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Abstract

Deutsch proved that the number of high peaks and the number of valleys
are equidistributed over Dyck paths. The proof is by constructing a
bijection on Dyck paths. In this paper, we consider the high peaks and
valleys over k-tuples of nonintersecting Dyck paths for any positive integer
k. We establish a bijection over k-tuples of nonintersecting Dyck paths,
exchanging the number of high peaks and the number of valleys. This
leads to the equidistribution of the number of high peaks and the number
of valleys over k-tuples of nonintersecting Dyck paths. When k = 1, our
result applies to the equidistribution over Dyck paths due to Deutsch. In
this case, our bijection differs from the bijection of Deutsch.

1 Introduction
Dyck paths are classical objects in combinatorics, which are counted by the Catalan
numbers. See, for example, the book of Stanley [25] for a thorough introduction.

Dyck paths have received much attention in recent years; see for example [6,8,13,21].
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In this paper, we are concerned with high peaks and valleys of Dyck paths. By
constructing a bijection I' : D,, — D,,, where D,, denotes a Dyck path of length n,
Deutsch [7] proved that the number of high peaks and the number of valleys are
equidistributed over Dyck paths. The main purpose of this paper is to generalize
this result to k-tuples of nonintersecting Dyck paths for any positive integer k. This
is achieved by establishing a bijection €2 : Path(\, k) — Path(\, k), where Path(\, k)
denotes the set of k-tuples of nonintersecting paths in A\. By this operation, we
find that the high peaks and valleys of k-tuples of nonintersecting Dyck paths have
the same distribution. The construction of the bijection rests on an intermediate
structure of certain fillings of Young diagrams. An example is shown in Figure 3.11.
When restricted to Dyck paths (namely, the case k = 1), our bijection differs from
the bijection of Deutsch [7].

The number of valleys over k-tuples of nonintersecting Dyck paths has recently
been studied by Hwang, Kim, Yoo and Yun [15]. Let N, x(q) denote the generating
polynomial of the number of valleys over k-tuples of nonintersecting Dyck paths of
semilength n. Hwang, Kim, Yoo and Yun [15] found a determinantal formula for
N,.x(¢q) in order to prove two conjectures posed by Morales, Pak and Panova [22,23]
in their study of the hook length formulas for skew diagrams.

Using the above determinantal formula, we show that N, (q) is a symmetric
polynomial. Note that in the case £ = 1, this is known as the symmetry of the
Narayana polynomials, while in the case k = 2, such a symmetry property has been
proved by Courtiel, Fusy, Lepoutre and Mishna [5] based on a bijection between pairs
of nonintersecting Dyck paths and Schnyder woods due to Bernardi and Bonichon [1].
As an application of the symmetry of N, ;(¢), we obtain an alternative proof of a
conjecture posed by Reiner, Tenner and Yong [24] for the staircase shape.

This paper is organized as follows. In Section 2, we state the main result of this
paper, whose proof is given in Section 3. In Section 4, we show that the general
Narayana polynomial NV, ;(¢q) is a symmetric polynomial.

2 Main result

In this section, we state the main result of this paper, that is, that the number of high
peaks and the number of valleys are equidistributed over k-tuples of nonintersecting
Dyck paths. As will be seen, we shall establish a stronger result by considering
nonintersecting lattice paths in a Young diagram.

Let us start with a review of the definition of a Dyck path. A Dyck path of
semilength n is a diagonal lattice path from (0,0) to (2n,0), consisting of n up-steps
(along the vector (1,1)) and n down-steps (along the vector (1,—1)), such that the
path never goes below the z-axis. We will refer to n as the semilength of the path.
It is well known that the Dyck paths of semilength n are counted by the Catalan

number C,, = %H(Zg) For example, there are five Dyck paths of semilength 3, as
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illustrated in Figure 2.1.

Figure 2.1: Dyck paths of semilength 3.

A joint node is called a peak if it is formed by an up-step followed by a down-step,
and is called a wvalley if it is formed by a down-step followed by an up-step. By a
high peak we mean a peak at a level strictly greater than 1. For example, the high
peaks of the Dyck paths in Figure 2.1 are drawn with solid dots.

Two Dyck paths P, and P, are called non-intersecting if for every point (z1,y1)
on P; and (z1,y2) on Ps, it holds that y; < y». A k-tuple of nonintersecting Dyck
paths means there are k Dyck paths that form the nonintersecting Dyck paths. For
example, both figures in Figure 2.2 are referred to as nonintersecting Dyck paths.
The left one depicts a 3-tuple of nonintersecting Dyck paths of semilength 5 and the
right one is called a 2-tuple of nonintersecting Dyck paths of semilength 5.

Figure 2.2: two nonintersecting Dyck paths.

Theorem 2.1 Let n and k be positive integers. For any nonnegative integer i, the
number of k-tuples of nonintersecting Dyck paths of semilength n with © high peaks
is equal to the number of k-tuples of nonintersecting Dyck paths of semilength n with
1 valleys.

Taking £ = 1, Theorem 2.1 is specialized into a statement for ordinary Dyck
paths, which was originally proved by Deutsch [7]. Our bijection for the k = 1 case
is different from the bijection of Deutsch. We shall provide a stronger equidistribution
by considering nonintersecting paths in a Young diagram, which specifies to Theorem
2.1 when the Young diagram is a staircase shape.

Let A = (A1, Ag, ..., A¢) be an integer partition, that is, Ay > Ao > -+ > X\, > 0.
The Young diagram of X\ is a left-justified array of squares with \; squares in row .
If no confusion arises, we do not distinguish a partition and its Young diagram. A
(lattice) path L in X is a path from the bottom left point of A to the top right point
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of A with unit north steps or unit east steps. Note that the paths in A are in one-to-
one correspondence with subshapes of \. More precisely, the southeast border of a
subshape of A determines a path in A\, and vice versa. In Figure 2.3, we illustrate a
path in a Young diagram, where we use stars to indicate the corresponding subshape.

>*
>*

* o | |t
>

Figure 2.3: A path in A = (4,4, 3,1) and its left and right turns.

We proceed to introduce the notion of a left turn and a right turn of a path L in A
as introduced by Chan et al. [3]. A left turn of L is an east step followed immediately
by a north step, while a right turn of L is a north step followed immediately by an
east step with the additional condition that these two consecutive steps are entirely
contained in A\. The path in Figure 2.3 has three left turns and two right turns,
which are signified by solid dots and open dots, respectively.

A k-tuple L = (Lq, Lo, . .., Ly) of paths in A is nonintersecting if for 1 <i < k—1,
the subshape determined by the path L; is contained in the subshape determined by
the path L; ;. Figure 2.4 illustrates a 3-tuple (L1, Ls, L3) of nonintersecting paths in
A =(5,4,3,1), where the paths L;, Ly and L3 in A are drawn with thick line, dashed
line and dotted line respectively.

et

Figure 2.4: A 3-tuple of nonintersecting paths in (5,4, 3, 1).

Theorem 2.2 Let A\ be a partition, and k be a positive integer. For any nonnegative
integer 1, the number of k-tuples of nonintersecting paths in A with i left turns is
equal to the number of k-tuples of nonintersecting paths in X\ with i right turns.

When A is the staircase partition 6, = (n — 1,n — 2,...,1), each k-tuple of
nonintersecting paths in A naturally corresponds to a k-tuple of nonintersecting Dyck
paths of semilength n. The correspondence is illustrated in Figure 2.5. Moreover,



S.C.C. SUN ET AL./AUSTRALAS. J. COMBIN. 93 (1) (2025), 1-19 5

Figure 2.5: Nonintersecting lattice paths in 9,,.

by definition, it is easy to check that a left turn corresponds to a valley, and a right
turn corresponds to a high peak. So, when A is restricted to §,,, Theorem 2.2 can
be specialized into Theorem 2.1. The proof of Theorem 2.2 will be discussed in
Section 3.4.

3 Proof of Theorem 2.2

To prove Theorem 2.2, we establish a bijection 2 on k-tuples of nonintersecting
paths in A, exchanging the number of left turns and the number of right turns. To
do this, we construct two bijections between k-tuples of nonintersecting paths in A
and certain fillings of \.

3.1 Fillings of Young diagrams and reverse plane partitions

A filling F of a Young diagram X is an assignment of nonnegative integers into the
squares of \ such that each square receives exactly one integer. Before defining the
southeast chain, let us first provide a definition of weakly below and weakly to the
right. We say “M” is weakly below to “N” if “M” is positioned at the same height or
lower vertically compared to “N”. We say “M” is weakly to the right of “N” if “M” is
positioned at the same horizontal level or farther right relative to “N”. A southeast
chain (or, SE-chain) of F' is a sequence of non-zero entries in the filling such that any
entry in the sequence is weakly below and weakly to the right of the preceding entry
in the sequence. The length of an SE-chain is defined as the sum of all the entries in
the chain. Let F(A, k) denote the set of fillings of A such that the longest SE-chain
has length at most k.

Figure 3.6 gives two fillings of A = (5, 3,3,2), where the longest SE-chain in the
left filling has length 3, while the longest SE-chain in the right filling has length 4.

We say a sequence is weakly increasing if each element is greater than or equal
to the one before it. A reverse plane partition of shape A is a filling of A such that
the entries in each row and in each column are weakly increasing; see Stanley [26,
Chap. 7]. Let RPP(A, k) denote the set of reverse plane partitions of shape A with
entries not exceeding k. Let Path(\, k) denote the set of k-tuples of nonintersecting
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o[2][o]1]0] o[ofo[2]0]
101 0[3]1
11 2[0]0
1[0 1]0

Figure 3.6: Two fillings of A = (5,3, 3, 2).

paths in A\. There is a simple bijection between the set Path(\, k) and the set
RPP()\, k). We denote this bijection by ®, which will be sketched below, see also
Kamioka [16] or Krattenthaler [18]. Given L = (L, Lo, ..., Ly) € Path(\, k), define
P = ®(L) as follows. Let Ly and Ly, respectively denote the northwest border of A
and the southeast border of A\. Taking Figure 3.7 as an example, if L = (L, Ls), the
red line represents Ly, the black thick line represents L;, the dashed line represents
Ly and the blue line represents L.

Figure 3.7: An example for L = (Ly, Lo)

For 0 <1 < k, fill each of the squares between L; and L;,; with the entry 7. It
is not hard to check that P is a reverse plane partition. The reverse procedure can
also be easily recovered. Figure 3.8 is an illustration of the bijection ®, where L is
the thick line and L, is the dashed line.

oroﬁ:z 2| <2 ,j
of1i2] <2 - _
11 <2
11 <2
P L= (Ly, Ly)

Figure 3.8: An illustration of the bijection ®.
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3.2 The first bijection from Path(\ k) to F(\, k)

Let us describe the first bijection €; from Path(\, k) to F(A\, k). Let L be a k-
tuple of nonintersecting paths in A. Let P = ®(L) be the reverse plane partition
corresponding to L. For a square (i,7) of A, let P(i,7) denote the entry of P filled
in (4,7). Define a filling F' of A by letting the entry in the square (i, j) be

F(i,j) = min{P(i + 1, ), P(i,j + 1)} — P(i, j), (3.1)

where we set P(i, j) = k if the square (i, 7) is not contained in A. Set (L) = F.

For example, we give in Figure 3.9 an illustration of the map ;.

i ofof1]1 of[1]0
. ol2]212 g 2100
2(2]3 0[1]0
2] L]
L P F

Figure 3.9: An illustration of the bijection €.

Theorem 3.1 The map ) is a bijection from the set Path(\, k) to the set F(\ k).
Moreover, for any L € Path(\, k), the number of left turns of L equals the total sum
of entries in 2y (L).

Proof. We first show that for L € Path(\, k), the filling F' = Q;(L) of A belongs to
F(\ k). Let m(F,(4,7)) denote the maximal length of any SE-chain such that each
entry in the SE-chain lies weakly below and weakly to the right of the square (i, 7).

To verify F' € F(\, k), we need to show that
m(F, (1,1)) < k. (3.2)
To this end, we claim that for any square (7, 7) in A,
P(i,j) = k —m(F, (i, 7)). (3.3)

The proof is by induction on the hook length of the square (7, j). Let h; ; denote the
hook length of the square (7, j), namely, the number of squares of A directly to the
right or directly below (i,7), counting (7,j) itself once. We first consider the case
when h; ; = 1. In this case, (7, ) is a corner of A\. This means that neither the square
(141, 7) nor the square (i, 7+ 1) is in A. Moreover, we see that m(F, (i, 7)) = F(i, 7).
Hence, we have

P(i,7) = min{P(+1,j),P(i,j+1)} — F(i,))
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= k—F(i,7)
= k—m(F,(i,7)).
Assume that (3.3) is true for the square (i,7) with h;; =t > 1. We now consider

the case for the square (i,j) with h;; =t + 1. Note that h;1;; <t and h; ;11 < t.
By the induction hypothesis,

P(i,j) = min{P(i+1,5),P(,7+ 1)} — F(i,7)
= min{k —m(F,(i+1,5)),k—m(F,(:,7+ 1))} — F(i,5)
= k—max{m(F,(i+1,7)),m(F,(i,7+1))} — F(i,))
= k—m(F, (i),

which verifies (3.3).
In particular, restricting (7, 7) = (1,1) in (3.3) yields that
P(]-’ 1) =k — m<F7 (17 1))7
and so we have
m(F,(1,1)) =k— P(1,1) < k.
This concludes (3.2). Thus F' is a filling of A belonging to F(\, k).

On the other hand, given a filling F' of A in F(\, k), we can define a k-tuple L of
nonintersecting paths in A as follows. Let P be a tableau defined by setting

It is obvious that
0< P(i,j) <k.
Moreover,
and
P(i,j+1) =k —-m(F,(i,j + 1)) > k —m(F, (,7)) = P(i, ).

Therefore, P is a reverse plane partition in RPP(A, k). Let L = W(P) be the k-tuple
of nonintersecting paths in A. It is easy to check that the above procedures are
reversible, and thus the map 2, is a bijection.

By the construction of the bijection W, it is easily checked that for each square
(7,7) of A, the number of left turns of L = W(P) that border the square (i,7) is
exactly equal to

min{P(i,j + 1), P(i + 1,5)} — P(i, ) = F(i, ).

Hence the number of left turns of L equals the total sum of integers in €(L). This
completes the proof. 1
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3.3 The second bijection from Path(\, k) to F(\, k)

We next describe the second bijection 2y from Path(\, k) to F(A\ k). Let L be a
k-tuple of nonintersecting paths in A\. Again, we let P = ®(L) be the reverse plane
partition corresponding to L. Define a filling F” of A by setting

F'(i,5) = P(i,j) — max{P(i — 1,7), P(i,j — 1)}, (3.4)
where we set P(0,7) = P(:,0) = 0. Set Q(L) = F".

Figure 3.10 is an illustration of the bijection 25.

i ojof1]1 ojo]1]o
H NN 0[2]2]2 o[2]0]0
- 223 2/0]1
2] 0]
L P F

Figure 3.10: An illustration of the bijection (2s.

Theorem 3.2 The map Qs is a bijection from the set Path(\, k) to the set F(\ k).
Moreover, for any L € Path(\, k), the number of right turns of L equals the total
sum of entries in Qy(L).

Proof. For each square (i,7) of A\, let m(F”, (¢, 7)) denote the maximal length of any
SE-chain of F” such that each entry in the SE-chain lies weakly above and weakly to
the left of (i, 7).

We claim that for any square (i, 7) of A,

P(i, j) = m(F, (i, 1)) (3.5)

The proof is by induction on the reverse hook length of (i,7). Here, the reverse
hook length of a square is defined to be 1 plus the number of squares above it, plus
the number of squares to its left, see Dukes and Reifegerste [9]. Let h;; denote the
reverse hook length of the square (i, j).
If h;; = 1, then (i,) must be the square (1,1). According to (3.4), it is clear
that
P(1,1) = F'(1,1) =m(F’, (1,1)).

Assume that (3.5) is true for any square (4, j) with h; ; =t > 1. We now consider
the case for the squares with h; ; = t + 1. Notice that h;_;; < t and h; ;1 < t.
Hence, by the induction hypothesis,

P(i,j) = F'(i,j) + max{P(i —1,5),P(i,j — 1)}
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F,(27]> + max{m(F’, (Z - 17j))7m<F,7 (Zuj - 1))}
= m(F, (i,5)).
This verifies the claim in (3.5). So F” is a filling of A in F(A, k).

The reverse procedure of €25 can be described as follows. Given a filling F” of A
in F(\, k), we first define a filling P by setting

P(i,j) = m(F, (i, 7).
Obviously, 0 < P(,j) < k. Moreover,
P(Zaj) :m(F/a (27])) > m(F/7(7;7j - 1)) = P(Za] - 1)
and

So we see that P is a reverse plane partition in RPP(A, k). Let L = ¥(P) be the
k-tuple of nonintersecting paths in .

By the construction of W, for every square (i,j) of A, the number of right turns
of L = ¥(P) bordering the square (7, j) is equal to

Hence the number of right turns of L equals the total sum of numbers in F’. This

completes the proof. 1

3.4 Proof of Theorem 2.2

By Theorems 3.1 and 3.2, we obtain a one-to-one correspondence Q = Q;'Q, on
Path(\, k) such that for each L € Path(\, k), the number of right turns of L is equal
to the number of left turns of Q(L). This finishes the proof of Theorem 2.2.

Figure 3.11 gives an example to illustrate the bijection ).

B ojofo]1]0]
o[2[1]0 NN
1o — ki :
. L
L (L) QL) = Q' (L)

Figure 3.11: An illustration of the bijection (2.

When ) is the staircase shape 9,, and k& = 1, the bijection {2 can be specialized
into a bijection on Dyck paths. In this case, given a Dyck path D, the number of high
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peaks of D equals the number of valleys of (D). As mentioned in the Introduction,
Deutsch [7] also established a bijection on Dyck paths, which switches the number
of high peaks to the number of valleys. We next recall this bijection, and give an
example to illustrate that when restricted to Dyck paths, €2 differs from the bijection
of Deutsch.

The bijection in [7] can be described as follows. The return of a Dyck path D
is defined as the down-step landing on the horizontal axis. Assume that D has k
returns. Delete the very first step of D and all the k return steps, see the dotted
steps in Figure 3.12(a). Draw the remaining steps continuously, and then add an up
step followed by k down steps, see the dashed steps in Figure 3.12(b). The resulting
path is denoted by I'(D). It is not hard to check that I' is a bijection. Moreover, the
number of high peaks of D equals the numbers of valleys of I'(D).

Figure 3.12: Deutsch’s bijection I' on Dyck paths.

For comparison, for the Dyck path in Figure 3.12(a), the resulting Dyck path by
applying the bijection € is given in Figure 3.13, which is different from the Dyck
path in 3.12(b).

[ ololololololo]0] |
0/0/0[0/0/0]1
0,0/0/0]/0/0

«— 0/0/0/0/0 —
0[1/0]/0
0/0/0
10
0]

D Qa(D) QD) = Q7' (D)

Figure 3.13: Our bijection {2 on Dyck path.

3.5 Another proof of Theorem 3.2 and Theorem 2.2

In fact the bijection between reverse plane partitions of given shape A with maximum
entry at most k£ and fillings of A with longest SE-chain at most k is a special case of
Stanley’s transfer map between the order polytope and chain polytope; see [27].
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Let P be a finite partially ordered set (poset). As defined in [27], the order
polytope of P is the set O(P) of labelings f : P — [0,1] that are order-preserving
(i.e. if @ < b in P, then f(a) < f(b)). The chain polytope of P is the set C(P)
of labelings f : P — [0,1] such that the sum of the labels across every chain is at
most 1.

The transfer map ¢ : O(P) — C(P), illustrated in [27], can be defined as follows:
if v = (21,29,...,2,) € O(P) and t; € P, then ¢(x) = (y1,v2, .. .,¥,), where

y; = min{z; — x; : t; covers t;in P}.
Put another way,

y; = x; — max{x; : t; covers t;in P},
which is consistent with the relation (3.4).

As shown in Figure 3.14, the bijection between the reverse plane partition P and
the filling F’, first illustrated in Figure 3.10, can also be obtained by the transfer
map ¢. This provides the second proof method for Theorem 3.2.

olof1]1 ojo[1]o
0[2]2 0]2]0]o0
2[2]3 2[0]1
2] 0]

Figure 3.14: The transfer map ¢.

Therefore, the bijection between reverse plane partitions of given shape A\ with
maximum entry at most k and fillings of A with longest SE-chain at most & is a special
case of Stanley’s transfer map between the chain polytope and order polytope.

Next, we will introduce the piecewise-linear rowmotion defined by Einstein and
Propp in [10]. The toggle t, : O(P) — O(P) is

. Tp ifa#b
(@) = minzr. + maxzr. —r, ifa=>b
a<<c c<a

for all x € O(P) and a € P. Then the piecewise-linear rowmotion is the map given
by applying toggles along a linear extension from top to bottom, see Figure 3.16.



S.C.C. SUN ET AL./AUSTRALAS. J. COMBIN. 93 (1) (2025), 1-19 13

We extract the key steps for mapping €2 from Figure 3.11 and place them in Figure
3.15. Besides, the tableaux P and P’ correspond to two order polytopes O(P) and
O(P’), respectively. Obviously, our bijection 2 discussed in Section 3.4 is a special
case of the piecewise-linear rowmotion for the relevant poset (i.e., the shape \); see
Figures 3.15 and 3.16.

olofof1]1] 0olofo]1]0] 0[0[2]2]3]
0[2]3]3 0[0[2]3
11213 . N 113]3

2 2]

Figure 3.16: The piecewise-linear rowmotion.

Therefore, we can provide another proof of Theorem 2.2 using the theory of
piecewise linear rowmotion.

4 Generating polynomial for valleys

In this section, we investigate the number Ni(n,i) of k-tuples of nonintersecting
Dyck paths of semilength n with ¢ valleys. By Theorem 2.2, Ni(n,i) is also the
number of k-tuples of nonintersecting Dyck paths of semilength n with ¢ high peaks.
For any fixed n and k, we show that the sequence { Ny(n,i)};> is symmetric. As an
application, we give an alternative proof of a conjecture due to Reiner, Tenner and
Yong [24] on barely set-valued tableaux for a staircase shape.
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4.1 Symmetry of {Ny(n,i)}i>0

Write N, x(q) for the generating polynomial of Ni(n,7), namely,

k(n—1)
Nok(@) = D Ni(n,i)g"
i=0

Note that when k& =1, N,,1(¢) = Nn(q) reduces to the Narayana polynomial, which
has the following expression

N (o) =Z%(”) (1) 2

)

Hwang, Kim, Yoo and Yun [15] established the following determinantal formula
for N, x(g) in terms of Narayana polynomials:

Nur(a) = ¢~ &) det (Nopinyoa(a)F_, - (4.2)

Suppose the highest degree of a polynomial is m; we say a polynomial is symmetric
if the coefficients of a polynomial with degree ¢ are equal to the coefficients of a
polynomial with degree m — i. Using (4.1), we establish the following symmetry
property of N, x(q).

Theorem 4.1 The polynomial N, x(q) is symmetric.
Proof. To derive its symmetry, we only need to prove
Noui(q) = " VNus(g™). (4.3)
By (4.1), it is easily checked that N,(q) is a symmetric polynomial, namely,

Nu(q) = ¢""Nu(g™). (4.4)

Combining (4.2) and (4.4), we see that

k
Noi(q7h) = g det(Nopipjoa(g ™))
= q(g) det(q_(n+i+j_2_1)Nn+i+j—2(Q))ﬁjzl
k . .
= q(2)+3k det(q_(”+Z+J)Nn+i+j—2(Q))ﬁj:r (4.5)

We proceed to apply a row and column transformation for the determinant in (4.5).

n+1

Extracting the factor ¢~ ("9 from row 4, we obtain that

—(n+i+yj -k (n+i —J
det(q (nt +J)Nn+i+j—2(£]))§,j:1 =dq Liz () det(q an+i+j—2(Q))?,j:1
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e (k1 .
—q" (3 )det(q an+i+j—2(Q))§,j:1' (4.6)

For the determinant appearing in (4.6), extracting the factor ¢~/ from each column
7 yields that

det(q_an+i+j—2(Q))§,j:1 = q_(1+2+m+k) det(Nn+i+j—2(Q))ij:1
(k41
=q ("3 )det(Nn+i+j—2(Q))§,j:1' (4.7)

Combining (4.5), (4.6) and (4.7), we have

k k(BT _(k+1
Nn,k(q_l) = q(2)+3k k(%)= (% )det(Nn+i+j—2(Q))f,j:1

—(*\—k(n—
=q (3)—k(n=1) det(Nn+i+j—2(q>>ﬁj=1

_(k
= ¢ F=1y (3) det(Nn+i+j*2(Q))fJ:1’

which, together with (4.2), leads to the relation (4.3). This completes the proof. 1

For example, if n = 4 and k = 2, then N, »(q) = ¢°+6¢°+21¢*+28¢3+21¢*+6¢+1.
Obviously, Ny2(g) is symmetric.

In fact there is another Dyck path bijection which is called the Lalanne-Kreweras
involution (because it was considered by Kreweras [19] and Lalanne [20]). The
Lalanne-Kreweras involution bijectively exhibits the symmetry of the number of val-
leys statistic on Dyck paths of semilength n because it sends a Dyck path with k
valleys to one with n — 1 — k valleys.

Later, Hopkins and Joseph [14] constructed a piecewise-linear extension of the
Lalanne-Kreweras involution, which in particular gives a combinatorial proof of The-
orem 4.1 for the general k. The specific operation is, the Dyck paths of semilength
n are in simple bijection with the antichains of the Type A, _; root poset, and un-
der this bijection, the number of valleys becomes the cardinality of the antichain.
Moreover, recall that the indicator functions of antichains of a finite poset are the
vertices of its order polytope. In this way, the k-tuples of nonintersecting Dyck
paths of semilength n are in bijection with the rational points in the order poly-
tope of the Type A, _; root poset whose denominators divide k. That is, the points
in %ZNH N C(A™ 1) correspond to k-tuples of nonintersecting Dyck paths. Un-
der this bijection, the number of valleys of the k-tuple becomes k times the sum
of the coordinates of the corresponding point. The piecewise-linear extension of the
Lalanne-Kreweras involution implies that the generating function over these k-tuples
for the number of valleys statistic is still symmetric.

4.2 A conjecture of Reiner-Tenner-Yong

Let us begin by recalling a conjecture of Reiner, Tenner and Yong [24] concerning
the enumeration of barely set-valued semistandard Young tableaux. A semistandard
Young tableau of shape A is a filling of positive integers into the squares of A such
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that the entries in each row are weakly increasing, and the entries along each column
are strictly increasing. A set-valued semistandard Young tableau of shape A is an
assignment of finite sets of positive integers into the squares of A such that the sets
in each row (respectively, column) are weakly (respectively, strictly) increasing [2].
Here, for two sets A and B of positive integers, write A < B if max A < min B
and A < B if max A < min B. Clearly, when the set in each square exactly con-
tains a single integer, a set-valued semistandard Young tableau becomes an ordinary
semistandard Young tableau.

A barely set-valued semistandard Young tableau is a set-valued semistandard
Young tableau such that exactly one square is assigned a set of two integers, and
each of the remaining squares is assigned a set containing a single integer.

Given a partition A and a positive integer k, let BSSYT(A, k) and SYT(\, k)
denote the set of barely set-valued semistandard Young tableaux and ordinary semi-
standard Young tableaux of shape A, respectively, where no integer in row ¢ can
exceed k +i. A partition is called a rectangular staircase shape §,(b*) if the Young
diagram is obtained from the staircase shape d,, = (n — 1,n — 2,...,1) by replacing
each square with an a x b rectangle. See Figure 4.17 as an example.

64(23
S (@)

Figure 4.17: A rectangular staircase shape d,(23).

If A is a rectangular staircase shape, Reiner, Tenner and Yong [24] posed the
following conjecture.

Conjecture 4.2 (Reiner, Tenner and Yong [24, Conjecture 6.4'])  For any
positive integers a,b,n and k,

_ kab(n — 1)

IBSSYT(8,(b%), k)| CED)

ISYT(5,(6%), ). (4.8)

This conjecture was proved by Fan, Guo and Sun [12] by applying results of Chan,
Haddadan, Hopkins, and Moci on jaggedness of shapes [4]. Here, we shall explain
that for the staircase shape (namely, a = b = 1), we can use Theorem 4.1 to give an
alternative proof of (4.8).
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When a = b = 1, relation (4.8) reduces to

k(n—1)

IBSSYT(6,, k)| = ISYT(5,, k). (4.9)

Employing the bijection in [12, Theorem 3.2], we have the following relation

IBSSYT(A k)| = > i Ni(,d), (4.10)

>0

where Ni(\, i) denote the number of k-tuples of nonintersecting paths in A with i
valleys.

Using (4.10) for the case A = d,, and together with Theorem 4.1, we see that

BSSYT(5,, k)| = k(nf)i  Ni(n, i)
S Nyf) 4 T b~ 1) = ) N
2 k(= 1) - Nu(n, z'>2
k(n—1) Zf%_l) Ny (n, 1)
2

_ k(n— 1)|1’2ath(5n,k)|. (4.11)

To conclude (4.9), we still need to check that
|Path(0,, k)| = [SYT(d,, k)|. (4.12)

Recall that RPP(A, k) is the set of reverse plane partitions of shape A with entries
not exceeding k. Subtracting each entry in row i of T' € SYT(0,,k) by i, we are
led to a bijection between SYT(d,, k) and RPP(d,, k). In view of the bijection in
Section 3.1 between Path(\, k) and RPP(\ k), we arrive at (4.12). Putting (4.12)
into (4.11), we obtain (4.9).
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