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Abstract

A Steiner triple system, STS(v), is a family of 3-subsets (blocks) of a set
of v elements such that any two elements occur together in precisely one
block. A collection of blocks consisting of two copies of each block of an
STS is called a duplicated Steiner triple system, DSTS. A resolvable (or
near resolvable) DSTS is called self-orthogonal if every pair of distinct
classes in the resolution has at most one block in common. We provide
several methods to construct self-orthogonal near resolvable DSTS and
settle the existence of such designs for all values of v with only four
possible exceptions. This addresses a recent question of Bryant, Davies
and Neubecker.

1 Introduction

A balanced incomplete block design (BIBD) is a pair (V,B), where B is a collection
of subsets (blocks) taken from a finite set V of v elements with the properties:

(1) Every block contains exactly k elements.

(2) Every pair of distinct elements of V is contained in precisely λ blocks of B.

We denote such a design as a (v, k, λ)-BIBD. The necessary divisibility conditions
for the existence of a (v, k, λ)-BIBD are

λ(v − 1) ≡ 0 (mod k − 1) and (1.1)

λv(v − 1) ≡ 0 (mod k(k − 1)). (1.2)

A Steiner triple system of order v, denoted by STS(v), is a (v, 3, 1)-BIBD. It is
well known that STS(v) exist for all v ≡ 1 or 3 (mod 6), [11].

A (v, k, λ)-BIBD D = (V,B) is called resolvable if its block collection B can be

partitioned into classes R1, R2, . . . , Rr (resolution classes) where r = λ(v−1)
k−1

such that
each element of V is contained in precisely one block of each class. The resolution
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classes R1, R2, . . . , Rr, sometimes also called parallel classes, form a resolution of
D. Sometimes the notation (v, k, λ)-RBIBD is used for a resolvable BIBD. Neces-
sary conditions for the existence of a (v, k, λ)-RBIBD are (1.1) and v ≡ 0 (mod k).
Together, these imply (1.2).

A (v, 3, 1)-RBIBD or resolvable STS(v) is called a Kirkman triple system and
denoted KTS(v). Note that in this case, there are |B| = v(v − 1)/6 blocks and
r = (v− 1)/2 resolution classes where each class contains v/3 blocks. The necessary
conditions amount to v ≡ 3 (mod 6). The existence question for KTS(v) was a
celebrated open problem for over 100 years, and known as Kirkman’s schoolgirl
problem. In 1971 [16], Ray-Chaudhuri and Wilson proved that a KTS(v) exists
if and only if v ≡ 3 (mod 6). (An earlier and independent proof by Lu [15] was
discovered several years later.)

A (v, k, λ)-BIBD D = (V,B) is said to be near resolvable if B can be partitioned
into classes (which we also call resolution classes) such that for each element x ∈ V ,
there is precisely one class which does not contain x in any of its blocks and each
class contains exactly v−1 distinct elements. The number of resolution classes in the
near resolvable setting equals λv/(k − 1). It follows from the above that necessary
conditions are v ≡ 1 (mod k) and λ = k−1. For block size 3, Hanani [10] established
the existence of near resolvable (v, 3, 2)-BIBDs for all v ≡ 1 (mod 3).

Suppose (V,B) is an STS(v). We can easily construct a (v, 3, 2)-BIBD on V by
taking two copies of each block in B. The resulting block collection can be denoted
as 2B. We call such a design a duplicated STS(v) and denote it by DSTS(v). In
a recent paper [5], near resolvable DSTS(v) are constructed for all v ≡ 1 (mod 6),
v ≥ 19; the cases v ∈ {7, 13} were shown to be definite exceptions. Most of the
direct constructions in [5] produce designs with an additional interesting property,
which we examine here in more detail.

Consider a resolvable or near resolvable DSTS(v), for v ≡ 3 (mod 6) or 1 (mod 6),
respectively. If |Ri ∩ Rj| ≤ 1 for all i 6= j, then the design is called a self-orthogonal
DSTS(v). Note that, in this case, we do not distinguish between copies of the same
block. We caution that there are other uses of the term ‘orthogonal’ in the context
of Steiner triple systems and other designs, and these can have different meanings;
see for example [6, 8]. The notion of self-orthogonality in [5] and in what follows
here is a property of resolutions. As such, we adopt the standard abbreviations ‘R’
and ‘NR’ for resolvability and near resolvability, respectively, and we append ∗ to
denote the property that the resolutions are self-orthogonal. In [5], the NR DSTS(v)
constructed for 19 ≤ v ≤ 85 are all self-orthogonal. The existence of NR∗DSTS(v)
for all v ≡ 1 (mod 6), v ≥ 19, was posed as an open problem. We settle this question
in the affirmative with only a small number of possible exceptions for v.

Theorem 1.1 There exists an NR∗DSTS(v) for all v ≡ 1 (mod 6), v ≥ 19, except
possibly for v ∈ {115, 133, 175, 259}.

There is a close connection between NR∗DSTSs and other designs with orthogonal
resolutions.
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Let R and R′ be two resolutions of the blocks of a (v, k, λ)-BIBD, D. We say
that R and R′ are orthogonal if |Ri ∩R′

j| ≤ 1 for all Ri ∈ R and R′
j ∈ R′. It should

be noted that the blocks of the design are considered as labeled so that if a subset
of the elements occurs as a block more than once the blocks are treated as distinct.
If D is a (v, k, λ)-RBIBD with a pair of orthogonal resolutions, it is called doubly
resolvable and is denoted by DR(v, k, λ)-BIBD. If D is an NR(v, k, λ)-BIBD with a
pair of orthogonal near resolutions, it is called doubly near resolvable and is denoted
by DNR(v, k, λ)-BIBD.

A great deal of work has been done on the existence of doubly resolvable and
doubly near resolvable designs with block size 3. Necessary and sufficient conditions
are known for the existence of DR(v, 3, 2)-BIBDs, [4, 13] and DNR(v, 3, 2)-BIBDs, [4,
12]. DR(v, 3, 1)-BIBDs are equivalent to KS3(v; 1, 1) (Kirkman squares). KS3(v; 1, 1)
are shown to exist in [9] with 23 possible exceptions; 11 of these exceptions are
constructed in [4], v = 351 is constructed in [2], and v = 249 and v = 357 are in
[1]. (The last two designs are a result of special frames constructed directly using
computer searches in [1].) So we have the following updated existence result.

Theorem 1.2 Let v be a positive integer, v ≡ 3 (mod 6), v 6= 9, 15. There ex-
ists a KS3(v; 1, 1) except possibly for v ∈ {21, 141, 153, 165, 177, 189, 231, 261, 285}.
Furthermore, there do not exist KS3(v; 1, 1) for v = 9 and v = 15.

It is easy to use DR(v, 3, 1)-BIBDs with v ≡ 3 (mod 6) to construct R∗DSTS(v).
This construction illustrates the connection between doubly resolvable designs and
self-orthogonal designs.

Lemma 1.3 If there exists a DR(v, 3, 1)-BIBD, there exists an R∗DSTS(v).

Proof. Let R and R′ be a pair of orthogonal resolutions for a DR(v, 3, 1)-BIBD.
Then R∪R′ is a set of 2r = v − 1 resolution classes for an R∗DSTS(v). 2

This immediately gives us the following existence result for R∗DSTS(v).

Lemma 1.4 There exists an R∗DSTS(v) for all v ≡ 3 (mod 6), v ≥ 21 except
possibly for v ∈ {21, 141, 153, 165, 177, 189, 231, 261, 285}.

Our constructions for NR∗DSTS(v) for v ≡ 1 (mod 6) use many of the techniques
and ideas that were used in [9]. In Section 2, we describe direct constructions for
self-orthogonal DSTS based on finite fields. This is similar to the methods in [18],
except that the need for duplicated STS requires extra conditions in selecting field
elements. Our direct constructions simplify and unify many of the constructions in
[5] into an algebraic framework. In Section 3, we provide definitions and existence
results for (1, 1; 3)-frames and describe our main recursive construction using these
frames to construct self-orthogonal near resolvable DSTS. In the following section,
the existence of NR∗DSTS(v) is established for v ≡ 1 (mod 6) with at present four
possible exceptions. Finally, in Section 5, we summarize our results and discuss
generalizations for larger block sizes.
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2 Direct constructions

2.1 Cyclotomic methods

For a prime power q, let Fq denote the finite field of order q and let F
×
q denote its

multiplicative group. Given a subgroup G ≤ F
×
q of even order, a halfset of G is a

subset H ⊂ G such that |H| = |G|/2 and G = ±H := H ∪ (−H).

Let q ≡ 7 (mod 12) be a prime power, and let C0, . . . , C5 be the cosets of index
6 in F

×
q . If ω is a generator of F×

q , we have Cj = {ω6i+j : 0 ≤ i < (q− 1)/6} for each
j = 0, 1, . . . , 5. Since q ≡ 7 (mod 12), these cosets have odd size, and it follows that
H = C0 is a halfset of the subgroup G = C0 ∪ C3 of index 3 in F

×
q .

Suppose t, x, y, z are elements of F×
q having the following properties:

(1) the differences x− y, y − z, z − x are all nonzero and belong to distinct cosets
of G; and

(2) the elements x, y, z, x + t, y + t, z + t are all nonzero and belong to distinct
cosets of H.

Put B = {{a + hx, a + hy, a + hz} : h ∈ H, a ∈ Fq}. We claim that (Fq, 2B) is
an NR∗DSTS(q). From condition (1), it readily follows that B is the block collection
of an STS(q) on Fq. We are interested in the DSTS(q) with block collection 2B.
From condition (2), the two blocks {x, y, z}, {x+ t, y+ t, z+ t} of 2B develop under
multiplication by H into a partition R of F×

q . The set of q translates of R in Fq thus
provide a near resolution of 2B. A block B belongs to two distinct translates of R
only if a1 + B and a2 + B are both in R for distinct a1, a2 ∈ Fq. Without loss of
generality, we can take a1 = 0, B = {hx, hy, hz}, and a2 = ht for some h ∈ H. This
uniquely determines B and shows that the self-orthogonality property holds.

We illustrate the construction in detail for q = 103, which is a value that [5]
settles for NRDSTS but not for NR∗DSTS.

Example 2.1 Let q = 103. The element −3 has order 17 in F
×
q , and hence generates

C0. If we take {x, y, z} = {1, 4, 6} and t = 20, conditions (1) and (2) above can be
easily verified. So, this produces an NR∗DSTS(103). Table 1 gives the base blocks,
with each row having two blocks in the same cyclic orbit. The translates between
these are indicated in the last column of the table.

The preceding construction can, in some cases, be modified to work when q ≡ 1
(mod 12). Let q = 6 × 2et + 1, where t is odd and e is a nonnegative integer. Let
G and H be the subgroups of F×

q of index 3× 2e and 6× 2e, respectively. We again
have H being a halfset of G. This time, however, we need 2e distinct quadruples
(xi, yi, zi, ti), i = 1, . . . , 2e, such that

(1) the differences {xi − yi, yi − zi, zi − xi : i = 1, . . . , 2e} belong to distinct cosets
of G;

(2) the elements {xi, yi, zi, xi + ti, yi + ti, zi + ti : i = 1, . . . , 2e} belong to distinct
cosets of H; and

(3) the translates {ti : i = 1, . . . , 2e} belong to distinct cosets of G.
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Table 1: Base blocks and translates for an NR∗DSTS(103).

base blocks ±translates
{1, 4, 6} {21, 24, 26} 20, 83

{100, 91, 85} {40, 31, 25} 43, 60
{9, 36, 54} {86, 10, 28} 77, 26
{76, 98, 44} {51, 73, 19} 78, 25
{81, 15, 74} {53, 90, 46} 75, 28
{66, 58, 87} {47, 39, 68} 84, 19
{8, 32, 48} {65, 89, 2} 57, 46
{79, 7, 62} {11, 42, 97} 35, 68
{72, 82, 20} {70, 80, 18} 101, 2
{93, 63, 43} {99, 69, 49} 6, 97
{30, 17, 77} {12, 102, 59} 85, 18
{13, 52, 78} {67, 3, 29} 54, 49
{64, 50, 75} {5, 94, 16} 44, 59
{14, 56, 84} {88, 27, 55} 74, 29
{61, 38, 57} {45, 22, 41} 87, 16
{23, 92, 35} {71, 37, 83} 48, 55
{34, 33, 101} {96, 95, 60} 62, 41

Similar to before, put B = {{a+ hxi, a+ hyi, a+ hzi} : h ∈ H, a ∈ Fq, i = 1, . . . , 2e}.
By condition (3), the values ±hti, h ∈ H, i = 1, . . . , 2e are distinct and we again
obtain an NR∗DSTS(q).

The following result summarizes our application of the above cyclotomic meth-
ods. Table 2 gives more details, including generator elements, starter blocks, and
translates we found for each value of q = 6x + 1. Our results are limited to what is
necessary for the forthcoming proof of the main result, Theorem 1.1, but the methods
work well for values smaller and even larger than the given range.

Lemma 2.2 There exist NR∗DSTS(6x + 1) for all x ∈ {17, 18, 21, 23, 25, 26, 27, 30,
33, 37, 38, 46, 47, 51, 58}.

The preceding constructions are less likely to succeed when the largest odd divisor
of (q−1)/3 is small. In fact, when q = 6×2e+1 for some e, there does not appear to
be a systematic way to choose a halfset of G to carry out the construction in general.
In spite of this, we were able to find a construction in one of these cases by searching
over different initial blocks and halfsets, getting lucky that one such choice admitted
translates for self-orthogonality.

Example 2.3 Let q = 97, and use the generator ω = 5 of Fq. With the help of a
computer, we found a block B = {1, 13, 17} and ordered halfset of G, namely

h = (1, 28, 8, 67, 33, 46, 70, 77, 22, 63, 18, 78, 50, 55, 12, 52).
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Table 2: Base blocks and translates for an NR∗DSTS(103).

x q 2e ω starter block(s) translate(s)
17 103 1 5 {1, 4, 6} 20
18 109 2 6 {22, 48, 56} 104

{27, 62, 86} 67
21 127 1 3 {1, 9, 12} 50
23 139 1 2 {1, 2, 4} 21
25 151 1 6 {1, 5, 10} 2
26 157 2 5 {29, 127, 151} 132

{16, 68, 107} 61
27 163 1 2 {1, 2, 4} 7
30 181 2 2 {27, 107, 153} 125

{69, 143, 161} 128
33 199 1 3 {1, 3, 9} 41
37 223 1 3 {1, 9, 12} 26
38 229 2 6 {116, 170, 173} 94

{45, 114, 212} 15
46 277 2 5 {28, 114, 152} 185

{161, 182, 250} 77
47 283 1 3 {1, 7, 23} 30
51 307 1 5 {1, 15, 21} 7
58 349 2 2 {58, 105, 124} 306

{118, 138, 333} 170

The resulting cyclic STS(q) with base blocks {hiB : i = 1, . . . , 16} admits translates

t = (41, 93, 79, 55, 48, 45, 74, 54, 34, 53, 20, 1, 25, 35, 70, 12)

such that ∪16
i=1{hiB, ti + hiB} is a starter for an NR∗DSTS(97).

2.2 Other constructions

Here, we provide two constructions of NR∗DSTS(v) for non-prime v, namely for
v ∈ {91, 121}. The latter value is a prime power, but in this case the cyclotomic
method above has the extra complications that e = 4 and that the additive group is
not cyclic. Instead, we give cyclic constructions with multiplier automorphisms.

Example 2.4 Let v = 91. The element m = 9 satisfies m3 = 1 in Zv. Consider the
blocks

{1, 42, 74}, {5, 36, 39}, {7, 33, 43}, {48, 59, 73}, {53, 75, 82}

and respective translates 79, 21, 11, 13, 2 in Zv. If we develop these multiplicatively
under 1,m,m2 and then additively, the resulting near resolvable DSTS(v) has the
self-orthogonality property.
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Example 2.5 Let v = 121. The element m = 3 satisfies m5 = 1 in Zv. Consider
the blocks

{4, 10, 103}, {14, 78, 118}, {22, 96, 104}, {71, 85, 106}

and respective translates 49, 27, 28, 98 in Zv. If we develop these multiplicatively
under 1,m,m2,m3, m4 and then additively, the resulting near resolvable DSTS(v)
has the self-orthogonality property.

3 Frames

Let T denote an integer partition of v and let K be a set of positive integers. A group
divisible design of type T with block sizes in K is a triple (V,G,B) which satisfies
the following properties.

(1) V is a set of v points.

(2) G = {G1, G2, . . . , Gm} is a partition of V into groups so that T = (|G1|, . . . ,
|Gm|).

(3) B ⊆ ∪k∈K

(

V

k

)

is a set of blocks meeting each group in at most one point.

(4) Every pair of elements from distinct groups occurs in precisely λ blocks. (λ is
called the index.)

We denote such a design as a GDD(v;K;G1, G2, . . . , Gm; 0, λ); see [17] for the more
general definition of GDDs. It is convenient to use exponential notation for the type
of a GDD; we say a GDD has type tu1

1 tu2

2 . . . tuℓ

ℓ if there are ui Gj’s of cardinality
ti, 1 ≤ i ≤ l. A GDD(v;K;G1, . . . , Gm; 0, 1) is often denoted as a K-GDD or
GDD(v,K) of type tu1

1 tu2

2 . . . tuℓ

ℓ . A GDD with a single block size k is often denoted
simply as a k-GDD or a GDD(v, k).

We will use two special types of GDDs with index λ = 1 in our recursive con-
structions. A pairwise balanced block design or PBD, denoted by PBD(v,K), is a
GDD(v,K) of type 1v. A transversal design TD(k, n) is a GDD which has block size
k and precisely k groups of size n, a k-GDD of type nk. In this case, the blocks are
transversals of the partition. It is well known that a TD(k, n) is equivalent to a set
of k − 2 mutually orthogonal latin squares (MOLS) of order n. We refer to [3] for
results on the existence of transversal designs.

Let V be a set of v elements. Let G1, G2, . . . , Gm be a partition of V into m sets.
A {G1, G2, . . . , Gm}-frame F with block size k, index λ, and latinicity µ is a square
array of side length t = λv/(µ(k−1)) which satisfies the properties listed below. Let
ti = λ|Gi|/(µ(k − 1)), let gk =

∑k

i=1 ti and define g0 = 0. We index the rows and
columns of F with the elements 0, 1, . . . , λv/(µ(k − 1))− 1.

(1) Each cell is either empty or contains a k-subset of V .

(2) Let Fi be the subsquare of F indexed by gi−1, gi−1+1, . . . , gi−1. Fi is empty for
i = 1, 2, . . . ,m. That is, the main diagonal of F consists of empty subsquares
of sides ti × ti for i = 1, 2, . . . ,m.
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(3) Let x ∈ {gi−1, gi−1+1, . . . , gi−1}. Row x of F contains each element of V −Gi

µ times and column x of F contains each element of V −Gi µ times.

(4) The blocks obtained from the nonempty cells of F form a GDD(v; k;G1, G2, . . . ,
Gm; 0, λ).

The type of a {G1, G2, . . . , Gm}-frame is the type of the underlying GDD,
{|G1|, |G2|, . . . , |Gm|}. So, we also use exponential notation to describe the type
of a frame. A{G1, G2, . . . , Gm}-frame with block size k, index λ, and latinicity µ is
denoted as a (µ, λ; k, {G1, . . . , Gm})-frame or a (µ, λ; k)-frame of type tu1

1 tu2

2 . . . tuℓ

ℓ if
there are ui Gj’s of cardinality ti, 1 ≤ i ≤ ℓ. If |Gi| = h for all i, the frame F is often
called a (µ, λ; k,m, h)-frame.

Our main recursive construction uses (1, 1; 3)-frames to construct self-orthogonal
near resolvable DSTSs.

Theorem 3.1 Suppose there exists a (1, 1; 3)-frame with group partition {G1, G2,
. . . , Gm}. If there exists an NR∗DSTS(|Gi|+1) for all i = 1, . . . ,m then there exists
an NR∗DSTS(

∑m

i=1 |Gi|+ 1).

Proof. Let V = ∪m
i=1Gi. We construct an NR∗DSTS(v + 1) on V ∪ {∞} where

|V | = v. Let Di denote an NR∗DSTS(|Gi|+1) defined on Gi∪{∞} with |Gi| = ti. Di

has ti+1 resolution classes, Pi,∞, Pi,1, Pi,2, . . . , Pi,ti where Pi,∞ denotes the resolution
class missing the element ∞.

Suppose F is a (1, 1; 3, {G1, G2, . . . , Gm})-frame. F has ti
2
rows, Ri,j for j = 1, 2, . . . ,

ti
2
, which are missing the elements of Gi; that is, every element of V \ Gi occurs

once in each of these rows. F also has ti
2
columns, Ci,j for j = 1, 2, . . . , ti

2
, which

are missing the elements of Gi. Adjoin a resolution class from Di to each of these
rows and to each of these columns. The resulting (near) resolution classes, Pi,j,
j = 1, 2, . . . , ti, are each missing precisely one element of Gi.

Pi,j = Ri,j ∪ Pi,j for 1 ≤ j ≤ ti
2
,

P
i,

ti

2
+j

= Ci,j ∪ P
i.

ti

2
+j

for 1 ≤ j ≤ ti
2
.

Let P∞ = ∪m
i=1Pi,∞; every element of V occurs once in this class. Then P∞ together

with Pi,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , ti is a set of 1+
∑m

i=1 ti (near) resolution
classes.

First, note that by taking the rows and the columns of the frame F , we have used
two copies of the underlying GDD with block size 3 and λ = 1. Since we are filling
in the groups, Gi, of the GDD with DSTS defined on Gi ∪{∞}, the resulting design
is a DSTS(v + 1).

Next we check that the v + 1 resolution classes are self-orthogonal. Observe that
Ci,j ∩ Ri,k = ∅ for 1 ≤ j, k ≤ ti. (The rows and columns in F which are missing
the group Gi are disjoint.) Since Di is an NR∗DSTS, |Pi,j ∩ Pi,k| ≤ 1 for j 6= k and
|Pi,j∩P∞| ≤ 1. Since F is a (1, 1; 3)-frame, |Pi,j∩Pℓ,k| ≤ 1 for i 6= ℓ and j = 1, . . . , ti,
k = 1, . . . , tℓ. Therefore, we have constructed an NR∗DSTS(v + 1) on V ∪ {∞}. 2
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In order to apply this result, we need some existence results for (1, 1; 3)-frames.
The following two standard recursive constructions for frames, the singular direct
product and the Fundamental Construction, will be useful.

Theorem 3.2 ([9]) If there exists a (1, 1; 3, {G1, G2, . . . , Gm})-frame and a set of
three mutually orthogonal Latin squares of side n, then there exists a (1, 1; 3)-frame
of type {n|Gi| | i = 1, 2, . . . ,m}.

Theorem 3.3 ([9]) Let G be a GDD(v;K;G1, G2, . . . , Gm; 0, 1). Suppose there ex-
ists a function w : V → Z

+ ∪ {0} (a weight function) which has the property
that for each block b = {x1, x2, . . . , xk} ∈ B, there exists a (1, 1; 3)-frame of type
{w(x1), w(x2), . . . , w(xk)}. Then there exists a (1, 1; 3)-frame of type

{

∑

x∈G1

w(x),
∑

x∈G2

w(x), . . . ,
∑

x∈Gm

w(x)

}

.

The connection between Kirkman squares, KS3(v + 1; 1, 1), and (1, 1; 3)-frames
of type 2

v

2 is described in [9, Lemma 4.4]. The first result for (1, 1; 3)-frames is
a consequence of Theorem 1.2 on the existence of Kirkman squares (DR(v, 3, 1)-
BIBDs).

Theorem 3.4 There exist (1, 1; 3)-frames of type 2u for u ≡ 1 (mod 3) and u ≥ 10
except possibly for u ∈ {10, 70, 76, 82, 88, 94, 115, 130, 142}.

Theorem 3.5 There exist (1, 1; 3)-frames of type 6u for 7 ≤ u ≤ 19, u ∈ {31, 49, 50,
56, 57, 58}, and u ≥ 63.

Proof. We update the existence result in [2]. (1, 1; 3)-frames of type 6u have been
constructed for u = 15, 16, 17, 18 in [1]. 2

Several small (1, 1; 3)-frames will also be used in Section 4.

Lemma 3.6 There exist (1, 1; 3)-frames of the following types:

(1) [7] 47; and

(2) [1] 188, 247181, 247361, 307361.

4 Existence

In this section, we construct self-orthogonal near resolvable DSTS(v) for v = 6x+1 for
x ≥ 3 with at present four possible exceptions for x. Our main recursive construction
uses group divisible designs.
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Theorem 4.1 Let G be a GDD(v;K;G1, G2, . . . , Gm; 0, 1). Suppose there exist
(1, 1; 3)-frames of type 6k for each k ∈ K and an NR∗DSTS(6|Gi| + 1) for each
i, i = 1, 2, . . . ,m. Then there exists an NR∗DSTS(6v + 1).

Proof. We use the Fundamental Construction for frames, Theorem 3.3 with w(x) =
6 for all x and then apply the Basic Frame Construction, Theorem 3.1. 2

We first use PBDs to construct group divisible designs and then apply Theo-
rem 4.1. This will be our main construction for v large.

Theorem 4.2 If there exists a PBD(x + 1; {7, 8, 9}), then there exists an
NR∗DSTS(6x+ 1).

Proof. We delete one element of a PBD(x+1; {7, 8, 9}) to construct a {7, 8, 9}-GDD
with |Gi| ∈ {6, 7, 8} for all i. By Theorem 3.5, there exist (1, 1; 3)-frames of types 6k

for k ∈ {7, 8, 9}, and NR∗DSTS(6m + 1) are constructed in [5] for m = 6, 7, 8. So,
we can apply Theorem 4.1 to construct NR∗DSTS(6x+ 1). 2

Truncated transversal designs can also be used to construct group divisible de-
signs. The next result describes several types of group divisible designs that are
useful for the existence of NR∗DSTSs. This is [9, Lemma 5.3].

Lemma 4.3 ([9], Truncation of Transversal Designs)

(1) If there exists a TD(8, n), then there exists a {7, 8}-GDD of type n7w1 where
w is an integer, 0 ≤ w ≤ n.

(2) If there exists a TD(9, n), then there exists a {7, 8, 9}-GDD of type n7w1y1

where w and y are integers, 0 ≤ w, y ≤ n.

(3) If there exists a TD(10, n), then there exists a {7, 8, 9, 10}-GDD of type
(n− 1)8w1y1 where w and y are integers, 0 ≤ w, y ≤ n− 1.

(4) There exists a {7, 8, 9, w, 19}-GDD of type 719−w8wy1 whenever 0 ≤ w ≤ 19
and 0 ≤ y ≤ 18.

In order to apply Theorem 4.2, we need the existence of PBD(v; {7, 8, 9})s. Let
E789 = [10, 48]∪[51, 55]∪[59, 62] and X789 = [93, 111]∪[116, 118]∪{132}∪[138, 168]∪
[170, 174] ∪ [180, 216] ∪ [219, 223] ∪ [228, 230] ∪ [242, 258] ∪ [261, 279] ∪ [283, 286] ∪
[298, 300] ∪ [303, 307] ∪ [311, 335] ∪ [339, 342] where the notation [x, y] is used to
denote the set of integers no smaller than x and no larger than y. We use the
existence result, [9, Theorem 5.6]; it updates the existence result in [14]

Theorem 4.4 ([9]) For any integer v ≥ 10, there is a PBD(v; {7, 8, 9}) except
possibly when v is in X789, and definitely when v is in E789.

One other recursive construction is useful for several small cases. It follows im-
mediately from Theorem 3.2 and Theorem 3.1.
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Theorem 4.5 If there exists a (1, 1; 3)-frame of type tm, three mutually orthog-
onal Latin squares of order n, and an NR∗DSTS(tn + 1), then there exists an
NR∗DSTS(tmn+ 1).

We are now in a position to prove our main result on the existence of NR∗DSTS(v)
for v ≡ 1 (mod 6). We start by constructing designs for small v; recall that these do
not exist [5] for v ∈ {7, 13}.

Lemma 4.6 There exist NR∗DSTS(v) for all v = 6x+1, 3 ≤ x ≤ 52, except possibly
for x ∈ {19, 22, 29, 43}.

Proof. NR∗DSTS(6x + 1) for 3 ≤ x ≤ 14 are given in [5]. We use Lemma 2.2 for
several cases with 15 ≤ x ≤ 52. Constructions for the remaining cases are described
in Table 3 in the Appendix. 2

Proof of Theorem 1.1. Lemma 4.6 establishes the existence of NR∗DSTS(6x+1)
for 3 ≤ x ≤ 52 and x /∈ {19, 22, 29, 43}. For 53 ≤ x ≤ 369, all but one of these
values is done using the group divisible design construction, Theorem 4.1. These
constructions are described in detail in Table 4 in the Appendix. In each case, we
make use of the existence of the small designs constructed in Lemma 4.6 and the
existence of the necessary frames of type 6k, Theorem 3.5.

By Theorems 4.2 and 4.4, there exist PBD(x + 1; {7, 8, 9}) and hence
NR∗DSTS(6x+ 1) for all x ≥ 342. �

5 Concluding Remarks

We have shown that there exist self-orthogonal near resolvable DSTS(v) for all v ≡ 1
(mod 6), v ≥ 19, with four possible exceptions. The largest exception could be
constructed using a (1, 1; 3)-frame of type 1813241 if it were found. The remaining
values are non-prime-powers divisible by either 5 or 7, and may require new ideas to
obtain a construction.

One could consider a generalization of this work to constructing near resolvable
(v, k, k−1)-BIBDs via k−1 copies of a (v, k, 1)-BIBD with v ≡ 1 (mod k(k−1)). Let
(V,B) be a (v, k, 1)-BIBD with v ≡ 1 (mod k(k − 1)). We denote a self-orthogonal
NR(v, k, k−1)-BIBD defined on V with block collection (k−1)B by NR∗ (v, k, k−1)-
BIBD. The direct cyclotomic construction of Section 2 generalizes to larger block
size and can be used to find examples. Here is an example of a NR∗ (v, 4, 3)-BIBD
obtained as three disjoint translates of a cyclic (v, 4, 1)-BIBD.

Example 5.1 Let q = 37 and consider the cosets H = C0, . . . , C11 of index 12 in
F
×
q . The element ω = 2 is a generator, so we have H = {20, 212, 224} = {1, 26, 10}.

The starter block B = {1, 4, 6, 15} has its 12 ordered differences in distinct cosets,
and moreover B ∪ (10+B)∪ (18+B) intersects each coset Cj exactly once. Letting
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B = {a + hB : h ∈ H, a ∈ Fq}, we obtain blocks of a (37, 4, 1)-BIBD. The blocks
{hB, h(B + 10), h(B + 18) : h ∈ H} provide a starter for a near resolvable (37, 4, 3)-
BIBD. Since ±10, ±18 (the two translates), and ±8 (their difference) are in distinct
cosets, the tripled block collection 3B is an NR∗ (37, 4, 3)-BIBD.

Computer searches found instances of Example 5.1 for q = 109 and q = 157 but,
curiously, not for q = 61.

NR∗ (v, k, k − 1)-BIBDs are PBD-closed, [19]. To see this, we construct a v × v
array from an NR∗ (v, k, k− 1)-BIBD as follows. Index the rows and columns of the
array with the (near) resolution classes R1, R2, . . . , Rv ordered so that Ri is missing
element i of V . For i 6= j, place the block from Ri ∩Rj in cell (i, j). If Ri ∩Rj = ∅,
the cell is left empty. The diagonal is also left empty. The resulting square array
displays the resolution classes in the columns and in the rows.

Lemma 5.2 If there exists a PBD(v,M) and an NR∗ (m, k, k − 1)-BIBD for each
m ∈ M , then there exists an NR∗ (v, k, k − 1)-BIBD.

Proof. Construct a v × v array by replacing each block of size m with the m×m
array obtained from an NR∗ (m, k, k − 1)-BIBD. It is straightforward to check that
the resulting array displays a set of self-orthogonal resolutions for a NR∗ (v, k, k−1)-
BIBD. 2

Although PBDs are not useful for explicit constructions here due to the large block
sizes required, Lemma 5.2 can be used to establish asymptotic existence results. For
example, let M = {37, 157}. There exist PBD(v,M) for all sufficiently large v ≡ 1
(mod 12), [19]. Since NR∗ (m, 4, 3)-BIBDs exist for each m ∈ M , there exist NR∗

(v, 4, 3)-BIBDs for all sufficiently large v ≡ 1 (mod 12).

For general values of k, the existence of NR∗ (v, k, k− 1)-BIBDs is an interesting
topic left for future work.
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Appendix

Two tables are given for the construction of small designs needed for our proof.

Table 3: Constructions for NR∗DSTS(6x+ 1) for 3 ≤ x ≤ 52
x 6x+ 1 Construction Parameters

3, 4, . . . , 14 19, 25, . . . , 85 [5] Direct
15 91 2.4 Direct
16 97 2.3 Direct
17 103 2.2 Direct
18 109 2.2 Direct
19 115 ??
20 121 2.5 Direct
21 127 2.2 Direct
22 133 ??
23 139 2.2 Direct
24 145 3.1 188-frame
25 151 2.2 Direct
26 157 2.2 Direct
27 163 2.2 Direct
28 169 4.5 67-frame, n = 4
29 175 ??
30 181 2.2 Direct
31 187 3.1 247181-frame
32 193 4.5 68-frame, n = 4
33 199 2.2 Direct
34 205 3.1 247361-frame
35 211 4.5 67-frame, n = 5
36 217 4.5 69-frame, n = 4
37 223 2.2 Direct
38 229 2.2 Direct
39 235 4.5 213-frame, n = 9
40 241 4.5 610-frame, n = 4
41 247 3.1 307361-frame
42 253 4.5 47-frame, n = 9
43 259 ??
44 265 4.5 611-frame, n = 4
45 271 4.5 69-frame, n = 5
46 277 2.2 Direct
47 283 2.2 Direct
48 289 4.5 612-frame, n = 4
49 295 4.5 67-frame, n = 7
50 301 4.5 610-frame, n = 5
51 307 2.2 Direct
52 313 4.5 613-frame, n = 4
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Table 4: Constructions for NR∗DSTS(6x+ 1) for 53 ≤ x ≤ 369

x Construction Parameters Ingredient design

53 ≤ x ≤ 56 4.1, 4.3(1) n = 7, 4 ≤ w ≤ 7 {7, 8}-GDD of type 77w1

57 4.2, 4.4 PBD(x+ 1; {7, 8, 9})
58 2.2 Direct

59 ≤ x ≤ 61 4.1, 4.3(2) n = 8, w = 0, 3 ≤ y ≤ 5 {7, 8, 9}-GDD of type 87w1y1

62 ≤ x ≤ 91 4.2, 4.4 PBD(x+ 1; {7, 8, 9})
83 ≤ x ≤ 100 4.1, 4.3(3) n = 11, 3 ≤ w, y ≤ 10 {7, 8, 9, 10}-GDD of type 108w1y1

99 ≤ x ≤ 120 4.1, 4.3(3) n = 13, 3 ≤ w, y ≤ 12 {7, 8, 9, 10}-GDD of type 128w1y1

118 ≤ x ≤ 130 4.2, 4.4 PBD(x+ 1; {7, 8, 9})
131 4.1 [9, Lemma 5.4] {7, 8, 9}-GDD of type 81412171

132 ≤ x ≤ 136 4.2, 4.4 PBD(x+ 1; {7, 8, 9})
137 ≤ x ≤ 148 4.1, 4.3(4) w = 0, 4 ≤ y ≤ 15 {7, 8, 9, 19}-GDD of type 719y1

144 ≤ x ≤ 155 4.1, 4.3(4) w = 7, 4 ≤ y ≤ 15 {7, 8, 9, 19}-GDD of type 71287y1

150 ≤ x ≤ 161 4.1, 4.3(4) w = 13, 4 ≤ y ≤ 15 {7, 8, 9, 13, 19}-GDD of type 76813y1

162 4.1, 4.3(4) w = 15, y = 14 {7, 8, 9, 15, 19}-GDD of type 74815y1

163 4.1, 4.3(4) w = 15, y = 15 {7, 8, 9, 15, 19}-GDD of type 74815y1

164 ≤ x ≤ 205 4.1, 4.3(2) n = 23, 3 ≤ w + y ≤ 44 {7, 8, 9}-GDD of type 237w1y1

w, y ∈ {0, 3, . . . , 23} \ {19, 22}
178 ≤ x ≤ 225 4.1, 4.3(2) n = 25, 3 ≤ w + y ≤ 50 {7, 8, 9}-GDD of type 257w1y1

w, y ∈ {0, 3, . . . 25} \ {19, 22}
220 ≤ x ≤ 279 4.1, 4.3(2) n = 31, 3 ≤ w + y ≤ 62 {7, 8, 9}-GDD of type 317w1y1

w, y ∈ {0, 3, . . . , 31} \ {19, 22, 29}
262 ≤ x ≤ 333 4.1, 4.3(2) n = 37, 3 ≤ w + y ≤ 74 {7, 8, 9}-GDD of type 377w1y1

w, y ∈ {0, 3, . . . , 37} \ {19, 22, 29}
290 ≤ x ≤ 369 4.1, 4.3(2) n = 41, 3 ≤ w + y ≤ 82 {7, 8, 9}-GDD of type 417w1y1

w, y ∈ {0, 3, . . . , 41} \ {19, 22, 29}
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