F is an even cycle C with all vertices of degree 3. Let V1 be the set of
vertices incident to the face F . Let A = {u | u ∈ NG(v), v ∈ V1}\V1.

Let G1 = G−V1 be the subgraph of G induced by V (G)\V1. Let g1 : V (G1) → N

be defined by g1(v) = 3 for all v ∈ V (G1). Since G is the smallest counterexample,
it follows that the subgraph G1 is online g1-choosable.

Let G2 be the subgraph of G with V (G2) = V (F )∪A and E(G2) = E(F )∪{vu |
v ∈ V1, u ∈ A, vu ∈ E(G)}. Let g2 : V (G2) → N be defined by g2(v) = 1 for all
v ∈ A and g2(v) = 3 for all v ∈ V (G2) \A. We prove that G2 is online g2-choosable.

Let H = G2−A be the subgraph of G2 induced by V (G2)\A. Let h : V (H) → N

defined by h(v) = g2(v)− |A ∩NG2
(v)|. Therefore, h(v) = 2 for all v ∈ V (H). Since

H = G − A is an even cycle C, H is online 2-choosable, i.e., online h-choosable. It
follows from Lemma 3.3, G2 is online g2-choosable.

Note that G = G1 ∪G2, with V (G1)∩ V (G2) = A. Let f : V (G) → N be defined
by f(v) = g1(v)1V (G1)(v) + g2(v)1[V (G2)\V (G1)](v). Thus, f(v) = 3 for all v ∈ V (G).
By Lemma 3.4, G = G1∪G2 is online f -choosable. Hence, we obtain a contradiction.
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Figure 3: Reducible structures

Case 4.6.1. Suppose G contains an induced subgraph Sθ. Let V1 be the ver-
tex set of Sθ. Let A = {u | u ∈ NG(v), v ∈ V1}\V1. Without loss of gen-
erality, we may relabel the vertices of Sθ so that they appear in the cyclic order
(v1, v2, . . . , vk, vk+1, vk+2, . . . , vr), with the external chord being v1vk, where v1 is a
4−-vertex.

Let G1 = G− V1 be the subgraph of G induced by V (G) \ V1. Define a function
g1 : V (G1) → N such that g1(v) = 3 for all v ∈ V (G1). Since G is the smallest
counterexample, it follows that the subgraph G1 is online g1-choosable.

Let G2 be the subgraph of G with V (G2) = V (Sθ)∪A and E(G2) = E(Sθ)∪{vu |
v ∈ V1, u ∈ A, vu ∈ E(G)}. Let g2 : V (G2) → N be defined by g2(v) = 1 for all
v ∈ A and g2(v) = 3 for all v ∈ V (G2) \ A. We show that G2 is online g2-choosable.

Let H = G2−A be the subgraph of G2 induced by V (G2)\A, with h : V (H) → N

defined by h(v) = g2(v)−|A∩NG2
(v)|. Therefore, h(v) = 2 for all v ∈ V (H), except

for the endpoint vk of the internal chord v1vk. For this endpoint, h(vk) = 3. We orient
the edges of H, i.e., Sθ as v1v2, v2v3, v3v4, . . . , vkvk+1, vk+1vk+2, . . . , vr−1vr, vrv1
to form a directed cycle. The internal chord v1vk is oriented from the 4−-vertex
v1 to vk (see Figure 3(a)). The winning strategy for Remover is as follows. In the
i-th round, Marker marks a non-empty subset Mi of the uncolored vertices in V (H)
with color i. Remover colors and removes the maximal independent subset Ri of Mi,
selected greedily with respect to the given orientation. Thus, a vertex v ∈ Mi is in
Ri if and only if it has no in-neighbor in Mi under a given orientation. Every vertex
v ∈ V (H) has exactly one in-neighbor, except for vk, which has v1 and vk−1 as its
two in-neighbors. Remover wins by applying this strategy because v ∈ V (H) \ {vk}
is marked, but not removed, at most once for its in-neighbor. The endpoint vk of
the internal chord v1vk, is marked at most twice but not removed, once for each of
its two in-neighbors. Hence, H is online h-choosable. By applying Lemma 3.3, we
conclude that G2 is online g2-choosable.

Note that G = G1 ∪G2, with V (G1)∩ V (G2) = A. Let f : V (G) → N be defined
by f(v) = g1(v)1V (G1)(v) + g2(v)1[V (G2)\V (G1)](v). Thus, f(v) = 3 for all v ∈ V (G).
By Lemma 3.4, G = G1∪G2 is online f -choosable. Hence, we obtain a contradiction.

Case 4.6.2. Suppose G contains an induced subgraph Tθ. Let V1 be the vertex set
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of a subgraph Tθ. Let A = {u | u ∈ NG(v), v ∈ V1} \ V1.

Let G1 = G− V1 be the subgraph of G induced by V (G) \ V1. Define a function
g1 : V (G1) → N such that g1(v) = 3 for all v ∈ V (G1). Since G is the smallest
counterexample, it follows that the subgraph G1 is online g1-choosable.

Let G2 be the subgraph of G with V (G2) = V (Tθ)∪A and E(G2) = E(Tθ)∪{vu |
v ∈ V1, u ∈ A, vu ∈ E(G)}. Define a function g2 : V (G2) → N by g2(v) = 1 for all
v ∈ A and g2(v) = 3 for all v ∈ V (G2) \A. We prove that G2 is online g2-choosable.

Let H = G2−A be the subgraph of G2 induced by V (G2)\A. Let h : V (H) → N

be defined by h(v) = g2(v)−|A∩NG2
(v)|. Thus, h(v) = 2 for all v ∈ V (H), except for

vertices x, y, vk, and vk+1. Note that h(x) = 3, h(y) = 3, h(vk) = 3 and h(vk+1) = 3.

We orient the edges of H, i.e., Tθ such that each vertex with h(v) = 2 has exactly
one in-neighbor, and each vertex with h(v) = 3 has at most two in-neighbors. We ori-
ent an outer cycle of Tθ as directed cycle (v1, v2, v3, . . . , vk, vk+1, vk+2, . . . , vr−1, vr, v1).
Then, we orient the remaining edges inside the outer cycle of Tθ as v1x, vrx, xy, yvk,
and yvk+1 (see Figure 3(b)).

This provides the following winning strategy for Remover. In the i-th round,
Marker marks a non-empty subset Mi of the uncolored vertices in V (H) with color
i. Remover colors and removes the maximal independent subset Ri of Mi, selected
greedily with respect to the given orientation. Thus, a vertex v ∈ Mi is in Ri if and
only if it has no in-neighbor in Mi under a given orientation. Every vertex v ∈ V (Tθ)
has only one preceding neighbor, except for x, vk, and vk+1, each of which has two in-
neighbors. Remover wins by applying this strategy because v ∈ V (Tθ) \ {x, vk, vk+1}
is marked but not removed, at most once for its in-neighbor. The vertices x, vk,
and vk+1 are marked at most twice, without being removed, once for each of its two
in-neighbors. Hence, H = G2 −A is online h-choosable. Lemma 3.3 implies that G2

is online g2-choosable.

Note that G = G1 ∪G2, with V (G1)∩ V (G2) = A. Let f : V (G) → N be defined
by f(v) = g1(v)1V (G1)(v) + g2(v)1[V (G2)\V (G1)](v). Thus, f(v) = 3 for all v ∈ V (G).
By Lemma 3.4, G = G1∪G2 is online f -choosable. Thus, we obtain a contradiction.
Therefore a planar graph G without 4, 5, 8 and 9-cycles is online 3-choosable.

5 Conclusion

Using properties of reducible structure and greedy vertex coloring after orienting
the edges of reducible structures as a winning strategy for Remover, we proved that
planar graphs without cycles of length 4 to 9 or cycles of length 4, r, s, and 9, where
r < s and r, s ∈ {5, 6, 7, 8} (except r = 5 and s = 7), are online 3-choosable. Future
work may be determining whether every planar graph without cycles of length 4, i,
j, and k for i < j < k and i, j, k ∈ {5, 6, 7, 8, 9}, is online 3-choosable.
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