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Abstract

A capset is a subset C ⊂ F
n
3 with no three points on a line. We char-

acterise the capsets produced by successively removing points from the
ambient space such that the removed point has the maximum number
of lines contained in the set of remaining points and passing through it
until the set of remaining points contains no lines.

1 Introduction

A capset is a subset C ⊂ F
n
3 with no three points on a line. A question that has

attracted a lot of interest (see e.g. [1, 5]) is the following: What is the largest size
of a capset in F

n
3 as a function of n? If we denote this value by a(n) then it can be

shown (see [6, Proposition 2.2]) that c = lim a(n)1/n exists. Moreover, it is known
that 2.2202 ≤ c ([4]) and c ≤ 2.756 ([3]). The exact value of a(n) is known for n ≤ 6.

The best current lower bound for a(8), namely a(8) ≥ 512, was recently obtained
via Machine Learning [4]. The authors of that paper trained a Large Language Model
to produce algorithms that generate capsets. They only considered algorithms that
started from the empty set and successively added a point to the set as long as adding
it did not violate the capset property. The algorithms varied on the different ways
of selecting the next point to be added. The present paper arose from the idea that,
instead, one could start with the whole space and successively remove points until
one obtains a capset. There is a natural way for prioritizing the choice of the next
removed point in this latter procedure, namely taking a point such that the number
of lines contained in the set of remaining points and passing through the given point
is maximum. We programmed this alternative approach (code available in [2]) and,
contrary to our expectations, it did not lead to large capsets. Indeed, it always gave
capsets of size 2n with a very specific structure (described in Definition 3.1). The
purpose of this paper is to explain this phenomenon. This is achieved in Theorem
3.2. Incidentally, we tried a few variants of this latter procedure (see [2]) and these
did not produce large capsets either.
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2 Affine spaces

We will always be working in the ambient space Fn
3 for some integer n ≥ 1. This is an

n-dimensional vector space over the field F3 of three elements. So, we can consider
(vector) subspaces of Fn

3 and any of those has a dimension d ≥ 0 and, because our
field of scalars is F3, a subspace of dimension d has 3d elements.

We can also talk about affine subspaces of Fn
3 , which are translations of vector

subspaces and, therefore, we can also consider their dimension and, again, an affine
subspace of dimension d has 3d elements. We will often refer to hyperplanes in an
affine space and this simply means a subspace of codimension 1 (i.e. dimension 1
less than the ambient space). A hyperplane can be described as the set of solutions
(x1, . . . , xn), xi ∈ F3 of a single equation H :

∑
i aixi+b = 0 where ai, b,∈ F3 and the

ai are not all zero. The hyperplanes given by
∑

i aixi + c, c 6= b are the hyperplanes
parallel to H.

A line is an affine subspace of dimension 1, so a line has three points. It is not hard
to show that three distinct points P,Q,R form a line if and only if P +Q+ R = 0.
We say that a set S generates an affine subspace V ⊂ F

n
3 if V is the smallest subspace

containing S. Finally, we notice that a subgroup of Fn
3 is a vector subspace since our

field of scalars is just F3 = {0, 1, 2}.

Lemma 2.1. Let S be a subset of the affine space V that generates V and assume
that for any two points P,Q ∈ S the line PQ is contained in S. Then S = V .

Proof. First of all, S is nonempty, since an affine space cannot be generated by the
empty set. We can take a point P0 in S and translate everything by P0 so that
P0 = 0, the origin, and we are reduced to showing that S is a subgroup of Fn

3 .

Given P ∈ S, the line P0 contains −P , so −P ∈ S. Given P,Q ∈ S, if they are
distinct, the line PQ contains −P −Q, so −P −Q ∈ S and, by what we previously
proved, it follows that P +Q is in S. If P = Q, then P +Q = 2P = −P is also in S
and so we have proved that P +Q is in S, whenever P,Q are in S, so S is a subgroup
of V .

Lemma 2.2. There are (3n − 1)/2 lines passing through any given point of Fn
3 .

Proof. For any fixed P ∈ F
n
3 and any choice of Q 6= P we can form the line ℓ = PQ

going through them. There are 3n−1 choices for Q but, as any line has three points,
for each line ℓ, there are two choices for Q, so the number of lines through P is
(3n − 1)/2.

Definition 2.3. A subset C ⊂ F
n
3 is called a capset if it does not contain any line.

3 Greedy constructions

Definition 3.1. A greedy construction of a capset is a procedure of the following
kind. Start with S0 = F

n
3 and for i = 1, 2, . . . define Si = Si−1 \ {Pi}, where the
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point Pi is among those points P ∈ Si−1 such that the number of lines through P
contained in Si−1 is positive and maximal among all points of Si−1. The procedure
stops when Si is a capset. A capset generated by a greedy construction is called a
greedy capset.

Since F
n
3 is finite, the above procedure must terminate. If Si is not a capset, then

the procedure continues to Si+1 and it follows that the procedure always stops at a
capset.

The output capset is not uniquely determined as there is a choice for Pi whenever
there is more than one point with the maximal count of lines. This certainly happens
at the first step and can happen at subsequent ones as well.

The following result characterises greedy capsets.

Theorem 3.2. A subset C ⊂ F
n
3 is a greedy capset if and only if it has the following

structure. There is a hyperplane H0 ⊂ F
n
3 such that C∩H0 = ∅ and, if H1, H2 denote

the two hyperplanes of Fn
3 parallel to H0, then C ∩Hi, i = 1, 2 are greedy capsets, so

miss a hyperplane of Hi and so on, recursively. In particular, #C = 2n.

Proof. By induction on n. The base case n = 1 follows since removing any one
element of F1

3 produces a capset of F1
3 of size 2, so both constructions are the same

in this case.

To prove that a greedy capset has the claimed structure, we begin by showing
the existence of the hyperplane H0.

If we let di denote the dimension of the affine space spanned by P1, . . . , Pi, then
di ≤ di+1 ≤ di+1. Since C does not contain lines, di = n if Si = C, as the complement
of a hyperplane contains lines. Hence, there is a value of i with di = n− 1. Let i0 be
the smallest such i and H0 the hyperplane spanned by P1, . . . , Pi0 . We claim that,
for i ≥ i0, if Si ∩H0 6= ∅, then Pi+1 ∈ H0.

Let us prove the claim. If P 6∈ H0, then the lines PPj, j ≤ i are all distinct, since
the Pj are in H0. All other lines through P are contained in Si. So, we need to show
that there is P ∈ Si ∩ H0 such that not all lines PPj , j ≤ i are distinct. If that
does not happen then PkPj, j ≤ k does not meet Si, which means that {P1, . . . , Pi}
satisfies the hypotheses of Lemma 2.1 and thus is a linear space by that lemma. This
in turn implies that {P1, . . . , Pi} = H0, proving the claim.

Once the procedure removes the hyperplane H0, a line contained in the remaining
set has to be contained in H1 or H2. Therefore the procedure amounts to running
two simultaneous procedures of the same kind in H1 and H2. The claimed structure
then follows by induction.

We now show that a subset C ⊂ F
n
3 with the structure described in the statement

of the theorem is a greedy capset, again by induction on n. To show it is a capset,
consider a line ℓ. If ℓ is not contained in some Hi, i = 0, 1, 2, then it meets Hi in
exactly one point, for i = 0, 1, 2 so it meets C in at most two points. If ℓ is contained
in H0 it does not meet C, whereas if it is contained in Hi, i = 1, 2 it meets C in at
most two points since C ∩Hi is a capset, by induction.
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To show it is greedy, note first that a line that contains two points of H0, stays
in H0. It follows that if P is a point not in H0, the lines PQ,Q ∈ H0 are distinct.
So, if we are in a stage of the construction in which we only removed points from H0

to form Si−1, this will be a greedy construction, as the number of lines contained in
Si−1 through a point of H0 is at least big as the number of lines through a point not
on H0, which is (3n − 1)/2 − (i − 1). Hence, selecting a point on H0 for removal is
greedy. Once H0 is removed, the result follows by induction on n.

Finally, to show that #C = 2n, let H0 be a hyperplane with C ∩ H0 = ∅ and
H1, H2 denote the two hyperplanes of Fn

3 parallel to H0, with C ∩Hi, i = 1, 2 greedy
capsets. Then #C ∩Hi = 2n−1, i = 1, 2, by induction, so #C = 2n.

Example 3.3. The set C = {0, 1}n ⊂ F
n
3 is a greedy capset. Indeed, C is obtained

by first removing the hyperplane H0 with equation xn = 2, then removing the hy-
perplanes with equation xn−1 = 2 within the hyperplanes with equations xn = 0, 1
and so on.

Definition 3.4. A capset C ⊂ F
n
3 is a complete capset (in F

n
3 ) if it is not contained

in a larger capset of Fn
3 .

The capset of Example 3.3 is complete. If R ∈ F
n
3 is not in C, define P,Q as

follows: If the i-th coordinate of R is 2, let the i-th coordinate of P be 0 and the i-th
coordinate of Q be 1 and if the i-th coordinate of R is a 6= 2, let the i-th coordinate
of both P,Q be a. It is then easy to show that P,Q are distinct (because R is not
in C) and belong to C and P,Q,R are collinear.

Not all greedy capsets are complete, as the following example shows.

Example 3.5. Let S ⊂ F
3
3 be the set of solutions (x, y, z) of the equation z = x2+y2.

Then it can be checked directly that S is a capset (S is an example of an elliptic
quadric) and #S = 9. If we remove the origin (0, 0, 0) from S we get a capset C that
does not meet the hyperplane with equation z = 0 and, from this, it follows easily
that C is a greedy capset, which is not complete by construction.

It would be very interesting to understand the completions of general greedy
capsets, in particular, how big they can get.

Remark 3.6. A referee has kindly pointed out that the results obtained here should
generalise to caps (i.e. subsets with no three collinear points) of affine spaces over
prime fields of odd characteristics. Indeed, that is the case for any finite field Fq

of odd characteristic. The generalisation is straightforward, except for the proof of
Lemma 2.1. We sketch the necessary argument. As in the original proof, we reduce
to the case that S contains the origin 0 and we need to prove that S is a vector
subspace. Considering a line P0 gives us the scalar multiples of P . Now, the line
PQ contains the point (1/2)P+(1/2)Q and we can scalar multiply by 2 to get P+Q,
as wished. However, we remark that this proof does not work when q is even and,
in fact, the lemma is false when q = 2.
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