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Abstract

Deutsch proved that the number of high peaks and the number of valleys

are equidistributed over Dyck paths. The proof is by constructing a

bijection on Dyck paths. In this paper, we consider the high peaks and

valleys over k-tuples of nonintersecting Dyck paths for any positive integer

k. We establish a bijection over k-tuples of nonintersecting Dyck paths,

exchanging the number of high peaks and the number of valleys. This

leads to the equidistribution of the number of high peaks and the number

of valleys over k-tuples of nonintersecting Dyck paths. When k = 1, our

result applies to the equidistribution over Dyck paths due to Deutsch. In

this case, our bijection differs from the bijection of Deutsch.

1 Introduction

Dyck paths are classical objects in combinatorics, which are counted by the Catalan

numbers. See, for example, the book of Stanley [25] for a thorough introduction.

Dyck paths have received much attention in recent years; see for example [6,8,13,21].
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In this paper, we are concerned with high peaks and valleys of Dyck paths. By

constructing a bijection Γ : Dn → Dn, where Dn denotes a Dyck path of length n,

Deutsch [7] proved that the number of high peaks and the number of valleys are

equidistributed over Dyck paths. The main purpose of this paper is to generalize

this result to k-tuples of nonintersecting Dyck paths for any positive integer k. This

is achieved by establishing a bijection Ω : Path(λ, k)→ Path(λ, k), where Path(λ, k)

denotes the set of k-tuples of nonintersecting paths in λ. By this operation, we

find that the high peaks and valleys of k-tuples of nonintersecting Dyck paths have

the same distribution. The construction of the bijection rests on an intermediate

structure of certain fillings of Young diagrams. An example is shown in Figure 3.11.

When restricted to Dyck paths (namely, the case k = 1), our bijection differs from

the bijection of Deutsch [7].

The number of valleys over k-tuples of nonintersecting Dyck paths has recently

been studied by Hwang, Kim, Yoo and Yun [15]. Let Nn,k(q) denote the generating

polynomial of the number of valleys over k-tuples of nonintersecting Dyck paths of

semilength n. Hwang, Kim, Yoo and Yun [15] found a determinantal formula for

Nn,k(q) in order to prove two conjectures posed by Morales, Pak and Panova [22,23]

in their study of the hook length formulas for skew diagrams.

Using the above determinantal formula, we show that Nn,k(q) is a symmetric

polynomial. Note that in the case k = 1, this is known as the symmetry of the

Narayana polynomials, while in the case k = 2, such a symmetry property has been

proved by Courtiel, Fusy, Lepoutre and Mishna [5] based on a bijection between pairs

of nonintersecting Dyck paths and Schnyder woods due to Bernardi and Bonichon [1].

As an application of the symmetry of Nn,k(q), we obtain an alternative proof of a

conjecture posed by Reiner, Tenner and Yong [24] for the staircase shape.

This paper is organized as follows. In Section 2, we state the main result of this

paper, whose proof is given in Section 3. In Section 4, we show that the general

Narayana polynomial Nn,k(q) is a symmetric polynomial.

2 Main result

In this section, we state the main result of this paper, that is, that the number of high

peaks and the number of valleys are equidistributed over k-tuples of nonintersecting

Dyck paths. As will be seen, we shall establish a stronger result by considering

nonintersecting lattice paths in a Young diagram.

Let us start with a review of the definition of a Dyck path. A Dyck path of

semilength n is a diagonal lattice path from (0, 0) to (2n, 0), consisting of n up-steps

(along the vector (1, 1)) and n down-steps (along the vector (1,−1)), such that the

path never goes below the x-axis. We will refer to n as the semilength of the path.

It is well known that the Dyck paths of semilength n are counted by the Catalan

number Cn = 1
n+1

(

2n
n

)

. For example, there are five Dyck paths of semilength 3, as
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illustrated in Figure 2.1.

• • • •
•

Figure 2.1: Dyck paths of semilength 3.

A joint node is called a peak if it is formed by an up-step followed by a down-step,

and is called a valley if it is formed by a down-step followed by an up-step. By a

high peak we mean a peak at a level strictly greater than 1. For example, the high

peaks of the Dyck paths in Figure 2.1 are drawn with solid dots.

Two Dyck paths P1 and P2 are called non-intersecting if for every point (x1, y1)

on P1 and (x1, y2) on P2, it holds that y1 ≤ y2. A k-tuple of nonintersecting Dyck

paths means there are k Dyck paths that form the nonintersecting Dyck paths. For

example, both figures in Figure 2.2 are referred to as nonintersecting Dyck paths.

The left one depicts a 3-tuple of nonintersecting Dyck paths of semilength 5 and the

right one is called a 2-tuple of nonintersecting Dyck paths of semilength 5.

Figure 2.2: two nonintersecting Dyck paths.

Theorem 2.1 Let n and k be positive integers. For any nonnegative integer i, the

number of k-tuples of nonintersecting Dyck paths of semilength n with i high peaks

is equal to the number of k-tuples of nonintersecting Dyck paths of semilength n with

i valleys.

Taking k = 1, Theorem 2.1 is specialized into a statement for ordinary Dyck

paths, which was originally proved by Deutsch [7]. Our bijection for the k = 1 case

is different from the bijection of Deutsch. We shall provide a stronger equidistribution

by considering nonintersecting paths in a Young diagram, which specifies to Theorem

2.1 when the Young diagram is a staircase shape.

Let λ = (λ1, λ2, . . . , λℓ) be an integer partition, that is, λ1 ≥ λ2 ≥ · · · ≥ λℓ ≥ 0.

The Young diagram of λ is a left-justified array of squares with λi squares in row i.

If no confusion arises, we do not distinguish a partition and its Young diagram. A

(lattice) path L in λ is a path from the bottom left point of λ to the top right point
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of λ with unit north steps or unit east steps. Note that the paths in λ are in one-to-

one correspondence with subshapes of λ. More precisely, the southeast border of a

subshape of λ determines a path in λ, and vice versa. In Figure 2.3, we illustrate a

path in a Young diagram, where we use stars to indicate the corresponding subshape.

e

e

u

u

u

⋆

⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

Figure 2.3: A path in λ = (4, 4, 3, 1) and its left and right turns.

We proceed to introduce the notion of a left turn and a right turn of a path L in λ

as introduced by Chan et al. [3]. A left turn of L is an east step followed immediately

by a north step, while a right turn of L is a north step followed immediately by an

east step with the additional condition that these two consecutive steps are entirely

contained in λ. The path in Figure 2.3 has three left turns and two right turns,

which are signified by solid dots and open dots, respectively.

A k-tuple L = (L1, L2, . . . , Lk) of paths in λ is nonintersecting if for 1 ≤ i ≤ k−1,
the subshape determined by the path Li is contained in the subshape determined by

the path Li+1. Figure 2.4 illustrates a 3-tuple (L1, L2, L3) of nonintersecting paths in

λ = (5, 4, 3, 1), where the paths L1, L2 and L3 in λ are drawn with thick line, dashed

line and dotted line respectively.

Figure 2.4: A 3-tuple of nonintersecting paths in (5, 4, 3, 1).

Theorem 2.2 Let λ be a partition, and k be a positive integer. For any nonnegative

integer i, the number of k-tuples of nonintersecting paths in λ with i left turns is

equal to the number of k-tuples of nonintersecting paths in λ with i right turns.

When λ is the staircase partition δn = (n − 1, n − 2, . . . , 1), each k-tuple of

nonintersecting paths in λ naturally corresponds to a k-tuple of nonintersecting Dyck

paths of semilength n. The correspondence is illustrated in Figure 2.5. Moreover,
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=⇒

Figure 2.5: Nonintersecting lattice paths in δn.

by definition, it is easy to check that a left turn corresponds to a valley, and a right

turn corresponds to a high peak. So, when λ is restricted to δn, Theorem 2.2 can

be specialized into Theorem 2.1. The proof of Theorem 2.2 will be discussed in

Section 3.4.

3 Proof of Theorem 2.2

To prove Theorem 2.2, we establish a bijection Ω on k-tuples of nonintersecting

paths in λ, exchanging the number of left turns and the number of right turns. To

do this, we construct two bijections between k-tuples of nonintersecting paths in λ

and certain fillings of λ.

3.1 Fillings of Young diagrams and reverse plane partitions

A filling F of a Young diagram λ is an assignment of nonnegative integers into the

squares of λ such that each square receives exactly one integer. Before defining the

southeast chain, let us first provide a definition of weakly below and weakly to the

right. We say “M” is weakly below to “N” if “M” is positioned at the same height or

lower vertically compared to “N”. We say “M” is weakly to the right of “N” if “M” is

positioned at the same horizontal level or farther right relative to “N”. A southeast

chain (or, SE-chain) of F is a sequence of non-zero entries in the filling such that any

entry in the sequence is weakly below and weakly to the right of the preceding entry

in the sequence. The length of an SE-chain is defined as the sum of all the entries in

the chain. Let F(λ, k) denote the set of fillings of λ such that the longest SE-chain

has length at most k.

Figure 3.6 gives two fillings of λ = (5, 3, 3, 2), where the longest SE-chain in the

left filling has length 3, while the longest SE-chain in the right filling has length 4.

We say a sequence is weakly increasing if each element is greater than or equal

to the one before it. A reverse plane partition of shape λ is a filling of λ such that

the entries in each row and in each column are weakly increasing; see Stanley [26,

Chap. 7]. Let RPP(λ, k) denote the set of reverse plane partitions of shape λ with

entries not exceeding k. Let Path(λ, k) denote the set of k-tuples of nonintersecting
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0 2 0 1 0

1 0 1

1 1 0

1 0

0 0 0 2 0

0 3 1

2 0 0

1 0

Figure 3.6: Two fillings of λ = (5, 3, 3, 2).

paths in λ. There is a simple bijection between the set Path(λ, k) and the set

RPP(λ, k). We denote this bijection by Φ, which will be sketched below, see also

Kamioka [16] or Krattenthaler [18]. Given L = (L1, L2, . . . , Lk) ∈ Path(λ, k), define

P = Φ(L) as follows. Let L0 and Lk+1 respectively denote the northwest border of λ

and the southeast border of λ. Taking Figure 3.7 as an example, if L = (L1, L2), the

red line represents L0, the black thick line represents L1, the dashed line represents

L2 and the blue line represents L3.

Figure 3.7: An example for L = (L1, L2)

For 0 ≤ i ≤ k, fill each of the squares between Li and Li+1 with the entry i. It

is not hard to check that P is a reverse plane partition. The reverse procedure can

also be easily recovered. Figure 3.8 is an illustration of the bijection Φ, where L1 is

the thick line and L2 is the dashed line.

0 0 2 2

0 1 2

1 1

1 1

≤ 2

≤ 2

≤ 2

≤ 2

←−−→

P L = (L1, L2)

Figure 3.8: An illustration of the bijection Φ.
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3.2 The first bijection from Path(λ, k) to F(λ, k)

Let us describe the first bijection Ω1 from Path(λ, k) to F(λ, k). Let L be a k-

tuple of nonintersecting paths in λ. Let P = Φ(L) be the reverse plane partition

corresponding to L. For a square (i, j) of λ, let P (i, j) denote the entry of P filled

in (i, j). Define a filling F of λ by letting the entry in the square (i, j) be

F (i, j) = min{P (i+ 1, j), P (i, j + 1)} − P (i, j), (3.1)

where we set P (i, j) = k if the square (i, j) is not contained in λ. Set Ω1(L) = F .

For example, we give in Figure 3.9 an illustration of the map Ω1.

←−−→

0 0 1 1

0 2 2 2

2 2 3

2

←−−→

0 1 0 1

2 0 0 1

0 1 0

1

L P F

Figure 3.9: An illustration of the bijection Ω1.

Theorem 3.1 The map Ω1 is a bijection from the set Path(λ, k) to the set F(λ, k).

Moreover, for any L ∈ Path(λ, k), the number of left turns of L equals the total sum

of entries in Ω1(L).

Proof. We first show that for L ∈ Path(λ, k), the filling F = Ω1(L) of λ belongs to

F(λ, k). Let m(F, (i, j)) denote the maximal length of any SE-chain such that each

entry in the SE-chain lies weakly below and weakly to the right of the square (i, j).

To verify F ∈ F(λ, k), we need to show that

m(F, (1, 1)) ≤ k. (3.2)

To this end, we claim that for any square (i, j) in λ,

P (i, j) = k −m(F, (i, j)). (3.3)

The proof is by induction on the hook length of the square (i, j). Let hi,j denote the

hook length of the square (i, j), namely, the number of squares of λ directly to the

right or directly below (i, j), counting (i, j) itself once. We first consider the case

when hi,j = 1. In this case, (i, j) is a corner of λ. This means that neither the square

(i+1, j) nor the square (i, j+1) is in λ. Moreover, we see that m(F, (i, j)) = F (i, j).

Hence, we have

P (i, j) = min{P (i+ 1, j), P (i, j + 1)} − F (i, j)
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= k − F (i, j)

= k −m(F, (i, j)).

Assume that (3.3) is true for the square (i, j) with hi,j = t ≥ 1. We now consider

the case for the square (i, j) with hi,j = t + 1. Note that hi+1,j ≤ t and hi,j+1 ≤ t.

By the induction hypothesis,

P (i, j) = min{P (i+ 1, j), P (i, j + 1)} − F (i, j)

= min{k −m(F, (i+ 1, j)), k −m(F, (i, j + 1))} − F (i, j)

= k −max{m(F, (i+ 1, j)),m(F, (i, j + 1))} − F (i, j)

= k −m(F, (i, j)),

which verifies (3.3).

In particular, restricting (i, j) = (1, 1) in (3.3) yields that

P (1, 1) = k −m(F, (1, 1)),

and so we have

m(F, (1, 1)) = k − P (1, 1) ≤ k.

This concludes (3.2). Thus F is a filling of λ belonging to F(λ, k).

On the other hand, given a filling F of λ in F(λ, k), we can define a k-tuple L of

nonintersecting paths in λ as follows. Let P be a tableau defined by setting

P (i, j) = k −m(F, (i, j)).

It is obvious that

0 ≤ P (i, j) ≤ k.

Moreover,

P (i+ 1, j) = k −m(F, (i+ 1, j)) ≥ k −m(F, (i, j)) = P (i, j)

and

P (i, j + 1) = k −m(F, (i, j + 1)) ≥ k −m(F, (i, j)) = P (i, j).

Therefore, P is a reverse plane partition in RPP(λ, k). Let L = Ψ(P ) be the k-tuple

of nonintersecting paths in λ. It is easy to check that the above procedures are

reversible, and thus the map Ω1 is a bijection.

By the construction of the bijection Ψ, it is easily checked that for each square

(i, j) of λ, the number of left turns of L = Ψ(P ) that border the square (i, j) is

exactly equal to

min{P (i, j + 1), P (i+ 1, j)} − P (i, j) = F (i, j).

Hence the number of left turns of L equals the total sum of integers in Ω1(L). This

completes the proof.
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3.3 The second bijection from Path(λ, k) to F(λ, k)

We next describe the second bijection Ω2 from Path(λ, k) to F(λ, k). Let L be a

k-tuple of nonintersecting paths in λ. Again, we let P = Φ(L) be the reverse plane

partition corresponding to L. Define a filling F ′ of λ by setting

F ′(i, j) = P (i, j)−max{P (i− 1, j), P (i, j − 1)}, (3.4)

where we set P (0, j) = P (i, 0) = 0. Set Ω2(L) = F ′.

Figure 3.10 is an illustration of the bijection Ω2.

←−−→

0 0 1 1

0 2 2 2

2 2 3

2

←−−→

0 0 1 0

0 2 0 0

2 0 1

0

L P F ′

Figure 3.10: An illustration of the bijection Ω2.

Theorem 3.2 The map Ω2 is a bijection from the set Path(λ, k) to the set F(λ, k).

Moreover, for any L ∈ Path(λ, k), the number of right turns of L equals the total

sum of entries in Ω2(L).

Proof. For each square (i, j) of λ, let m(F ′, (i, j)) denote the maximal length of any

SE-chain of F ′ such that each entry in the SE-chain lies weakly above and weakly to

the left of (i, j).

We claim that for any square (i, j) of λ,

P (i, j) = m(F ′, (i, j)). (3.5)

The proof is by induction on the reverse hook length of (i, j). Here, the reverse

hook length of a square is defined to be 1 plus the number of squares above it, plus

the number of squares to its left, see Dukes and Reifegerste [9]. Let hi,j denote the

reverse hook length of the square (i, j).

If hi,j = 1, then (i, j) must be the square (1, 1). According to (3.4), it is clear

that

P (1, 1) = F ′(1, 1) = m(F ′, (1, 1)).

Assume that (3.5) is true for any square (i, j) with hi,j = t ≥ 1. We now consider

the case for the squares with hi,j = t + 1. Notice that hi−1,j ≤ t and hi,j−1 ≤ t.

Hence, by the induction hypothesis,

P (i, j) = F ′(i, j) + max{P (i− 1, j), P (i, j − 1)}



S.C.C. SUN ET AL. /AUSTRALAS. J. COMBIN. 93 (1) (2025), 1–19 10

= F ′(i, j) + max{m(F ′, (i− 1, j)),m(F ′, (i, j − 1))}

= m(F ′, (i, j)).

This verifies the claim in (3.5). So F ′ is a filling of λ in F(λ, k).

The reverse procedure of Ω2 can be described as follows. Given a filling F ′ of λ

in F(λ, k), we first define a filling P by setting

P (i, j) = m(F ′, (i, j)).

Obviously, 0 ≤ P (i, j) ≤ k. Moreover,

P (i, j) = m(F ′, (i, j)) ≥ m(F ′, (i, j − 1)) = P (i, j − 1)

and

P (i, j) = m(F ′, (i, j)) ≥ m(F ′, (i− 1, j)) = P (i− 1, j).

So we see that P is a reverse plane partition in RPP(λ, k). Let L = Ψ(P ) be the

k-tuple of nonintersecting paths in λ.

By the construction of Ψ, for every square (i, j) of λ, the number of right turns

of L = Ψ(P ) bordering the square (i, j) is equal to

P (i, j)−max{P (i, j − 1), P (i− 1, j)} = F ′(i, j).

Hence the number of right turns of L equals the total sum of numbers in F ′. This

completes the proof.

3.4 Proof of Theorem 2.2

By Theorems 3.1 and 3.2, we obtain a one-to-one correspondence Ω = Ω−1
1 Ω2 on

Path(λ, k) such that for each L ∈ Path(λ, k), the number of right turns of L is equal

to the number of left turns of Ω(L). This finishes the proof of Theorem 2.2.

Figure 3.11 gives an example to illustrate the bijection Ω.

←−−→

0 0 0 1 0

0 2 1 0

1 0 0

1

←−−→

L Ω2(L) Ω(L) = Ω−1
1 Ω2(L)

Figure 3.11: An illustration of the bijection Ω.

When λ is the staircase shape δn and k = 1, the bijection Ω can be specialized

into a bijection on Dyck paths. In this case, given a Dyck path D, the number of high
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peaks of D equals the number of valleys of Ω(D). As mentioned in the Introduction,

Deutsch [7] also established a bijection on Dyck paths, which switches the number

of high peaks to the number of valleys. We next recall this bijection, and give an

example to illustrate that when restricted to Dyck paths, Ω differs from the bijection

of Deutsch.

The bijection in [7] can be described as follows. The return of a Dyck path D

is defined as the down-step landing on the horizontal axis. Assume that D has k

returns. Delete the very first step of D and all the k return steps, see the dotted

steps in Figure 3.12(a). Draw the remaining steps continuously, and then add an up

step followed by k down steps, see the dashed steps in Figure 3.12(b). The resulting

path is denoted by Γ(D). It is not hard to check that Γ is a bijection. Moreover, the

number of high peaks of D equals the numbers of valleys of Γ(D).

(a)

←−−→

(b)

Figure 3.12: Deutsch’s bijection Γ on Dyck paths.

For comparison, for the Dyck path in Figure 3.12(a), the resulting Dyck path by

applying the bijection Ω is given in Figure 3.13, which is different from the Dyck

path in 3.12(b).

←−−→

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0
0 1 0 0
0 0 0
1 0
0

←−−→

D Ω2(D) Ω(D) = Ω−1
1 Ω2(D)

Figure 3.13: Our bijection Ω on Dyck path.

3.5 Another proof of Theorem 3.2 and Theorem 2.2

In fact the bijection between reverse plane partitions of given shape λ with maximum

entry at most k and fillings of λ with longest SE-chain at most k is a special case of

Stanley’s transfer map between the order polytope and chain polytope; see [27].
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Let P be a finite partially ordered set (poset). As defined in [27], the order

polytope of P is the set O(P) of labelings f : P → [0, 1] that are order-preserving

(i.e. if a ≤ b in P , then f(a) ≤ f(b)). The chain polytope of P is the set C(P)
of labelings f : P → [0, 1] such that the sum of the labels across every chain is at

most 1.

The transfer map φ : O(P)→ C(P), illustrated in [27], can be defined as follows:

if x = (x1, x2, . . . , xp) ∈ O(P ) and ti ∈ P , then φ(x) = (y1, y2, . . . , yp), where

yi = min{xi − xj : ti covers tjin P}.

Put another way,

yi = xi −max{xj : ti covers tjin P},

which is consistent with the relation (3.4).

As shown in Figure 3.14, the bijection between the reverse plane partition P and

the filling F ′, first illustrated in Figure 3.10, can also be obtained by the transfer

map φ. This provides the second proof method for Theorem 3.2.

2
2
0
0

2
2
0

3
2
1

2
1

P
l

0
2
0
0

0
2
0

1
0
1

0
0

F ′

l

0•

0• 0•

1• 2• 2•

1• 2• 2• 2•

2• 3•

O(P)

φ
−−→
φ−1

←−− 0•

0• 0•

1• 2• 2•

0• 0• 0• 0•

0• 1•

C(P)

Figure 3.14: The transfer map φ.

Therefore, the bijection between reverse plane partitions of given shape λ with

maximum entry at most k and fillings of λ with longest SE-chain at most k is a special

case of Stanley’s transfer map between the chain polytope and order polytope.

Next, we will introduce the piecewise-linear rowmotion defined by Einstein and

Propp in [10]. The toggle ta : O(P)→ O(P) is

ta(x)b =

{

xb if a 6= b

min
a⋖c

xc +max
c⋖a

xc − xa if a = b

for all x ∈ O(P) and a ∈ P . Then the piecewise-linear rowmotion is the map given

by applying toggles along a linear extension from top to bottom, see Figure 3.16.
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We extract the key steps for mapping Ω from Figure 3.11 and place them in Figure

3.15. Besides, the tableaux P and P ′ correspond to two order polytopes O(P) and
O(P ′), respectively. Obviously, our bijection Ω discussed in Section 3.4 is a special

case of the piecewise-linear rowmotion for the relevant poset (i.e., the shape λ); see

Figures 3.15 and 3.16.

2
1
0
0

2
2
0

3
3
0

3
1 1

P

−→
1
1
0
0

0
2
0

0
1
0

0
1 0

F

−→
2
1
0
0

3
0
0

3
2
2

3
2 3

P ′

0•

0• 0•

0• 2• 1•

1• 3• 2• 2•

1• 3• 3•

O(P)

−→

0•

0• 0•

0• 2• 1•

1• 1• 0• 1•

0• 0• 0•

C(P)

−→

0•

0• 0•

2• 0• 1•

2• 2• 3• 2•

3• 3• 3•

O(P ′)

Figure 3.15: The key step for Ω in Figure 3.11.

0•

0• 0•

0• 2• 1•

1• 3• 2• 2•

1• 3• 3•

O(P)

−→

0•

0• 0•

2• 0• 1•

2• 2• 3• 2•

3• 3• 3•

O(P ′)

Figure 3.16: The piecewise-linear rowmotion.

Therefore, we can provide another proof of Theorem 2.2 using the theory of

piecewise linear rowmotion.

4 Generating polynomial for valleys

In this section, we investigate the number Nk(n, i) of k-tuples of nonintersecting

Dyck paths of semilength n with i valleys. By Theorem 2.2, Nk(n, i) is also the

number of k-tuples of nonintersecting Dyck paths of semilength n with i high peaks.

For any fixed n and k, we show that the sequence {Nk(n, i)}i≥0 is symmetric. As an

application, we give an alternative proof of a conjecture due to Reiner, Tenner and

Yong [24] on barely set-valued tableaux for a staircase shape.
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4.1 Symmetry of {Nk(n, i)}i≥0

Write Nn,k(q) for the generating polynomial of Nk(n, i), namely,

Nn,k(q) =

k(n−1)
∑

i=0

Nk(n, i)q
i.

Note that when k = 1, Nn,1(q) = Nn(q) reduces to the Narayana polynomial, which

has the following expression

Nn(q) =
n−1
∑

i=0

1

n

(

n

i

)(

n

i+ 1

)

qi. (4.1)

Hwang, Kim, Yoo and Yun [15] established the following determinantal formula

for Nn,k(q) in terms of Narayana polynomials:

Nn,k(q) = q−(
k

2) det (Nn+i+j−2(q))
k

i,j=1 . (4.2)

Suppose the highest degree of a polynomial ism; we say a polynomial is symmetric

if the coefficients of a polynomial with degree i are equal to the coefficients of a

polynomial with degree m − i. Using (4.1), we establish the following symmetry

property of Nn,k(q).

Theorem 4.1 The polynomial Nn,k(q) is symmetric.

Proof. To derive its symmetry, we only need to prove

Nn,k(q) = qk(n−1)Nn,k(q
−1). (4.3)

By (4.1), it is easily checked that Nn(q) is a symmetric polynomial, namely,

Nn(q) = qn−1Nn(q
−1). (4.4)

Combining (4.2) and (4.4), we see that

Nn,k(q
−1) = q(

k

2) det(Nn+i+j−2(q
−1))ki,j=1

= q(
k

2) det(q−(n+i+j−2−1)Nn+i+j−2(q))
k
i,j=1

= q(
k

2)+3k det(q−(n+i+j)Nn+i+j−2(q))
k
i,j=1. (4.5)

We proceed to apply a row and column transformation for the determinant in (4.5).

Extracting the factor q−(n+i) from row i, we obtain that

det(q−(n+i+j)Nn+i+j−2(q))
k
i,j=1 = q−

∑
k

i=1
(n+i) det(q−jNn+i+j−2(q))

k
i,j=1
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= q−kn−(k+1

2 ) det(q−jNn+i+j−2(q))
k
i,j=1. (4.6)

For the determinant appearing in (4.6), extracting the factor q−j from each column

j yields that

det(q−jNn+i+j−2(q))
k
i,j=1 = q−(1+2+···+k) det(Nn+i+j−2(q))

k
i,j=1

= q−(
k+1

2 ) det(Nn+i+j−2(q))
k
i,j=1. (4.7)

Combining (4.5), (4.6) and (4.7), we have

Nn,k(q
−1) = q(

k

2)+3k−kn−(k+1

2 )−(k+1

2 ) det(Nn+i+j−2(q))
k
i,j=1

= q−(
k

2)−k(n−1) det(Nn+i+j−2(q))
k
i,j=1

= q−k(n−1)q−(
k

2) det(Nn+i+j−2(q))
k
i,j=1,

which, together with (4.2), leads to the relation (4.3). This completes the proof.

For example, if n = 4 and k = 2, thenN4,2(q) = q6+6q5+21q4+28q3+21q2+6q+1.

Obviously, N4,2(q) is symmetric.

In fact there is another Dyck path bijection which is called the Lalanne-Kreweras

involution (because it was considered by Kreweras [19] and Lalanne [20]). The

Lalanne-Kreweras involution bijectively exhibits the symmetry of the number of val-

leys statistic on Dyck paths of semilength n because it sends a Dyck path with k

valleys to one with n− 1− k valleys.

Later, Hopkins and Joseph [14] constructed a piecewise-linear extension of the

Lalanne-Kreweras involution, which in particular gives a combinatorial proof of The-

orem 4.1 for the general k. The specific operation is, the Dyck paths of semilength

n are in simple bijection with the antichains of the Type An−1 root poset, and un-

der this bijection, the number of valleys becomes the cardinality of the antichain.

Moreover, recall that the indicator functions of antichains of a finite poset are the

vertices of its order polytope. In this way, the k-tuples of nonintersecting Dyck

paths of semilength n are in bijection with the rational points in the order poly-

tope of the Type An−1 root poset whose denominators divide k. That is, the points

in 1
k
Z

△n−1

∩ C(△n−1) correspond to k-tuples of nonintersecting Dyck paths. Un-

der this bijection, the number of valleys of the k-tuple becomes k times the sum

of the coordinates of the corresponding point. The piecewise-linear extension of the

Lalanne-Kreweras involution implies that the generating function over these k-tuples

for the number of valleys statistic is still symmetric.

4.2 A conjecture of Reiner-Tenner-Yong

Let us begin by recalling a conjecture of Reiner, Tenner and Yong [24] concerning

the enumeration of barely set-valued semistandard Young tableaux. A semistandard

Young tableau of shape λ is a filling of positive integers into the squares of λ such
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that the entries in each row are weakly increasing, and the entries along each column

are strictly increasing. A set-valued semistandard Young tableau of shape λ is an

assignment of finite sets of positive integers into the squares of λ such that the sets

in each row (respectively, column) are weakly (respectively, strictly) increasing [2].

Here, for two sets A and B of positive integers, write A ≤ B if maxA ≤ minB

and A < B if maxA < minB. Clearly, when the set in each square exactly con-

tains a single integer, a set-valued semistandard Young tableau becomes an ordinary

semistandard Young tableau.

A barely set-valued semistandard Young tableau is a set-valued semistandard

Young tableau such that exactly one square is assigned a set of two integers, and

each of the remaining squares is assigned a set containing a single integer.

Given a partition λ and a positive integer k, let BSSYT(λ, k) and SYT(λ, k)

denote the set of barely set-valued semistandard Young tableaux and ordinary semi-

standard Young tableaux of shape λ, respectively, where no integer in row i can

exceed k + i. A partition is called a rectangular staircase shape δn(b
a) if the Young

diagram is obtained from the staircase shape δn = (n− 1, n− 2, . . . , 1) by replacing

each square with an a× b rectangle. See Figure 4.17 as an example.

δ4

=⇒

δ4(2
3)

Figure 4.17: A rectangular staircase shape δ4(2
3).

If λ is a rectangular staircase shape, Reiner, Tenner and Yong [24] posed the

following conjecture.

Conjecture 4.2 (Reiner, Tenner and Yong [24, Conjecture 6.4′]) For any

positive integers a, b, n and k,

|BSSYT(δn(b
a), k)| =

kab(n− 1)

(a+ b)
|SYT(δn(b

a), k)|. (4.8)

This conjecture was proved by Fan, Guo and Sun [12] by applying results of Chan,

Haddadan, Hopkins, and Moci on jaggedness of shapes [4]. Here, we shall explain

that for the staircase shape (namely, a = b = 1), we can use Theorem 4.1 to give an

alternative proof of (4.8).
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When a = b = 1, relation (4.8) reduces to

|BSSYT(δn, k)| =
k(n− 1)

2
|SYT(δn, k)|. (4.9)

Employing the bijection in [12, Theorem 3.2], we have the following relation

|BSSYT(λ, k)| =
∑

i≥0

i ·Nk(λ, i), (4.10)

where Nk(λ, i) denote the number of k-tuples of nonintersecting paths in λ with i

valleys.

Using (4.10) for the case λ = δn and together with Theorem 4.1, we see that

|BSSYT(δn, k)| =

k(n−1)
∑

i=0

i ·Nk(n, i)

=

∑k(n−1)
i=0 i ·Nk(n, i) +

∑k(n−1)
i=0 (k(n− 1)− i) ·Nk(n, i)

2

=

∑k(n−1)
i=0 k(n− 1) ·Nk(n, i)

2

=
k(n− 1)

∑k(n−1)
i=0 Nk(n, i)

2

=
k(n− 1)|Path(δn, k)|

2
. (4.11)

To conclude (4.9), we still need to check that

|Path(δn, k)| = |SYT(δn, k)|. (4.12)

Recall that RPP(λ, k) is the set of reverse plane partitions of shape λ with entries

not exceeding k. Subtracting each entry in row i of T ∈ SYT(δn, k) by i, we are

led to a bijection between SYT(δn, k) and RPP(δn, k). In view of the bijection in

Section 3.1 between Path(λ, k) and RPP(λ, k), we arrive at (4.12). Putting (4.12)

into (4.11), we obtain (4.9).
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