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Abstract

A magic labeling of a graph is a labeling of the edges by nonnegative
integers such that the label sum over the edges incident to every ver-
tex is the same. This common label sum is known as the index. We
count magic labelings by maximum edge label, rather than index, using
an Ehrhart-theoretic approach. In contrast to Stanley’s 1973 work show-
ing that the function counting magic labelings with bounded index is a
quasipolynomial with quasiperiod 2, we show by construction that the
minimum quasiperiod of the quasipolynomial counting magic labelings
with bounded maximum label can be arbitrarily large, even for planar
bipartite graphs. Unfortunately, this rules out a certain Ehrhart-theoretic
approach to proving Hartsfield and Ringel’s Antimagic Graph Conjecture.
However, we show that this quasipolynomial is in fact a polynomial for
any bipartite graph with matching preclusion number at most 1, which
includes any bipartite graph with a leaf.
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1 Introduction

A magic labeling of a graph is a function assigning to each edge of the graph
a nonnegative integer so that the sum of the labels on the edges containing each
vertex is the same. This common sum at each vertex is called the index of the
magic labeling. The study of magic labelings of graphs was initiated by a prob-
lem proposed by Sedláček in 1966 [9], and the first paper devoted to the topic was
by Stewart [12]. Interest in this topic grew significantly after the publication of
Stanley’s paper, “Linear homogeneous Diophantine equations and magic labelings of
graphs” [11]. In that paper, Stanley showed that the number of magic labelings with
index k is a quasipolynomial function of k with minimum quasiperiod at most 2.

In this paper, we count the number of magic labelings of a graph by the maximum
label used, rather than by the index. The function that counts the number of magic
labelings with maximum label at most k is again a quasipolynomial. Our main result
(Theorem 2.7 below) is that, in contrast to Stanley’s result, the minimum quasiperiod
of this quasipolynomial is unbounded. We show this by constructing, for each positive
integer n, a planar bipartite graph for which the minimum quasiperiod is n.

This result is motivated by work of Beck and Farahmand in [1] on antimagic la-
belings, which are labelings of the edges of a graph by distinct labels in {1, 2, . . . , |E|}
such that the sums of the labels at each vertex are distinct. A famous open problem
from 1990 posed in [5] is whether all connected graphs (except for K2) have an an-
timagic labeling. See [3, Chapter 6] and [6] for comprehensive summaries of progress
on this problem.

Beck and Farahmand pursued a strategy for proving a weakened form of this
conjecture, namely that for some fixed s ≥ 1, every connected graph (except for K2)
has a labeling using only labels in {1, . . . , s|E|} (allowing repeated labels) where the
sums of the labels at each vertex are distinct. As shown in [1], this claim would
follow if it were known that the function that counts the number of magic labelings
with maximum label k has minimum quasiperiod at most s for every graph.

Unfortunately, our main result (Theorem 2.7 below) shows that no such bound on
this minimum quasiperiod exists for general graphs. While a claim to the contrary
appears in [1, Theorem 4], the authors of [1] report in private correspondence that
the proof of their Theorem 4 contained an error and that an erratum is forthcoming.
As a consequence of our Theorem 2.7, the approach explored in [1] cannot succeed
without significant modification.

While this minimum quasiperiod is unbounded in general, we show that the
minimum quasiperiod is bounded for certain classes of graphs (see Section 5). In
particular, we show that, if the graph has a leaf, then this quasipolynomial has
minimum quasiperiod at most 2. Furthermore, if the graph is additionally bipartite,
then this quasipolynomial is in fact a polynomial. This suggests that Beck and
Farahmand’s approach may be adapted for special families of graphs.
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2 Preliminaries

Throughout this paper we let G = (V,E) be an undirected graph with vertex set V
and edge set E, allowing multiple edges and loops.

An (edge) labeling of G is a function E → Z≥0. We view the labelings of G as
the points of the integer lattice ZE that are in the positive orthant RE

≥0 of the vector
space RE. For each L ∈ RE, write

sL(v) :=
∑
e∈E,

e incident to v

L(e)

for the sum of the labels of the edges incident to v. A labeling L is magic if the
value of sL(v) is the same for each vertex v of G. Thus, the magic labelings are the
lattice points in the polyhedral cone CG ⊆ RE defined by

CG :=
{
L ∈ RE

≥0 : sL(v) = sL(w) for all v, w ∈ V
}
.

See [3, Chapter 5] for a survey of results concerning magic labelings and related
notions.

The primary object of study in this paper is the rational polytope PG ⊆ RE

defined by
PG := CG ∩ [0, 1]E.

For k ∈ Z≥0, a labeling L is a k-labeling if L(e) ≤ k for all edges e ∈ E. Thus,
the magic k-labelings of G are precisely the integer-lattice points in the kth dilate
kPG := {kL : L ∈ PG} of PG. We are in particular interested in the function

MG(k) :=
∣∣kPG ∩ ZE

∣∣
that counts the number of magic k-labelings of G.

A better-studied counting function in the context of magic labelings is the func-
tion SG(k) that counts the magic labelings of G with index exactly k, where the
index of a magic labeling L of G is the common value of sL(v) for all v ∈ V . This
function corresponds to the polytope

QG :=
{
L ∈ RE

≥0 : sL(v) = 1 for all v ∈ V
}
,

since the number of magic labelings of G with index k is

SG(k) =
∣∣kQG ∩ ZE

∣∣.
Note that, since labelings are nonnegative, a magic labeling with index k is in par-
ticular a magic k-labeling. The corresponding statement regarding the polytopes is
that QG ⊆ PG. However, the dimension of QG is always strictly less than that of PG.

From the point of view of Ehrhart theory, the definitions of MG and SG immedi-
ately imply that they are the Ehrhart quasipolynomials of the polytopes PG and QG,
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respectively. We briefly explain this connection here, but we refer the reader to [2]
for a thorough introduction to Ehrhart theory, including the properties of Ehrhart
quasipolynomials stated here.

A function F : Z → C (or F : Z≥0 → C) is a quasipolynomial of degree d if
there exist an integer s ∈ Z≥1 and polynomials φ1, . . . , φs ∈ C[x], called the con-
stituents of F , such that d = max{deg(φ1), . . . , deg(φs)} and F (t) = φr(t) whenever
t ≡ r (mod s). Such a positive integer s is a quasiperiod of F . The quasiperiods
of F are precisely the positive integer multiples of the minimum quasiperiod of F ,
which we denote mqp(F ). Alternatively, F is a quasipolynomial of degree d if and
only if F (t) =

∑d
i=0 ci(t) t

i for some sequence c0, . . . , cd of periodic coefficient func-
tions Z → C with cd not identically zero. Writing si for the minimum period of ci
for 0 ≤ i ≤ d, we then have that mqp(F ) = lcm{s0, . . . , sd}. Note that a constant
function ci has period 1. In particular, for i > d, we set ci = 0 and si = 1.

Now let P ⊆ RN be a d-dimensional rational polytope, meaning that vert(P ) ⊆
QN , where vert(P ) denotes the set of vertices of P . By a celebrated theorem
of Eugène Ehrhart, the function ehrP (t) :=

∣∣tP ∩ ZN
∣∣ for t ∈ Z≥1 is a degree-d

quasipolynomial called the Ehrhart quasipolynomial of P . Moreover, the min-
imum quasiperiod of ehrP divides the denominator of P , which is defined to be
den(P ) := min

{
t ∈ Z≥1 : vert(tP ) ⊆ ZN

}
. Thus, an upper bound on the denomi-

nator of P is also an upper bound on mqp(ehrP ).

As discussed in the introduction, Beck and Farahmand showed in [1] that a proof
of an upper bound on mqp(MG) independent of G would suffice to prove a weakened
version of an open problem regarding antimagic graph labelings. However, we find
below that no such upper bound on mqp(MG) exists.

In order to compute the denominator and minimum quasiperiod of a rational
polytope P ⊆ RN , we study a related semigroup in RN+1. The semigroup of P ,
denoted by Φ(P ), has elements (L, k) where k is a nonnegative integer and L is a
lattice point in kP . That is, the semigroup Φ(P ) consists of the integer points in the
homogenized cone over P , which is the cone generated by P ×{1} in RN+1. The
binary operation in the semigroup is entry-wise addition.

Example 2.1 Let G be the graph with one node v and two loops at v. Then we
can identify RE with R2. Under this identification, PG is the unit square [0, 1]2, and
QG is the line segment with endpoints (1, 0) and (0, 1). In Figure 1, the semigroup
Φ(PG) is the set of integer-lattice points (not shown) in the blue cone, and Φ(QG) is
the set of such points in the red cone.

Definition 2.2 A nonzero element a of an additive semigroup Φ is completely
fundamental if, for all b, c ∈ Φ, if b + c = ma for some positive integer m, then b
and c are both nonnegative integer multiples of a.

We remark that, when Φ = Φ(P ) is the semigroup of a rational polytope P , then
the completely fundamental elements of Φ are precisely the points (dvv, dv) where v
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Figure 1: The polytopes PG and QG from Example 2.1 are shown in the xy-
plane in blue and red, respectively. A portion of the homogenized cone over
each polytope is shown in the corresponding color.

is a vertex of P and dv := den(v). Thus, the denominator of P can be expressed in
terms of the completely fundamental elements of Φ(P ).

Proposition 2.3 The denominator of a polytope P is equal to the least common
multiple of the final coordinates of the completely fundamental elements of Φ(P ).

When P ∈ {PG, QG}, we say that a magic labeling L is a completely funda-
mental (magic) labeling of Φ(P ) if (L, k) is a completely fundamental element
of Φ(P ) for some k ∈ Z≥0. An important subtlety is that which labelings are “com-
pletely fundamental” depends upon whether one is considering the polytope PG of
all magic labelings with labels ≤ k or the polytope QG of magic labelings of index
exactly k.

Example 2.4 Let G be as in Example 2.1, with PG and QG shown in Figure 1. The
completely fundamental elements of Φ(PG) are (0, 0, 1), (0, 1, 1), (1, 0, 1), and (1, 1, 1),
corresponding to the four vertices of PG. The completely fundamental elements of
Φ(QG) are (0, 1, 1) and (1, 0, 1), corresponding to the two vertices of QG.

In 1973, Stanley proved a strong bound on the denominator of the polytope QG,
which in turn implies the same bound on the minimum quasiperiod of the quasipoly-
nomial SG(k) that counts the index-k magic labelings of G. Stanley stated his result
in terms of the “completely fundamental magic labelings of G”, by which he meant,
in our nomenclature, the completely fundamental labelings of Φ(QG) specifically.

Proposition 2.5 ([11, Proposition 2.7]) For a finite graph G, every completely
fundamental magic labeling of Φ(QG) has index 1 or 2. If G is additionally bipartite,
then every completely fundamental magic labeling of Φ(QG) has index 1.
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Applying Proposition 2.3 yields the following uniform bounds.

Corollary 2.6 ([11, Corollary 2.8]) For all graphs G, the denominator of the
polytope QG is at most 2. In particular, the minimum quasiperiod of SG(k) is at
most 2.

Our main theorem is that no such bounds exist on either the denominator of
the polytope PG or on the minimum quasiperiod of the quasipolynomial MG(k) that
counts the magic k-labelings.

Theorem 2.7 There exist graphs G for which the minimum quasiperiod of MG is
arbitrarily large. In particular, for each n ∈ Z≥2, there exists a graph Gn (on 2n+ 2
vertices and 3n edges) such that PGn has a vertex with denominator n − 1, and the
minimum quasiperiod of the quasipolynomial MGn is n− 1.

Example 2.8 This example is the n = 4 case of the general construction of Gn

given in Definition 3.1. Let G4 be the following graph on 10 vertices.

The Ehrhart quasipolynomial MG4(k) has minimum quasiperiod 3 and is given
as follows:

MG4(k) =


1
18
k4 + 4

9
k3 + 25

18
k2 + 2k + 1 if k ≡ 0 (mod 3),

1
18
k4 + 4

9
k3 + 25

18
k2 + 2k + 10

9
if k ≡ 1 (mod 3),

1
18
k4 + 4

9
k3 + 25

18
k2 + 2k + 1 if k ≡ 2 (mod 3).

The fact that only the degree-0 coefficient varies is explained by Theorem 4.8 below.

Since this graph is bipartite, Proposition 2.5 implies that SG4(k) is a polynomial.
Indeed, one can calculate explicitly that SG4(k) = 1

6
k3 + k2 + 11

6
k+ 1. Note that the

degree of SG4(k) is less than that of MG4(k) because dim(QG4) < dim(PG4).

The proof of Theorem 2.7 appears in Section 4. The outline of the argument is as
follows. The construction of Gn is at the beginning of Section 3, and the fact that PGn

has a vertex with denominator n− 1 is a direct consequence of Theorem 3.6. Now,
since the denominator is only an upper bound on the minimum quasiperiod of MG,
the strategy explored in [1] might still be salvaged if PG exhibited so-called “period
collapse” [7]. However, in Propositions 4.1 and 4.2, we use a standard generating-
function approach to establish that the Ehrhart quasipolynomial MGn of PGn has
“full period”. That is, the quasiperiod of the quasipolynomial attains the upper
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bound in Proposition 2.3. In particular, the minimum quasiperiod of MGn is n− 1,
as claimed in Theorem 2.7.

Furthermore, it is possible, with nearly the same amount of work, to get much
“higher resolution” information about the quasiperiodicity of MGn . In particular, in
Theorem 4.8, we use a result of Sam and Woods (Theorem 4.5 below) to show that all
of the quasiperiodicity of MGn is contained in its degree-0 coefficient, as seen in the
n = 4 case in Example 2.8. This section of our paper may serve as an advertisement
for the Sam–Woods approach to quasipolynomials developed in [8], which takes little
more effort than the standard generating-function approach, while giving far more
detailed information about quasiperiods.

The contrast between our results and Stanley’s results is rooted in the difference
between Φ(PG) and Φ(QG). It follows from Theorem 2.7 and Proposition 2.3 that the
analogue of Proposition 2.5 is false if we replace Φ(QG) with Φ(PG), and moreover no
uniform bound can be placed on the index of completely fundamental magic labelings
of Φ(PG).

However, an analogue of Proposition 2.5 does hold for certain types of graphs.
We show in Section 5 that if G has an edge that attains the maximum label in every
index-2 magic labeling, then the completely fundamental magic labelings of Φ(PG)
have index at most 2. Many graphs satisfy this property, including any graph with a
leaf. Moreover, if G is additionally bipartite, then the completely fundamental magic
labelings of Φ(PG) have index at most 1. In particular, if G is any bipartite graph
with a leaf, it follows that MG(k) is a polynomial.

Remark 2.9 The quasipolynomials MGn(k) and their partially magic analogs are
used by Beck and Farahmand to study AG(k), the quasipolynomial counting weakly
antimagic labelings [1]. The quasipolynomial AG(k) can be written as a sum of the
magic and partially magic quasipolynomials using inclusion-exclusion. As we will
show, one of these summands can have arbitrarily large minimum quasiperiod. It
is open whether the minimum quasiperiod of AG(k) can be arbitrarily large (the
possiblility of unexpected cancellations must be ruled out), though we expect this to
be the case. If G is the butterfly graph on 5 vertices, consisting of two 3 cycles that
share a vertex, then one can explicitly compute AG(k) to see that it has minimum
quasiperiod 6. This contradicts [1, Theorem 2]), which claims that the minimum
quasiperiod is at most 2.

3 Unbounded completely fundamental labelings

In this section, we construct a family {Gn}n≥2 of graphs for which there are com-
pletely fundamental magic labelings of Φ(PGn) with arbitrarily large maximum label.
This means that there is no uniform upper bound on the denominator of PG.

Definition 3.1 For each integer n ≥ 2, let Gn be the graph on the vertex set
{a1, . . . , an, b1, . . . , bn, x, y} with the following 3n edges:
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a1

a2

...

an

b1

b2

bn

x y...

Figure 2: The construction of the graph Gn.

• an edge from ai to bi for each i ∈ {1, . . . , n},
• an edge from x to ai for each i ∈ {1, . . . , n}, and

• an edge from y to bi for each i ∈ {1, . . . , n}.

(See Figure 2.)

We will construct a completely fundamental magic labeling of Φ(PGn) with max-
imum edge label n− 1.

Definition 3.2 Let L∗ be the labeling on the edges of Gn where edges from ai to bi
have label n− 1 and all other edges of label 1.

It is straightforward to check that L∗ is a magic labeling of index n, but it remains
to show that this is a completely fundamental labeling of Φ(PGn). In order to show
this, we first consider the perfect matchings on Gn. A perfect matching in G is a
subset J of the edges such that each vertex in G is incident to exactly one edge of J .
Note that a magic labeling of G of index 1 can be identified with a perfect matching
of G by taking the set of edges of G with label 1.

Definition 3.3 For 1 ≤ i ≤ n, let Li be the perfect matching on Gn formed by
taking the edge from x to ai, from y to bi, and all edges from aj to bj for j 6= i.

Proposition 3.4 Every perfect matchings on Gn is one of L1, . . . , Ln.

Let max(L) denote the maximum label appearing in a labeling L, and write ~0 for
the trivial magic labeling under which every edge is labeled 0.

Lemma 3.5 Any element of Φ(PGn) can be written as a nonnegative integer combi-
nation of the elements (L1, 1), (L2, 1), . . . , (Ln, 1), (~0, 1), and (L∗, n− 1).

Proof. Fix (L, k) in Φ(PGn). By subtracting off copies of (~0, 1), we can assume
k = max(L). For 1 ≤ i ≤ n, let ui = L(xai), i.e., the label of the edge between x
and ai in L. The index of L is then

∑n
i=1 ui. In order to have the correct sum at aj,

we must have L(ajbj) = (
∑n

i=1 ui)− uj. Similarly, L(bjy) = uj in order to have the
correct sum at bj. The maximum label in L is then

max(L) =

( n∑
i=1

ui

)
− min

1≤i≤n
ui.
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Let m be such that um = min
1≤i≤n

ui. It is then straightforward to check that

(L,max(L)) =

( n∑
i=1

(ui − um) · (Li, 1)

)
+ um · (L∗, n− 1).

Thus, we can conclude that (L,max(L)) can be decomposed as desired. 2

Note that the magic labeling L∗ is equal to the sum of the magic labelings Li

for 1 ≤ i ≤ n. However, if we additionally choose an appropriate bound for the
maximum label, this no longer holds. That is, the element (L∗, n− 1) is not a sum
of the elements (Li, 1) in Φ(PGn), which is a consequence of the following result.

Theorem 3.6 The completely fundamental elements of Φ(PGn) are (L1, 1), (L2, 1),
. . . , (Ln, 1), (~0, 1), and (L∗, n− 1).

Proof. By Lemma 3.5, it is enough to show that no multiple of one of these elements
can be written as a positive integer combination of the others.

This clearly holds for (~0, 1), since all other elements have a positive edge label. This
also holds for (L∗, n − 1) since (~0, 1) and the (Li, 1) satisfy the property that the
last entry is at least the index of the labeling, and this property is preserved under
sums. Lastly, the theorem statement holds for each element (Li, 1), as the only other
element with label 0 on the edge between ai and bi is (~0, 1) and no multiple of (~0, 1)
is equal to a multiple of (Li, 1). 2

Remark 3.7 It follows from Lemma 3.5 and Theorem 3.6 that{
(L1, 1), . . . , (Ln, 1), (~0, 1), (L∗, n− 1)

}
is the (minimal) Hilbert basis of Φ(PGn).

Remark 3.8 Following Stanley’s result (Proposition 2.5), the completely fundamen-
tal elements of Φ(QGn) have entries in {0, 1}, and moreover SGn(k) is a polynomial.
Similar reasoning to that in Theorem 3.6 yields that the completely fundamental
elements of Φ(QGn) are precisely (L1, 1), (L2, 1), . . . , (Ln, 1).

Remark 3.9 Each graph Gn can be generalized to a family of graphs Gn,p for p ≥ 1
as follows, while retaining the same Ehrhart quasipolynomial to count the magic
labelings.

Let Gn,p denote the graph obtained by taking two vertices x and y and connecting
them by n distinct paths of length 2p + 1. Since this graph is bipartite, any magic
labeling can be decomposed as a sum of perfect matchings. Moreover, a perfect
matching of Gn,p is determined by a choice of edge incident to x, as is the case for Gn.
This induces a bijection between perfect matchings on Gn and perfect matchings on
Gn,p, and it is straightforward to show that this bijection can be extended additively
to magic labelings. Thus, MGn(k) = MGn,p(k).
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4 The Ehrhart quasipolynomial of PGn

This section is focused on studying the Ehrhart quasipolynomial of PGn , where Gn

is the graph constructed in Section 3. In Subsection 4.1, we give an explicit formula
for this Ehrhart quasipolynomial as a sum of certain binomial coefficients, and we
use a generating function to find the minimum quasiperiod of this quasipolynomial,
thus proving the main result (Theorem 2.7). In Subsection 4.2, we present the
approach of Sam and Woods [8] for studying quasipolynomials via the difference
operator. Finally, in Subsection 4.3, we apply this approach to find the period of
each coefficient of the Ehrhart quasipolynomial of PGn , as given in Corollary 4.9.

4.1 The Ehrhart quasipolynomial of PGn and its quasiperiod

Let Mn(k) := MGn(k) be the Ehrhart quasipolynomial of PGn . Thus, Mn(k) is the
number of integral magic labelings of Gn with maximum label at most k. For all
n ≥ 1, define the function Fn : Z≥0 → C by

Fn(k) :=
∑

j∈[0,k]Z
j≡k (modn)

(
j

n

)
.

Proposition 4.1 For n ≥ 2 and nonnegative k,

Mn(k) =

(
k + n

n

)
+ Fn−1(k) .

Proof. As in the proof of Lemma 3.5, each magic labeling L of Gn is determined by
the labels uj that L assigns to the edges xaj for 1 ≤ j ≤ n. Moreover, the labeling
L is a k-labeling if and only if the maximum label

∑n
j=1 uj −min1≤`≤n u` is at most

k. Thus, we can directly calculate Mn(k) as follows:

Mn(k) = #

{
(u1, . . . , un) ∈ Zn

≥0 :
n∑

j=1

uj − u` ≤ k for all `

}

= #

{
(u1, . . . , un) ∈ Zn

≥0 :
n∑

j=1

uj ≤ k

}
+
∑
i≥1

#

{
(u1, . . . , un) ∈ Zn

≥0 :
n∑

j=1

uj = k + i and u` ≥ i for all `

}

=

(
k + n

n

)
+
∑
i≥1

(
k − (i− 1)(n− 1)

n− 1

)
=

(
k + n

n

)
+
∑
i≥0

(
k − i(n− 1)

n− 1

)
.

2
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Thus to compute the minimum quasiperiod of Mn(k) it is enough to compute the
quasiperiod of Fn(k). For this we use a generating function approach with a theorem
of Stanley.1

Proposition 4.2 ([10, Proposition 4.4.1]) Let F : Z≥0 → C be a quasipolyno-
mial. Then the generating function of F may be written as a rational function

∞∑
t=0

F (t)zt =
p(z)

q(z)

in which p, q ∈ C[z], gcd(p, q) = 1, and every root of q is a root of unity. Furthermore,
the minimum quasiperiod of F is the minimum positive integer n such that every root
of q is an nth root of unity.

Proposition 4.3 The generating function of Fn is

∞∑
t=0

Fn(t)zt =
zn

(1− zn)(1− z)n+1
.

In particular, the minimum quasiperiod of Fn is n.

Proof. We compute the generating function as follows:

∞∑
t=0

Fn(t)zt =
∞∑
t=0

∑
j∈[0,t]Z

j≡t (modn)

(
j

n

)
zt =

∞∑
j=0

∑
t≥j

t≡j (modn)

(
j

n

)
zt

=
∞∑
j=0

(
j

n

) ∞∑
`=0

zj+`n =
1

1− zn
∞∑
j=n

(
j

n

)
zj

=
1

1− zn
∞∑
j=0

(
j + n

n

)
zj+n =

zn

1− zn
· 1

(1− z)n+1
.

Since the roots of the denominator are precisely the nth roots of unity, the minimum
quasiperiod of Fn is n. 2

Corollary 4.4 The minimum quasiperiod of the Ehrhart polynomial Mn(k) of PGn

is n− 1.

Thus, we have proved Theorem 2.7. However, in the following subsections, we
see that a result of Sam and Woods yields not just the quasiperiod of Mn(k), but
also the precise period of each coefficient function of this quasipolynomial.

1We thank an anonymous referee for pointing out the relevance of this result.
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4.2 Minimum quasiperiods and finite differences

In this subsection, we review a result of Sam and Woods [8] and use it to show that
the minimum quasiperiod of a quasipolynomial F equals the minimum quasiperiod
of the first difference of F . In the next subsection we use this result to analyze the
periods of all of the coefficient functions of Fn, and hence of MGn(k).

The difference operator F 7→ ∆F is defined as follows. For any complex-valued
function F defined on Z, or on any interval [a,∞) ∩ Z, the first difference of F is
the function ∆F defined on the same domain by

∆F (t) := F (t+ 1)− F (t).

For i ∈ Z≥2, the ith difference of F is defined by ∆iF := ∆(∆i−1F ). The operator ∆
satisfies an analogue of the fundamental theorem of calculus: If f and F are functions
defined on [a,∞), then ∆

∑t−1
x=a f(x) = f(t) and

∑t−1
x=a ∆F (x) = F (t)− F (a) for all

t > a. This operator thus gives rise to a rich “calculus of finite differences” [4]. Sam
and Woods use this calculus in [8] to give elementary proofs of several foundational
results in Ehrhart theory.

We now show that the difference operator preserves the minimum quasiperiod of
quasipolynomials:

mqp(∆F ) = mqp(F ). (4.1)

The easy half of this equation is the inequality mqp(∆F ) ≤ mqp(F ). For, let
φ1, . . . , φs ∈ C[x] be the constituents of F . Then, for each r ∈ [s] and t ≡ r (mod s),
∆F (t) = φr+1(t+ 1)− φr(t) (indices modulo s), which is a polynomial function of t.
Thus, ∆F is a quasipolynomial, and s is a quasiperiod ∆F .

To complete the proof of Equation (4.1), it remains to prove that mqp(F ) ≤
mqp(∆F ). This inequality follows from [8, Lemma 2.1], a special case of which2 is
the following.

Theorem 4.5 ([8, Lemma 2.1]) Let f(t) =
∑d

i=0 ci(t) t
i be a quasipolynomial, let

si be the minimum period of ci for all i ≥ 0, and let F (t) :=
∑t−1

j=0 f(j) for t ≥ 1.
Then F (t) =

∑d+1
i=0 Ci(t) t

i for some periodic functions C0, C1, . . . , Cd+1 such that
the minimum period of Ci divides lcm{si, si+1, . . . , sd} for 0 ≤ i ≤ d, and Cd+1 is
constant.3

Equation (4.1) is now a straightforward corollary.

Corollary 4.6 Let F : Z → C be a quasipolynomial. Then ∆F is also a quasipoly-
nomial, and mqp(∆F ) = mqp(F ).

2The authors of [8] consider the more general case in which the upper bound of summation in the
definition of F (t) is itself a quasipolynomial function of t of the form t 7→ bat/bc for some a, b ∈ Z.

3It may happen that Cd+1 = 0, as for example when f(t) := (−1)t. In general, Cd+1 = 0 if and
only if

∑sd
x=1 cd(x) = 0. Thus, the “anti-difference” operator does not increase the degree of every

quasipolynomial.
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Proof. From the argument immediately following Equation (4.1), it remains only to
prove that mqp(F ) ≤ mqp(∆F ). Let

H(t) := F (t)− F (0) =
t−1∑
j=0

∆F (j).

Write H(t) =:
∑d+1

i=0 Ci(t) t
i, and let s′i be the minimum period of Ci for 0 ≤ i ≤ d+ 1.

Put ∆F (t) =:
∑d

i=0 ci(t) t
i and let si be the minimum period of ci for 0 ≤ i ≤ d.

Then, by Theorem 4.5,

mqp(F ) = mqp(H) = lcm{s′0, . . . , s′d} | lcm{s0, . . . , sd} = mqp(∆F ).

In particular, mqp(F ) ≤ mqp(∆F ). 2

4.3 Minimum quasiperiod of Mn and its coefficients

We now apply the Sam–Woods result to the function Fn.

Lemma 4.7 Let n ≥ i ∈ Z≥0. The ith difference of Fn satisfies

∆iFn(t) =
∑

j∈[0,t]Z
j≡t (modn)

(
j

n− i

)
for t ∈ Z≥0. (4.2)

In particular,

∆nFn(t) =

⌊
t

n

⌋
+ 1 for t ∈ Z,

and so ∆nFn is a quasipolynomial with minimum quasiperiod n.

Proof. The claim is trivial when i = 0. Proceeding by induction on i, we find that,
for n ≥ i+ 1 and t ∈ Z≥0,

∆i+1Fn(t) = ∆iFn(t+ 1)−∆iFn(t)

=
∑

j∈[0,t+1]Z
j≡t+1 (modn)

(
j

n− i

)
−

∑
j∈[0,t]Z

j≡t (modn)

(
j

n− i

)

=
∑

j∈[−1,t]Z
j≡t (modn)

(
j + 1

n− i

)
−

∑
j∈[0,t]Z

j≡t (modn)

(
j

n− i

)

=
∑

j∈[0,t]Z
j≡t (modn)

(
j

n− (i+ 1)

)
.
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(The condition that n ≥ i+ 1 is used to eliminate the j = −1 term in the first sum
on the right-hand side of the third equation.) Thus, Equation (4.2) is proved. In
particular, for t ∈ Z≥0,

∆nFn(t) = #{j ∈ [0, t]Z : j ≡ t (modn)} =

⌊
t

n

⌋
+ 1.

Clearly ∆nFn(t) =
⌊
t
n

⌋
+ 1 has minimum quasiperiod n. 2

Theorem 4.8 The minimum quasiperiod of Fn is n. Furthermore, each coefficient
function of Fn is constant, except for the degree-0 coefficient function, which has
minimum period n.

Proof. By Lemma 4.7, ∆nFn has minimum quasiperiod n. Therefore, by Corol-
lary 4.6, Fn itself has minimum quasiperiod n. Now we consider the minimum
periods of the coefficient functions of Fn.

Suppose f is a quasipolynomial whose ith coefficient function has minimum period
si. Let F be a function such that ∆F = f . Then F differs from the function
t 7→

∑t−1
j=0 f(j) by a constant, and so the minimum quasiperiod of the ith coefficient

function of F divides lcm{si, si+1, . . .} for all i ≥ 1. Apply this to the quasipolynomial
f(t) =

⌊
t
n

⌋
+ 1 = 1

n
t + c0(t). Here c0(t) = −rn(t)/n + 1, where rn(t) denotes the

remainder of t divided by n. Also, for i > 0, si = 1. Then, since ∆nFn(t) = f(t),
by induction we get that all coefficients of Fn are constant except for the degree-0
coefficient. 2

We now obtain an extension of Corollary 4.4 by determining the exact periods of
all the coefficient functions of MGn(k).

Corollary 4.9 The Ehrhart quasipolynomial MGn(k) of PGn has minumum quasi-
period n − 1. More strongly. the coefficient functions of MGn(k) are all constant,
except for the degree-0 term, which has period n− 1.

Proof. Since Mn(k) = MGn(k) is the sum of a polynomial and Fn−1 by Proposi-
tion 4.1, the period of the degree-d term of MGn(k) is equal to that of the degree-d
term in Fn−1. Theorem 4.8 states that this period is n − 1 for the degree-0 term,
while all other terms have period 1. Therefore the minimum quasiperiod of MGn(k)
is n − 1, as this is the least common multiple of the periods of all its coefficient
functions. 2

5 Graphs with Small Magic-Labeling Quasiperiods

Though Theorem 2.7 demonstrates that the quasipolynomial MG(k) can have arbi-
trarily large minimum quasiperiod, there are still large families of graphs for which
we can give a uniform bound on the minimum quasiperiod. In this section, we show
that for a large family of graphs, including any graph with a leaf, the minimum
quasiperiod of this quasipolynomial is at most 2.
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Proposition 5.1 Let G be a graph with a leaf. Then the polytope PG is the con-
vex hull of the polytope QG and the origin (0, 0, . . . , 0). In particular, MG(k) is a
quasipolynomial of minimum quasiperiod at most 2.

Proof. In any magic labeling of G, the weight of the leaf edge must be equal to both
the index of the magic labeling and the maximum label. Thus, the maximum label
of any magic labeling is equal to its index. Since PG corresponds to magic labelings
with maximum label at most k while QG corresponds to magic labelings with index
exactly k, we then obtain PG by taking the convex hull of QG with the origin. The
statement about quasiperiods then follows directly from Corollary 2.6 2

We can generalize the result about quasiperiods to a larger family of graphs as
follows.

Theorem 5.2 Suppose there is an edge e in the graph G that attains the maximum
label in every magic labeling of G of index 2. Then MG(k) is a quasipolynomial of
minimum quasiperiod at most 2. Furthermore, if G is bipartite, then MG(k) is a
polynomial.

Proof. Note that the statement holds trivially if the only magic labeling of G is the
zero labeling, so we can suppose that G admits a nonzero magic labeling. Fix a magic
labeling L of G of index greater than 2. By Proposition 2.5, we can decompose L as
a sum of at least two magic labelings Li of G, each of index at most 2. Since e attains
the maximum label in each Li, it must also attain the maximum label in L. Thus
max(L) =

∑
i max(Li), and hence (L,max(L)) =

∑
i(Li,max(Li)) in Φ(PG). So we

can conclude that (L,max(L)) is not completely fundamental in Φ(PG). Therefore,
any completely fundamental element of Φ(PG) has index (and hence maximum label)
at most 2. It follows from Proposition 2.3 that 2 is a quasiperiod of MG(k).

If G is bipartite, we can furthermore decompose L into a sum of magic labelings Li

of index 1 by Proposition 2.5. The same approach then applies to show that any
completely fundamental labeling of Φ(PG) has index 1. Thus, Proposition 2.3 implies
that 1 is a quasiperiod of MG(k), i.e., MG(k) is a polynomial. 2

Example 5.3 We now provide a family of graphs exhibiting that Theorem 5.2 is
stronger than Proposition 5.1. For k ≥ 1, consider the graph Gk constructed by
connecting two copies of a (2k + 1)-cycle C2k+1 by a single edge (connecting one
vertex from each copy). Since odd cycles have no perfect matchings, the bridging
edge between the two copies of C2k+1 must be included in any perfect matching on
Gk. Thus Gk satisfies the hypotheses of Theorem 5.2, but not Proposition 5.1 since
it has no leaves.

Remark 5.4 While the hypothesis of Theorem 5.2 only applies to magic labelings
of index 2, it is in fact equivalent to assert that the hypothesis holds for all magic
labelings. This follows from Proposition 2.5, as any magic labeling can be decom-
posed as a sum of magic labelings of index at most 2. Moreover, any magic labeling
of index 1 can be doubled to yield a magic labeling of index 2.
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Remark 5.5 Let G be a graph with an even number of vertices. The matching
preclusion number mp(G) of G is the minimum cardinality of an edge set S such
that G−S has no perfect matching. If G is bipartite, then the condition on the edge
e of Theorem 5.2 is equivalent to the condition that mp(G) ≤ 1.

Example 5.6 We now give a method for constructing a bipartite graph with match-
ing preclusion number 1, generalizing Example 5.3. For i ∈ {1, 2}, let Gi be a bi-
partite graph with a vertex vi such that Gi \ {vi} has a perfect matching. Note that
such a graph Gi must have odd order. Then consider the graph formed by connecting
G1 and G2 by a single edge between v1 and v2. The resulting graph has a perfect
matching, since we can take the perfect matchings in Gi \ {vi} for i ∈ {1, 2} along
with the added edge. However, the graph obtained by removing the edge between v1
and v2 has no perfect matchings, since it consists of two components of odd size.

Thus we see that, while the quasiperiod of the quasipolynomial MG(k) is un-
bounded in general, it is small for specific families of graphs. It would be interesting
to find other families of graphs for which this quasiperiod is bounded.
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