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Abstract

A set S of vertices in a graph G is a 2-dominating set of G if every vertex
not in S has at least two neighbors in S, where two vertices are neighbors
if they are adjacent. The 2-domination number of G, denoted by γ2(G), is
the minimum cardinality among all 2-dominating sets of G. The graph G
is γ2-q-critical if the smallest subset of edges whose subdivision necessarily
increases γ2(G) has cardinality q. We characterize the γ2-2-critical trees.

1 Introduction

In this paper, we continue the study of 2-domination critical trees upon edge sub-
division. A dominating set of a graph G is a set S of vertices of G such that every
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vertex not in S has a neighbor in S, where two vertices are neighbors if they are
adjacent. The domination number γ(G) of G is the minimum cardinality of a dom-
inating set of G. The notion of domination and its variations in graphs has been
studied a great deal. A thorough treatise on dominating sets can be found in the
so-called “domination books” [10, 11, 12, 13].

A 2-dominating set of a graph G is a set S of vertices of G such that every
vertex not in S has at least two neighbors in S. The 2-domination number γ2(G)
of G is the minimum cardinality among all 2-dominating sets of G. A γ2-set of G
is a 2-dominating set of G of cardinality γ2(G). We denote by A2(G) and N2(G)
the set of vertices in G that belong to every or no γ2-set of G, respectively. Hence
a vertex in A2(G) belongs to every γ2-set of G, and a vertex in N2(G) belongs to
no γ2-set of G. The concept of 2-domination in graphs, and more generally of k-
domination in graphs, is very well studied (see, for example, [3, 4, 6, 7, 8]). An
excellent survey on 2-domination in graphs can be found in the book chapter by
Hansberg and Volkmann [9].

The subdivision of an edge e = uv in a graph G consists of deleting the edge e
from E(G), adding a new vertex w to V (G), and adding the new edges uw and vw to
E(G). In this case, we say that the edge e has been subdivided. Further, we denote
the resulting graph G with the edge e subdivided by Ge. Thus, Ge is the graph
obtained from G by subdividing the edge e. Moreover if e and f are two distinct
edges of G, then we denote by Ge,f the graph obtained from G by subdividing both
edges e and f . The 2-domination subdivision number of G is the minimum number of
edges which must be subdivided (where each edge can be subdivided at most once) in
order to increase the 2-domination number. The 2-domination subdivision number
was defined by Atapour, Sheikholeslami, Hansberg, Volkmann, and Khodkar [1], and
studied, for example, in [2].

A graph G is γ2-q-critical if the smallest subset of edges (where each edge in G
can be subdivided at most once) whose subdivision necessarily increases γ2(G) has
cardinality q. Our aim is to characterize γ2-2-critical trees.

1.1 Notation and terminology

For graph theory notation and terminology, we generally follow [12]. Specifically, let
G be a graph with vertex set V (G) and edge set E(G), and of order n(G) = |V (G)|
and size m(G) = |E(G)|. Two vertices u and v of G are adjacent if uv ∈ E(G), and
are called neighbors. The open neighborhood NG(v) of a vertex v in G is the set of
neighbors of v, while the closed neighborhood of v is the set NG[v] = {v}∪NG(v). In
general, for a subset S ⊆ V (G), its open neighborhood is the set NG(S) = ∪v∈SNG(v),
and its closed neighborhood is the set NG[S] = NG(S) ∪ S.

The degree of a vertex v in G is the number of neighbors v in G, and is denoted
by degG(v), and so degG(v) = |NG(v)|. The maximum (minimum) degree among the
vertices of G is denoted by ∆(G) (δ(G), respectively). An isolated vertex is a vertex
of degree 0, and a graph is isolate-free if it contains no isolated vertex. A vertex of
degree 1 is called a leaf, and its (unique) neighbor is called a support vertex. The
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edge incident with a leaf is called a pendant edge. A strong support vertex is a vertex
with at least two leaf neighbors, and a weak support vertex is a vertex with exactly
one leaf neighbor. We denote the set of leaves of G by L(G).

A rooted tree T distinguishes one vertex r called the root. Let T be a tree rooted
at vertex r. For each vertex v 6= r of T , the parent of v is the neighbor of v on the
unique (r, v)-path, while a child of v is any other neighbor of v. The root r does not
have a parent in T and all its neighbors are its children. A descendant of v is a vertex
x such that the unique (r, x)-path contains v. Thus, every child of v is a descendant
of v. Let C(v) and D(v) denote the set of children and descendants, respectively, of
v, and we define D[v] = D(v) ∪ {v}.

For k ≥ 1 an integer, we let [k] denote the set {1, . . . , k}.

2 Main result

Our aim is to characterize γ2-2-critical trees. For this purpose, we define a family F2

of labeled trees (T, S) in Section 5, where T is a tree and S is a labeling that assigns
to every vertex v a label. We shall prove the following result.

Theorem 2.1 A tree T is γ2-2-critical if and only if (T, S) ∈ F2 for some labeling S.

We proceed as follows. In Section 3 we present a known result that characterizes
γ2-1-critical trees. In Section 4 we present some preliminary observations and results
that we will need when proving our main result. In Section 5, we formally define the
family F2 of labeled trees (T, S). Further, we establish important properties of trees
in the family F2 and show, in particular, that every tree in the family F2 is a γ2-2-
critical tree. Thereafter in Section 6, we present a proof of our main result, namely
the characterization of γ2-2-critical trees given in the statement of Theorem 2.1.

3 Known results

The authors in [5] characterized γ2-1-critical trees. In order to state the characteri-
zation, they defined a family F1 of labeled trees (T, S) where T is a tree and S is a
labeling that assigns to every vertex v of T a label, called the status of v and denoted
by sta(v), where sta(v) ∈ {A,B}. They defined (T1, S1) as the labeled base tree of
the family F1, where T1 is a path of order 3 given by v1v2v3 where the labeling S1

assigns to the two leaves status A and to the central vertex status B. The labeled
base tree (T1, S1) is illustrated in Figure 1.

A B A

v1 v2 v3

Figure 1: The labeled base tree (T1, S1)
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A labeled tree (T, S) belongs to the family F1, if there is a sequence (T1, S1), . . . ,
(Tk, Sk) of labeled trees where (T1, S1) is the labeled base tree defined earlier, (T, S) =
(Tk, Sk), and if k ≥ 2, then the labeled tree (Ti+1, Si+1) is obtained from the labeled
tree (Ti, Si) by applying one of the operations Tj, j ∈ [3], given below to a vertex
v ∈ V (Ti) for i ∈ [k − 1].

Operation T1. Assume sta(v) = B in (Ti, Si). The labeled tree (Ti+1, Si+1) is ob-
tained from the labeled tree (Ti, Si) by adding to it a new vertex x and the
edge vx, and letting sta(x) = A. Operation T1 is illustrated in Figure 2.

B

v

A

x

Figure 2: Operation T1

Operation T2. Assume sta(v) = A in (Ti, Si). The labeled tree (Ti+1, Si+1) is ob-
tained from the labeled tree (Ti, Si) by adding to it a path xy and the edge vx,
and letting sta(x) = B and sta(y) = A. Operation T2 is illustrated in Figure 3.

A

v

B

x

A

y

Figure 3: Operation T2

Operation T3. Assume sta(v) = B in (Ti, Si). The labeled tree (Ti+1, Si+1) is ob-
tained from the labeled tree (Ti, Si) by adding to it a path xyz and the edge vy,
and letting sta(x) = sta(z) = A and sta(y) = B. Operation T3 is illustrated in
Figure 4.

B

v

B

y

A

x

A

z

Figure 4: Operation T3

We are now in a position to state the characterization of γ2-1-critical trees given
in [5].

Theorem 3.1 ([5]) A tree T is γ2-1-critical if and only if (T, S) ∈ F1 for some

labeling S.
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4 Preliminary observations and results

In this section, we present some preliminary results that we will need in order to prove
our characterization of γ2-2-critical trees. Recall that if T is a tree and e ∈ E(T ),
then Te denotes the tree obtained from T by subdividing the edge e. Furthermore
if {e, f} ⊆ E(T ), then Te,f denotes the tree obtained from T by subdividing both
edges e and f . Moreover recall that A2(T ) (respectively, N2(T )) denotes the set of
vertices of T that belong to all (respectively, to no) γ2-set of T . Since every leaf in
a tree T belongs to every 2-dominating set of T , we have the following observation.

Observation 4.1 If v is a leaf of a tree T , then v ∈ A2(T ).

Lemma 4.2 If v is a strong support vertex in a γ2-2-critical tree T , then v ∈ N2(T ).

Proof. Let v be a strong support vertex in a γ2-2-critical tree T . Suppose, to the
contrary, that v belongs to some γ2-set, S, of T . Let v1 and v2 be two distinct
leaf neighbors of v in T , and let ei = vvi for i ∈ [2]. Since T is γ2-2-critical,
subdividing any two arbitrary distinct edges in T increases the 2-domination number.
In particular, γ2(Te1,e2) > γ2(T ). However by supposition and by Observation 4.1,
we have {v, v1, v2} ⊆ S. Thus the set S is a 2-dominating set of Te1,e2 , and so
γ2(Te1,e2) ≤ |S| = γ2(T ), a contradiction. Hence, no γ2-set of T contains v, that is,
v ∈ N2(T ). 2

Lemma 4.3 If T is a tree that contains a strong support vertex v with at least three

leaf neighbors, then γ2(T ) = γ2(T − v′) + 1, where v′ is an arbitrary leaf neighbor of

v in T .

Proof. Let T be a tree that contains a strong support vertex v with at least three
leaf neighbors, and let T ′ = T − v′, where v′ is an arbitrary leaf neighbor of v in T .
The trees T and T ′ are illustrated in Figure 5.

v

v′
T :

T ′

Figure 5: A tree T in the statement of Lemma 4.3

Let S be a γ2-set of T . By Observation 4.1, all leaf neighbors of v belong to
the set S. Thus since v has at least three leaf neighbors in T , one of which is the
leaf neighbor v′, we infer that the set S \ {v′} is a 2-dominating set of T ′. Thus,
γ2(T

′) ≤ |S| − 1 = γ2(T ) − 1. Conversely, every 2-dominating set of T ′ can be
extended to a 2-dominating set of T by adding to it the vertex v′, implying that
γ2(T ) ≤ γ2(T

′) + 1. Consequently, γ2(T ) = γ2(T
′) + 1. 2
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Lemma 4.4 If T is a tree that contains a strong support vertex v with at least three

leaf neighbors, then the tree T is γ2-2-critical if and only if the tree T − v′ is γ2-2-
critical where v′ is an arbitrary leaf neighbor of v in T .

Proof. Let T be a tree and let v be a strong support vertex in T with at least three
leaf neighbors. Let T ′ = T − v′. Suppose firstly that T is a γ2-2-critical tree. Thus
there exists an edge e ∈ E(T ) such that γ2(T ) = γ2(Te). Since v has at least three leaf
neighbours in T , the vertex v is a strong support vertex in Te, and so by Lemma 4.2
we have v ∈ N2(Te). From this we infer that subdividing an edge incident with a leaf
neighbor of v increases the 2-domination number of T . Thus the edge e is not incident
with a leaf neighbor of v, and so e ∈ E(T ′) and every leaf neighbor of v in T remains
a leaf neighbor of v in Te. Let Se be an arbitrary γ2-set of Te. By Observation 4.1, all
leaf neighbors of v in T belong to the γ2-set Se. The set Se \ {v

′} is a 2-dominating
set of T ′

e, and so γ2(T
′) ≤ γ2(T

′
e) ≤ |Se| − 1 = γ2(Te) − 1 = γ2(T ) − 1 = γ2(T

′).
Consequently, we must have equality throughout this inequality chain. In particular,
γ2(T

′) = γ2(T
′
e).

Let e1 and e2 be two arbitrary distinct edges in T ′. Since T is a γ2-2-critical
tree and {e1, e2} ⊂ E(T ), we have γ2(T ) < γ2(Te1,e2). Every γ2-set of T ′

e1,e2
can

be extended to a 2-dominating set of Te1,e2 by adding to it the vertex v′, and so
γ2(T ) < γ2(Te1,e2) ≤ γ2(T

′
e1,e2

) + 1. Thus, γ2(T
′
e1,e2

) > γ2(T ) − 1 = γ2(T
′). Hence

subdividing any two arbitrary distinct edges in T ′ increases the 2-domination number.
As observed earlier, there exists an edge e′ in T ′, namely the edge e′ = e, such that
γ2(T ) = γ2(Te′). These observations imply that the tree T ′ is γ2-2-critical.

Conversely, suppose that T ′ is a γ2-2-critical tree. Thus there exists an edge
f ∈ E(T ′) such that γ2(T

′) = γ2(T
′
f ). Every γ2-set of T

′
f can be extended to a γ2-set

of Tf by adding to it the vertex v′, and so γ2(T ) ≤ γ2(Tf ) ≤ γ2(T
′
f )+1 = γ2(T

′)+1 =
γ2(T ). Hence we must have equality throughout this inequality chain. In particular,
γ2(T ) = γ2(Tf ).

Let e1 and e2 be two arbitrary distinct edges in T . We note that γ2(T ) ≤
γ2(Te1,e2). We show that γ2(T ) < γ2(Te1,e2). If at least one of e1 and e2 is incident
with a leaf neighbor of v, then γ2(T ) < γ2(Te1,e2), as desired. Hence we may assume
that neither e1 nor e2 is incident with a leaf neighbor of v. In particular, both e1
and e2 are edges in T ′ (and neither is incident with a leaf neighbor of v in T ′). Thus,
the vertex v is a strong support vertex in Te1,e2 with at least three leaf neighbors,
and is therefore a strong support vertex in T ′

e1,e2
= Te1,e2 − v′ with at least two leaf

neighbors. By Lemma 4.3, γ2(Te1,e2) = γ2(T
′
e1,e2

) + 1. Suppose, to the contrary, that
γ2(T ) = γ2(Te1,e2). In this case, γ2(T

′) + 1 = γ2(T ) = γ2(Te1,e2) = γ2(T
′
e1,e2

) + 1, and
so γ2(T

′) = γ2(T
′
e1,e2

), contradicting the fact that T ′ is a γ2-2-critical tree. Hence,
γ2(T ) < γ2(Te1,e2). As observed earlier, there exists an edge in T , namely the edge f ,
such that γ2(T ) = γ2(Tf ). These observations imply that the tree T is γ2-2-critical.
This completes the proof of Lemma 4.4. 2

Lemma 4.5 If T is obtained from a nontrivial tree T ′ by adding to it a path xyz
and the edge vy where v is an arbitrary vertex of T ′, then γ2(T ) = γ2(T

′) + 2.
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Proof. Let T be a tree obtained from a nontrivial tree T ′ by adding to it a path
xyz and the edge vy where v is an arbitrary vertex of T ′. The trees T and T ′ are
illustrated in Figure 6.

v

y

x

z
T :

T ′

Figure 6: A tree T in the statement of Lemma 4.5

Let S be a γ2-set of T . By Observation 4.1, all leaves in T belong to the set S.
In particular, {x, z} ⊂ S. If y ∈ S, then we can simply replace the vertex y in S
with the vertex v to produce a new γ2-set of T . Hence we may choose the set S so
that y /∈ S. With this choice of the set S, the set S \ {x, z} is a 2-dominating set
of T ′, and so γ2(T

′) ≤ |S| − 2 = γ2(T ) − 2. Conversely, every 2-dominating set of
T ′ can be extended to a 2-dominating set of T by adding to it the vertices x and z,
implying that γ2(T ) ≤ γ2(T

′) + 2. Consequently, γ2(T ) = γ2(T
′) + 2. 2

Lemma 4.6 Let T be obtained from a nontrivial tree T ′ by adding to it a path xyz
and the edge vy where v is an arbitrary vertex of T ′. If the tree T is γ2-2-critical,
then the tree T ′ is γ2-2-critical.

Proof. Suppose that T is a γ2-2-critical tree. Thus there exists an edge e ∈ E(T )
such that γ2(T ) = γ2(Te). Let Se be a γ2-set of Te. The vertex y is a strong support
vertex in T , and so by Lemma 4.2 we have y ∈ N2(T ). Thus, y /∈ Se. From this we
infer that subdividing the edge xy or the edge yz increases the 2-domination number
of T . Thus the edge e is incident with neither x nor z. If e = vy and if w is the new
vertex resulting from subdividing the edge e, then Se contains y or w. As observed
earlier, y /∈ Se, and so w ∈ Se. However in this case, the set S = (Se\{w})∪{y} is a 2-
dominating set of T that contains the vertex y. As observed earlier, y ∈ N2(T ). From
this we infer that the set S is not a γ2-set of T , and so γ2(T ) < |S| = |Se| = γ2(Te),
a contradiction. Hence, the edge e is not incident with the vertex y, implying that
e ∈ E(T ′). By Lemma 4.5, γ2(T ) = γ2(T

′) + 2. The set Se \ {x, z} is a 2-dominating
set of T ′

e, and so γ2(T
′) ≤ γ2(T

′
e) ≤ |Se| − 2 = γ2(Te) − 2 = γ2(T ) − 2 = γ2(T

′).
Consequently, we must have equality throughout this inequality chain. In particular,
γ2(T

′) = γ2(T
′
e).

Let e1 and e2 be two arbitrary distinct edges in T ′. Since T is a γ2-2-critical
tree and {e1, e2} ⊂ E(T ), we have γ2(T ) < γ2(Te1,e2). Every γ2-set of T ′

e1,e2
can

be extended to a 2-dominating set of Te1,e2 by adding to it the vertices x and z,
and so γ2(T ) < γ2(Te1,e2) ≤ γ2(T

′
e1,e2

) + 2. Thus, γ2(T
′
e1,e2

) > γ2(T ) − 2 = γ2(T
′).

Hence subdividing any two arbitrary distinct edges in T ′ increases the 2-domination
number. As observed earlier, there exists an edge e′ in T ′, namely the edge e′ = e,
such that γ2(T ) = γ2(Te′). These observations imply that the tree T ′ is γ2-2-critical.

2
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These observations imply that the tree T is γ2-2-critical. This completes the
proof of Lemma 4.6. 2

5 The family F2

In this section, we define a family F2 of labeled trees (T, S) where T is a tree and
S is a labeling that assigns to every vertex v of T a label, called the status of v and
denoted by sta(v), where sta(v) ∈ {A,B, Y, Z}. We define (T1, S1) as the labeled

base tree of the family F2, where T1 is a path of order 4 given by v1v2v3v4 where
the labeling S1 assigns to the two end-vertices status A and where sta(v2) = X with
X ∈ {Y, Z} and sta(v3) = X with X ∈ {Y, Z} \ {X}. The labeled base tree (T1, S1)
is illustrated in Figure 7.

A X X A

v1 v2 v3 v4

Figure 7: The labeled base tree (T1, S1)

A labeled tree (T, S) belongs to the family F2, if there is a sequence (T1, S1), . . . ,
(Tk, Sk) of labeled trees where (T1, S1) is the labeled base tree defined earlier, (T, S) =
(Tk, Sk), and if k ≥ 2, then the labeled tree (Ti+1, Si+1) is obtained from the labeled
tree (Ti, Si) by applying one of the operations Oj, j ∈ [5], given below to a vertex
v ∈ V (Ti) for i ∈ [k − 1].

Operation O1. Assume sta(v) = A and the vertex v has degree 1 with (unique)
a neighbor x where either sta(x) = X and X ∈ {Y, Z} or sta(x) = A in the
labeled tree (Ti, Si). The labeled tree (Ti+1, Si+1) is formed from (Ti, Si) by
deleting the edge vx and adding the new vertices y and z and adding the new
edges vy, yz, and zx (so that vyzx is a path in Ti+1), and letting sta(y) = X
and sta(z) = X. Operation O1 in the case when sta(x) = X is illustrated in
Figure 8(a), while Operation O1 in the case when sta(x) = A is illustrated in
Figure 8(b).

Operation O2. Assume sta(v) = X where X ∈ {Y, Z} in (Ti, Si). Let H be the
subgraph of Ti induced by the vertices labeled X or X and let Hv be the
component of H−v of odd cardinality. The labeled tree (Ti+1, Si+1) is obtained
from the labeled tree (Ti, Si) by adding to it a path xy and the edge vx. For
each vertex w ∈ V (Hv), if sta(w) = X in (Ti, Si), then we let sta(w) = A
in (Ti+1, Si+1), while if sta(w) = X in (Ti, Si), then we let sta(w) = B in
(Ti+1, Si+1). Moreover, we change the status of v and let sta(v) = A, and we
let sta(x) = B and sta(y) = A. Operation O2 is illustrated in Figure 9. We
call the vertex v the link vertex of the operation.

Operation O3. Assume sta(v) = A and the vertex v has at least one neighbor with
status B in (Ti, Si). The labeled tree (Ti+1, Si+1) is obtained from the labeled
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A
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X

z

X
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v

Figure 8: Operation O1

v

A X X X X X X A

Hv

(Ti, Si):

v

B

A

x

y

A X X A B A B A
⇓

(Ti+1, Si+1):

Figure 9: Operation O2

tree (Ti, Si) by adding to it a path xy and the edge vx, and letting sta(x) = B
and sta(y) = A. Operation O3 is illustrated in Figure 10.

A

v

B

x

A

y
B

Figure 10: Operation O3

Operation O4. Assume sta(v) = A and the vertex v has at least one neighbor
with status B or sta(v) ∈ {B,X} where X ∈ {Y, Z} in (Ti, Si). The labeled
tree (Ti+1, Si+1) is obtained from the labeled tree (Ti, Si) by adding to it a
path xyz and the edge vy, and letting sta(x) = sta(z) = A and sta(y) = B.
Operation O4 is illustrated in Figure 11.

Operation O5. Assume sta(v) = B and v is a strong support vertex in (Ti, Si). The
labeled tree (Ti+1, Si+1) is obtained from the labeled tree (Ti, Si) by adding to
it a new vertex x and the edge vx, and letting sta(x) = A. Operation O5 is
illustrated in Figure 12.
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A
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A

x
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v

B

y

A

x
A

z
B

Figure 11: Operation O4

B

v

A

x
A A

Figure 12: Operation O5

To illustrate operations O1 through to O5, let (T1, S1), (T2, S2), . . . , (T6, S6) be
the labelled trees illustrated in Figure 13. The labeled tree (T1, S1) is the base tree
illustrated in Figure 7, and the labeled tree (Ti+1, Si+1) is obtained from the labeled
tree (Ti, Si) by applying operation Oi for i ∈ [5]. Thus, (T1, S1), (T2, S2), . . . , (T6, S6)
is a sequence of labelled trees, each of which belong to the family F2. In particular,
the labeled tree (T, S) = (T6, S6) belongs to the family F2.

If (T, S) ∈ F2, we let SA(T ), SB(T ), SY (T ) and SZ(T ) be the sets of vertices of
status A, B, Y and Z, respectively, in the labeled tree (T, S). The following obser-
vation is immediate from the way in which each tree in the family F2 is constructed.

Observation 5.1 If (T, S) ∈ F2, then the following properties hold.

(a) L(T ) ⊆ SA(T ).

(b) If v ∈ SB(T ), then |NT (v) ∩ SA(T )| ≥ 2.

(c) For X ∈ {Y, Z}, the subgraph of T induced by all vertices labeled X and X is a

path of even order. Furthermore, the labels of consecutive vertices on this path

alternative between label X and X, and so SX(T ) is an independent set and

|SX(T )| = |SX(T )|.
(d) If v ∈ SX(T ) where X ∈ {Y, Z}, then the neighbors of v may have status A,X,

or B. Apart from the neighbours of status B, v has either two neighbors of

status X or one neighbor of status X and one neighbor of status A.

(e) The set SA(T ) ∪ SX(T ) is a 2-dominating set of T , and so γ2(T ) ≤ |SA(T )|+
|SX(T )|, where X ∈ {Y, Z}.

(f) If two adjacent vertices both have status A, then no vertex has status X or X
where X ∈ {Y, Z}.

(g) A vertex of status A has at most one neighbor of status X or X where X ∈
{Y, Z}.

(h) Every strong support vertex has status B in the labeled tree (T, S).

Proof. Observations (a)–(d) and (g) directly follow from the definition of the opera-
tions. From observations (b) and (d) it follow that SA(T )∪SX(T ) is a 2-dominating
set of T , proving (e). The only possiblity to eliminate the vertices of status X and
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A X X A
(T1, S1):

A X X X X A

⇓ (operation O1)

(T2, S2):

A X X A B A

B

A

⇓ (operation O2)

(T3, S3):

A X X A B A

B

A
AB

⇓ (operation O3)

(T4, S4):

A X X A B A

B

A
AB

A A

B

⇓ (operation O4)

(T5, S5):

A X X A B A

B

A
AB

A A

BA

⇓ (operation O5)

(T6, S6):

Figure 13: A labeled tree (T, S) = (T6, S6) in the family F2

X is to repeatedly apply operation O2. This will result in two adjacent vertices
of status A, proving (f). The only way to create a strong support is by applying
operation O4, the strong support obtains status B proving (h). 2

Theorem 5.2 If (T, S) ∈ F2 and X ∈ {Y, Z}, then the following properties hold:

(a) γ2(T ) = |SA(T )|+ |SX(T )|.
(b) SA(T ) ∪ SX(T ) and SA(T ) ∪ SX(T ) are γ2-sets of T .
(c) SA(T ) ⊆ S and SB(T ) ∩ S = ∅ for every γ2-set S of T .
(d) If p ∈ SX(T ), then γ2(T − p) = γ2(T ).
(e) There exists an edge e ∈ E(T ) such that γ2(T ) = γ2(Te) and SA(T ) ⊆ Se for

some γ2-set Se of Te.

(f) The tree T is γ2-2-critical.

Proof. Let (T, S) ∈ F2 and let X ∈ {Y, Z}. Thus, there is a sequence (T1, S1), . . . ,
(Tk, Sk) of labeled trees where (T1, S1) is the labeled base tree in Figure 7, (T, S) =
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(Tk, Sk), and if k ≥ 2, then the labeled tree (Ti+1, Si+1) is obtained from the labeled
tree (Ti, Si) by applying one of the operations Oj, j ∈ [5], to a vertex v ∈ V (Ti) for
i ∈ [k− 1]. We proceed by induction on number k of trees used to construct the tree
T . If k = 1, then (T, S) = (T1, S1). In this case, it is straightforward to check that
the desired properties (a)–(f) hold. This establishes the base case.

Let k ≥ 2 and assume that if (T ′, S ′) ∈ F2 and (T ′, S ′) can be built from a se-
quence of k′ trees in the family F2 where 1 ≤ k′ < k, then the desired properties (a)–
(f) hold for the labeled tree (T ′, S ′). Let (T, S) ∈ F2 and let (T1, S1), . . . , (Tk, Sk)
be a sequence of labeled trees used to build the labeled tree (T, S), where (T1, S1)
is the labeled base tree and (T, S) = (Tk, Sk). Let (T ′, S ′) = (Tk−1, Sk−1). Thus,
(T ′, S ′) ∈ F2 and the labeled tree (T, S) is obtained from the labeled tree (T ′, S ′) by
applying one of the five operations Oj, j ∈ [5], to a vertex v ∈ V (T ′) for i ∈ [k − 1].
We consider five cases, depending on which of the five operations the labeled tree
(T, S) is built from the labeled tree (T ′, S ′). In all cases, we let D be a γ2-set of T and
we let D′ be the restriction of D to T ′, and so D′ = D ∩ V (T ′). Since (T ′, S ′) ∈ F2,
we note by Observation 5.1(a) that every leaf in (T ′, S ′) has status A.

Case 1. (T, S) is obtained from (T ′, S ′) by operation O1. In this case the vertex
v of degree 1 in T ′ has status A in (T ′, S ′) and has a neighbor x where either
sta(x) = X and X ∈ {Y, Z} or sta(x) = A in the labeled tree (T ′, S ′). Suppose
firstly that sta(x) = X where X ∈ {Y, Z}. Let w be the neighbor of x in (T ′, S ′) of
status X. Since (T ′, S ′) ∈ F2, we note by Observation 5.1(d) that all neighbors of
x, if any, in (T ′, S ′) that are different from v and w have status B. The tree (T, S)
is formed from (T ′, S ′) by deleting the edge vx and adding new vertices y and z and
adding the new edges vy, yz, and zx, and letting sta(y) = X and sta(z) = X, as
illustrated in Figure 14.

X

w

X

x

A

v
→

T ′

O1 X

w

X

x

X

z

X

y

A

v
T

Figure 14: Operation O1

Since every leaf belongs to every 2-dominating set, we note that v ∈ D. Since
D is a γ2-set of T , the set D contains exactly one of y and z. Suppose that y ∈ D.
In this case, z /∈ D, implying that x ∈ D in order to 2-dominate the vertex z. Let
D′ = D \ {y}. The set D′ is a 2-dominating set of T ′, and so γ2(T

′) ≤ |D′| =
|D| − 1. Applying the inductive hypothesis to (T ′, S ′) ∈ F2, we have γ2(T

′) =
|SA(T

′)|+ |SX(T
′)| = |SA(T )|+ |SX(T )| − 1. Therefore, γ2(T ) = |D| ≥ γ2(T

′) + 1 =
|SA(T )|+ |SX(T )|. By Observation 5.1(e), γ2(T ) ≤ |SA(T )|+ |SX(T )|. Consequently,
γ2(T ) = |SA(T )| + |SX(T )|. Analogous arguments yield γ2(T ) = |SA(T )| + |SX(T )|.
Suppose that y /∈ D, and so z ∈ D. In this case, let D′ = D \ {z}. The set D′ is
a 2-dominating set of T ′, and so γ2(T

′) ≤ |D′| = |D| − 1. Analogous arguments as
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before show that γ2(T ) = |SA(T )| + |SX(T )| and γ2(T ) = |SA(T )| + |SX(T )|. Thus,
property (a) holds in the tree T .

Moreover, the inequalities in the previous paragraph are all equalities. In partic-
ular, γ2(T

′) = γ2(T ) − 1. Further, γ2(T
′) = |D′|, implying that D′ is a γ2-set of T

′.
Thus, from property (a) and Observation 5.1(e) we infer that property (b) holds in
the labeled tree (T, S).

Since D′ is a γ2-set of T
′ and since the labeled tree (T ′, S ′) has property (c), we

note that SA(T
′) ⊆ D′ and SB(T

′)∩D′ = ∅. Thus since either D = D′ ∪ {y} where
the vertex y has status X or D = D′∪{z} where the vertex z has status X, we infer
that property (c) holds in the labeled tree (T, S).

Let p ∈ SX(T ). If p ∈ V (T ′), then since (T ′, S ′) has property (d) and since
every γ2-set of T

′ − p can be extended to a 2-dominating set of T by adding exactly
one additional vertex, we infer that γ2(T − p) = γ2(T ). Suppose that p ∈ {y, z}.
In this case, we consider the tree T ′ − v. The set (SA(T

′) \ {v}) ∪ SX(T
′) is a 2-

dominating set of T ′ − v and can be extended to a 2-dominating set of T − p by
adding to it the vertex v and adding either y (if p = z) or z (if p = y). Thus,
γ2(T − p) ≤ γ2(T

′ − v) + 2 = (γ2(T
′) − 1) + 2 = γ2(T

′) + 1 = γ2(T ). Since
γ2(T ) ≤ γ2(T − p), we therefore infer that γ2(T − p) = γ2(T ). Thus, property (d)
holds in the labeled tree (T, S).

Since (T ′, S ′) ∈ F2, property (e) holds in the labeled tree (T ′, S ′). Thus there
exists an edge e′ ∈ E(T ′) such that γ2(T

′) = γ2(T
′
e) and SA(T

′) ⊆ S ′ for some γ2-set
S ′
e of T ′

e. The set S ′
e can be extended to a γ2-set of Te by adding to it the vertex z.

Thus, γ2(Te) ≤ |S ′
e|+ 1 = γ2(T

′
e) + 1 = γ2(T

′) + 1 = γ2(T ). Clearly, γ2(T ) ≤ γ2(Te).
Consequently, γ2(T ) = γ2(Te). Moreover, the set Se = S ′

e ∪ {z} is a γ2-set of Te and
SA(T ) ⊆ Se. Thus, property (e) holds in the labeled tree (T, S).

We show next that T is γ2-2-critical. Since (T ′, S ′) ∈ F2, there is a path P ′ that
starts at the vertex v (of degree 1 with status A) and ends at a vertex v∗ of status A,
where all internal vertices alternative with status X and status X. We note that the
first few vertices on the path P ′ are v, x, and w. Let P be the path in T obtained
from P ′ by deleting the edge vx and adding new vertices y and z and adding the new
edges vy, yz, and zx. We note that the path P starts at the vertex v and ends at
a vertex v∗ of status A. Furthermore, all internal vertices alternative with status X
and status X.

As observed earlier, property (e) holds in the labeled tree (T, S). Since T ′ is
γ2-2-critical, there exist an edge e′ ∈ E(T ′) whose subdivision does not increase the
2-domination number of T ′. Subdividing such an edge e′ will necessarily not increase
the 2-domination number of T . Let F = {f1, f2} ⊂ E(T ). If F ⊂ E(T ′), then since
T ′ is γ2-2-critical, subdividing the two edges in F increases the 2-domination number
of T ′, and therefore also increase the 2-domination number of T . If both f1 and f2
are edges from the set E(T )\E(T ′) = {zx, zy, yv}, then subdividing the two edges in
F increases the 2-domination number of T by 1. Hence we may assume that exactly
one of f1 and f2, say f2, is not an edge of T ′. Thus, f1 ∈ E(T ′) and f2 is one of the
edges zx, zy and yv.
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We now consider the set F ′ = {f1, f
′
2} where f ′

2 is the edge xv. In this case,
the 2-domination number of T with the two edges in F subdivided is exactly one
more than the 2-domination number of T ′ with the two edges in F ′ subdivided. Since
subdividing the two edges in F ′ increases the 2-domination number of T ′, we therefore
infer that subdividing the two edges in F increases the 2-domination number of T .
From these properties we infer that the tree T is γ2-2-critical. Thus, property (f)
holds in the tree T .

Hence if sta(x) = X where X ∈ {Y, Z} in the labeled tree (T ′, S ′), then proper-
ties (a) to (f) hold in the tree T . Analogous arguments show that if sta(x) = A in
the labeled tree (T ′, S ′), then properties (a) to (f) hold in the tree T .

Case 2. (T, S) is obtained from (T ′, S ′) by operation O2. Let P ′ be the path in
T ′ that starts and ends at vertices of status A, with all internal vertices alternating
with status X and status X. We adopt the notation in Operation O2. Thus, v is
an internal vertex of P ′ of status X. Let H be the subgraph of T ′ induced by the
internal vertices of P ′ (labeled X or X) and let Hv be the component of H − v of
odd order. The labeled tree (T, S) is formed from the labeled tree (T ′, S ′) by adding
to it a path xy and the edge vx. For each vertex w ∈ V (Hv), if sta(w) = X in T ′,
then sta(w) = A in T , while if sta(w) = X in T ′, then sta(w) = B in T . Moreover,
the status of v is changed from status X in T ′ to status A in T , and sta(x) = B and
sta(y) = A, as illustrated in Figure 9.

Since every leaf belongs to every 2-dominating set, we note that y ∈ D. Since D
is a γ2-set of T , the set D contains exactly one of v and x. We show that v ∈ D.
Suppose, to the contrary, that v /∈ D, and so x ∈ D. Let Hv be the path v1 . . . v2p+1,
where v is adjacent to the vertex v1. We note that in the tree T ′, the labels of the
vertices on the path Hv alternate between X and X. Moreover, v1 has label X in
T ′. We note that Hv contains p + 1 vertices of label X and p vertices of label X.
Moreover in the tree T , every vertex of status X in Hv changes to status B, while
every vertex of status X in Hv changes to status A. By supposition, v /∈ D.

Suppose that D contains a vertex of status B that does not belong to the path
Hv. The set D

′ = (D\{x, y})∪{v} is a 2-dominating set of T ′ that therefore contains
a vertex of status B, implying by the inductive hypothesis that D′ is not a γ2-set of
T ′, and so γ2(T

′) < |D′|. Thus, γ2(T
′) ≤ |D′| − 1 = |D| − 2 = γ2(T ) − 2. However

every γ2-set of T
′ that contains the vertex v can be extended to a 2-dominating set

of T by adding to it the vertex y, implying that γ2(T ) ≤ γ2(T
′)+1. This contradicts

our earlier observation that γ2(T ) ≥ γ2(T
′) + 2.

Hence, every vertex of status B, if any, in D must belong to the path Hv. By
Observation 5.1(d), vertices v and v2 are the only neighbours of v1. Since v 6∈ D,
it follows that v1 ∈ D. Since D is a 2-dominating set in T , we can choose D to
contain all the vertices of status B in Hv. However, replacing the vertex x and the
p + 1 vertices of status B in Hv with the vertex v and the p vertices of status A in
Hv produces a new 2-dominating set of T of cardinality |D| − 1, contradicting the
minimality of the set D.

From the above arguments, we infer that v ∈ D, implying that x /∈ D. In this
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case, we let D′ = D \ {y} where D is an arbitrary γ2-set of T . The set D′ is a 2-
dominating set of T ′, and so γ2(T

′) ≤ |D′| = |D|−1. Applying the inductive hypoth-
esis to (T ′, S ′) ∈ F2, we have γ2(T

′) = |SA(T
′)|+ |SX(T

′)| = |SA(T )| − 1 + |SX(T )|.
Therefore, γ2(T ) = |D| ≥ γ2(T

′) + 1 = |SA(T )| + |SX(T )|. By Observation 5.1(e),
γ2(T ) ≤ |SA(T )|+ |SX(T )|. Consequently, γ2(T ) = |SA(T )|+ |SX(T )|. Analogously,
γ2(T ) = |SA(T )|+ |SX(T )|. Thus, property (a) holds in the labeled tree (T, S).

Moreover, the inequalities in the previous paragraph are all equalities. In partic-
ular, γ2(T

′) = γ2(T ) − 1. Further, γ2(T
′) = |D′|, implying that D′ is a γ2-set of T

′.
Thus, from property (a) and Observation 5.1(e) we infer that property (b) holds in
the labeled tree (T, S).

Since D′ is a γ2-set of T
′ and since the labeled tree (T ′, S ′) has property (c), we

note that SA(T
′) ⊆ D′ and SB(T

′) ∩ D′ = ∅. Thus since D = D′ ∪ {y} and y has
status A, we infer that property (c) holds in the labeled tree (T, S).

Let p ∈ SX(T ). Thus, p ∈ V (H) \ (V (Hv)∪{v}). In particular, p ∈ V (T ′). Since
(T ′, S ′) has property (d), γ2(T

′ − p) = γ2(T
′). Moreover, we can choose a γ2-set of

T ′−p to contain the two vertices of status A on the path P ′. Such a set can therefore
be extended to a 2-dominating set of T by adding to it the vertex y, implying that
γ2(T − p) ≤ γ2(T

′ − p) + 1 = γ2(T
′) + 1 = γ2(T ). Since γ2(T ) ≤ γ2(T − p), we

therefore infer that γ2(T − p) = γ2(T ). Thus, property (d) holds in the labeled tree
(T, S).

Since (T ′, S ′) ∈ F2, property (e) holds in the labeled tree (T ′, S ′). Thus there
exists an edge e ∈ E(T ′) such that γ2(T

′) = γ2(T
′
e) and SA(T

′) ⊆ S ′
e for some γ2-set S

′
e

of T ′
e. By the structure of the tree T ′ that contains the path P ′, we can choose such a

set S ′
e to contain the vertex v and all vertices of status X in Hv. The set Se = S ′

e∪{y}
is a 2-dominating set of T . Thus, γ2(Te) ≤ |S ′

e|+1 = γ2(T
′
e)+1 = γ2(T

′)+1 = γ2(T ).
Clearly, γ2(T ) ≤ γ2(Te). Consequently, γ2(T ) = γ2(Te). Moreover, the set Se is a
γ2-set of Te that contains all vertices of status A in (T, S) noting that the vertex v
and the vertices of status X in Hv in the labeled tree (T ′, S ′) changed to status A in
(T, S). Thus, property (e) holds in the labeled tree (T, S).

We show next that T is γ2-2-critical. As observed earlier, property (e) holds in
the labeled tree (T, S). Let F = {f1, f2} ⊂ E(T ). If F ⊂ E(T ′), then since T ′ is γ2-
2-critical, subdividing the two edges in F increases the 2-domination number of T ′,
and therefore also increases the 2-domination number of T . If f1 is one of the added
edges vx or xy, then subdividing the edge f1 necessarily increases the 2-domination
number of T . From these properties we infer that the tree T is γ2-2-critical. Thus,
property (f) holds in the tree T .

Case 3. (T, S) is obtained from (T ′, S ′) by operation O3. In this case the vertex
v ∈ V (T ′) is a vertex of status A in (T ′, S ′) with at least one neighbor with status B
in (T ′, S ′). Let w be a neighbor of v in T ′ of status B. The labeled tree (T, S) is
formed from the labeled tree (T ′, S ′) by adding to it a path xy and the edge vx, and
letting sta(x) = B and sta(y) = A, as illustrated in Figure 15.

Since every leaf belongs to every 2-dominating set, we note that y ∈ D. Since
(T ′, S ′) ∈ F2, every γ2-set of T

′ contains the vertex v of status A and can therefore
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Figure 15: Operation O3

be extended to a 2-dominating set of T by adding to it the vertex y. Hence, γ2(T ) ≤
γ2(T

′) + 1. Since D is a γ2-set of T , the set D contains exactly one of v and x. We
show that v ∈ D. Suppose, to the contrary, that v /∈ D, and so x ∈ D. If w /∈ D,
then let D′ = (D \ {x, y}) ∪ {w}. If w ∈ D, then let D′ = (D \ {x, y}) ∪ {v}. In
both cases, |D′| = |D| − 1 and the set D′ is a 2-dominating set of T ′ that contains
at least one vertex of status B, implying that the set D′ is not a γ2-set of T ′ by
induction. Therefore, |D′| ≥ γ2(T

′) + 1. Thus, γ2(T ) = |D| = |D′|+ 1 ≥ γ2(T
′) + 2,

contradicting our earlier observation that γ2(T ) ≤ γ2(T
′) + 1.

Hence, v ∈ D (and x /∈ D). We now let D′ = D \ {y}. The set D′ is a 2-
dominating set of T ′, and so γ2(T

′) ≤ |D′| = |D| − 1 = γ2(T ) − 1 ≤ (γ2(T
′) +

1)− 1 = γ2(T
′). Hence, we must have equality throughout this inequality chain. In

particular, γ2(T ) = γ2(T
′) + 1. Applying the inductive hypothesis to (T ′, S ′) ∈ F2,

we have γ2(T
′) = |SA(T

′)| + |SX(T
′)| = |SA(T )| − 1 + |SX(T )|. Therefore, γ2(T ) =

γ2(T
′) + 1 = |SA(T )|+ |SX(T )|. By Observation 5.1(e), γ2(T ) ≤ |SA(T )|+ |SX(T )|.

Consequently, γ2(T ) = |SA(T )|+ |SX(T )|. Analogously, γ2(T ) = |SA(T )|+ |SX(T )|.
Thus, property (a) holds in the labeled tree (T, S).

Moreover, the inequalities in the previous paragraph are all equalities. In partic-
ular, γ2(T

′) = |D′|, implying that D′ is a γ2-set of T
′. Thus, from property (a) and

Observation 5.1(e) we infer that property (b) holds in the labeled tree (T, S).

Since D′ is a γ2-set of T
′ and since the labeled tree (T ′, S ′) has property (c), we

note that SA(T
′) ⊆ D′ and SB(T

′) ∩ D′ = ∅. Thus since D = D′ ∪ {y} and y has
status A, we infer that property (c) holds in the labeled tree (T, S).

Let p ∈ SX(T ). Thus, p ∈ V (T ′). Let Qp be the path in T that starts and ends
at vertices of status A, and whose internal vertices are all of status X and X. Since
(T ′, S ′) has property (d), γ2(T

′ − p) = γ2(T
′). Moreover, we can choose a γ2-set of

T ′ − p to contain the two vertices of status A on the path in T ′ that contain the
vertex p. Indeed, we can choose a γ2-set of T ′ − p to contain all vertices in T ′ of
status A. Such a set can therefore be extended to a 2-dominating set of T by adding
to it the vertex y, implying that γ2(T−p) ≤ γ2(T

′−p)+1 = γ2(T
′)+1 = γ2(T ). Since

γ2(T ) ≤ γ2(T − p), we therefore infer that γ2(T − p) = γ2(T ). Thus, property (d)
holds in the labeled tree (T, S).

Since (T ′, S ′) ∈ F2, property (e) holds in the labeled tree (T ′, S ′). Thus there
exists an edge e ∈ E(T ′) such that γ2(T

′) = γ2(T
′
e) and SA(T

′) ⊆ S ′
e for some γ2-set

S ′
e of T

′
e. In particular, the vertex v of status A belongs to the set S ′

e. Thus the set
S ′
e can be extended to a γ2-set of Te by adding to it the vertex y of status A. Hence,

γ2(T ) = γ2(Te), and the resulting set Se = S ′
e ∪ {y} is a γ2-set of Te that contains all
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vertices of status A in T . Thus, property (e) holds in the labeled tree (T, S).

We show next that T is γ2-2-critical. Let F = {f1, f2} ⊂ E(T ). If F ⊂
E(T ′), then since T ′ is γ2-2-critical, subdividing the two edges in F increases the
2-domination number of T ′, and therefore also increase the 2-domination number of
T . If f1 is one of the added edges vx or xy, then subdividing the edge f1 necessarily
increases the 2-domination number of T . From these properties we infer that the
tree T is γ2-2-critical. Thus, property (f) holds in the labeled tree (T, S).

Case 4. (T, S) is obtained from (T ′, S ′) by operation O4. In this case the vertex
v ∈ V (T ′) is a vertex of status A in (T ′, S ′) with at least one neighbor with status B
in (T ′, S ′) or sta(v) ∈ {B,X} where X ∈ {Y, Z} in (T ′, S ′). If v has status A in
(T ′, S ′), then let w be a neighbor of v of status B in (T ′, S ′). The labeled tree (T, S)
is formed from the labeled tree (T ′, S ′) by adding to it a path xyz and the edge vy,
and letting sta(x) = sta(z) = A and sta(y) = B, as illustrated in Figure 16.

A

v

B

y

A

x
A

zB w
T ′

T :
B orX
v

B

y

A

x
A

zB T ′

T :

Figure 16: Operation O4

Since every leaf belongs to every 2-dominating set, we note that {x, z} ⊆ D.
Every γ2-set of T ′ can be extended to a 2-dominating set of T by adding to it the
vertices x and z, and so γ2(T ) ≤ γ2(T

′) + 2.

We show that y /∈ D. Suppose, to the contrary, that y ∈ D. By the minimality of
the 2-dominating set D, the vertex v /∈ D. Suppose that v has status A. If w ∈ D,
then let D′ = (D \ {x, y, z})∪ {v}. If w /∈ D, then let D′ = (D \ {x, y, z})∪ {w}. In
both cases, |D′| = |D| − 2 and D′ is a 2-dominating set of T ′ that contains at least
one vertex of status B, implying that the set D′ is not a γ2-set of T

′ by induction.
Therefore, |D′| ≥ γ2(T

′)+1. Thus, γ2(T ) = |D| = |D′|+2 ≥ γ2(T
′)+3, contradicting

our earlier observation that γ2(T ) ≤ γ2(T
′) + 2. Suppose that v has status B. In

this case, we let D′ = (D \ {x, y, z}) ∪ {v}. The resulting set D′ is a 2-dominating
set of T ′ that contains at least one vertex of status B, implying that the set D′ is
not a γ2-set of T

′ by induction. Therefore, |D′| ≥ γ2(T
′)+1, yielding a contradiction

as before. Hence, the vertex v has status X. We now let D′ = D \ {x, y, z}. Since
v /∈ D, the set D′ is a 2-dominating set of T ′−v. Since (T ′, S ′) ∈ F2, the labeled tree
(T ′, S ′) has property (c). Thus since v is a vertex of status X in (T ′, S ′), we infer
that γ2(T

′) = γ2(T
′ − v) ≤ |D′| = |D| − 3 = γ2(T )− 3, and so γ2(T ) ≥ γ2(T

′) + 3, a
contradiction. Therefore, y /∈ D.

We now let D′ = D \ {x, z}. Since y /∈ D, the set D′ is a 2-dominating set of T ′.
Thus, γ2(T

′) ≤ |D′| = |D| − 2 = γ2(T )− 2, and so γ2(T ) ≥ γ2(T
′) + 2. As observed

earlier, γ2(T ) ≤ γ2(T
′)+2. Consequently, γ2(T ) = γ2(T

′)+2. Applying the inductive
hypothesis to (T ′, S ′) ∈ F2, we have γ2(T

′) = |SA(T
′)| + |SX(T

′)| = |SA(T )| − 2 +
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|SX(T )|. Therefore, γ2(T ) = γ2(T
′)+ 2 = |SA(T )|+ |SX(T )|. By Observation 5.1(e),

γ2(T ) ≤ |SA(T )|+ |SX(T )|. Consequently, γ2(T ) = |SA(T )|+ |SX(T )|. Analogously,
γ2(T ) = |SA(T )|+ |SX(T )|. Thus, property (a) holds in the labeled tree (T, S).

Moreover, the inequalities in the previous paragraph are all equalities. In partic-
ular, γ2(T

′) = |D′|, implying that D′ is a γ2-set of T
′. Thus, from property (a) and

Observation 5.1(e) we infer that property (b) holds in the labeled tree (T, S).

Since D′ is a γ2-set of T
′ and since the labeled tree (T ′, S ′) has property (c), we

note that SA(T
′) ⊆ D′ and SB(T

′) ∩D′ = ∅. Thus since D = D′ ∪ {x, z} and both
x and z have status A, we infer that property (c) holds in the labeled tree (T, S).

Let p ∈ SX(T ). Thus, p ∈ V (T ′). Since (T ′, S ′) has property (d), γ2(T
′ − p) =

γ2(T
′). Every γ2-set of T

′−p can be extended to a 2-dominating set of T by adding to
it the vertices x and z, implying that γ2(T −p) ≤ γ2(T

′−p)+2 = γ2(T
′)+2 = γ2(T ).

Since γ2(T ) ≤ γ2(T−p), we therefore infer that γ2(T−p) = γ2(T ). Thus, property (d)
holds in the labeled tree (T, S).

Since (T ′, S ′) ∈ F2, property (e) holds in the labeled tree (T ′, S ′). Thus there
exists an edge e ∈ E(T ′) such that γ2(T

′) = γ2(T
′
e) and SA(T

′) ⊆ S ′
e for some γ2-set

S ′
e of T

′
e. The set Se = S ′

e∪{x, z} is a 2-dominating set of Te, and so γ2(Te) ≤ |Se| =
|S ′

e| + 2 = γ2(T
′
e) + 2 = γ2(T

′) + 2 = γ2(T ). Thus, property (e) holds in the labeled
tree (T, S).

We show next that T is γ2-2-critical. Since property (e) holds in the labeled tree
(T, S), there exists an edge e ∈ E(T ) such that γ2(Te) = γ2(T ). Let F = {f1, f2} ⊂
E(T ). If F ⊂ E(T ′), then since T ′ is γ2-2-critical, subdividing the two edges in F
increases the 2-domination number of T ′, and therefore also increase the 2-domination
number of T . If f1 is one of the added edges vx or xy, then subdividing the edge f1
necessarily increases the 2-domination number of T . From these properties we infer
that the tree T is γ2-2-critical. Thus, property (f) holds in the labeled tree (T, S).

Case 5. (T, S) is obtained from (T ′, S ′) by operation O5. In this case, v ∈ SB(T
′),

and so v has status B in T ′. Furthermore, v is a strong support vertex in T ′, and
so v has at least two leaf neighbors in T ′. By our earlier observations, every leaf in
T ′ has status A. The labeled tree (T, S) is formed from the labeled tree (T ′, S ′) by
adding to it a new vertex x and the edge vx, and letting sta(x) = A, as illustrated
in Figure 12.

Since every leaf belongs to every 2-dominating set, the added vertex x ∈ D. Let
D′ = D \ {x}. Since the set D′ contains at least two neighbors of v in T ′, we infer
that the set D′ is a 2-dominating set of T ′, and so γ2(T

′) ≤ |D′| = |D|− 1. Applying
the inductive hypothesis to (T ′, S ′) ∈ F2, we have γ2(T

′) = |SA(T
′)| + |SX(T

′)| =
|SA(T )| − 1 + |SX(T )| for X ∈ {Y, Z}. Therefore, γ2(T ) = |D| ≥ γ2(T

′) + 1 =
|SA(T )|+ |SX(T )|. By Observation 5.1(e), γ2(T ) ≤ |SA(T )|+ |SX(T )|. Consequently,
γ2(T ) = |SA(T )|+ |SX(T )|. Thus, property (a) holds in the labeled tree (T, S).

Moreover, the inequalities in the previous paragraph are all equalities. In partic-
ular, γ2(T

′) = γ2(T ) − 1. Further, γ2(T
′) = |D′|, implying that D′ is a γ2-set of T

′.
Thus, from property (a) and Observation 5.1(e) we infer that property (b) holds in
the labeled tree (T, S).
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Since D′ is a γ2-set of T
′ and since the labeled tree (T ′, S ′) has property (c), we

note that SA(T
′) ⊆ D′ and SB(T

′) ∩D′ = ∅. Thus since D = D′ ∪ {x} and since x
has status A, we infer that property (c) holds in the labeled tree (T, S).

Let p ∈ SX(T ). Thus, p ∈ V (T ′). Since the labeled tree (T ′, S ′) has property (d),
γ2(T

′−p) = γ2(T
′). Every γ2-set of T

′−p can be extended to a 2-dominating set of T
by adding to it the vertex x, implying that γ2(T −p) ≤ γ2(T

′−p)+1 = γ2(T
′)+1 =

γ2(T ). Since γ2(T ) ≤ γ2(T − p), we therefore infer that γ2(T − p) = γ2(T ). Thus,
property (d) holds in the labeled tree (T, S).

Since (T ′, S ′) ∈ F2, property (e) holds in the tree (T ′, S ′). Thus there exists an
edge e ∈ E(T ′) such that γ2(T

′) = γ2(T
′
e) and SA(T

′) ⊆ S ′
e for some γ2-set S

′
e of T

′
e.

In particular, the leaf neighbors of the vertex v of status A in T ′ belongs to the set
S ′
e. Thus the set S

′
e can be extended to a γ2-set of Te by adding to it the vertex x of

status A. Hence, γ2(T ) = γ2(Te), and the resulting set Se = S ′
e∪{x} is a γ2-set of Te

that contains all vertices of status A in T . Thus, property (e) holds in the labeled
tree (T, S).

We show next that T is γ2-2-critical. Since property (e) holds in the labeled
tree (T, S), there exists an edge e ∈ E(T ) such that γ2(Te) = γ2(T ). Let F =
{f1, f2} ⊂ E(T ). If F ⊂ E(T ′), then since T ′ is γ2-2-critical, subdividing the two
edges in F increases the 2-domination number of T ′, and therefore also increase the
2-domination number of T . Hence it remains for us to consider the case when one of
f1 or f2 is the edge vx that was added to T ′. Let f be such an edge, and so f = xv,
and let z be the resulting new vertex obtained by subdividing the edge f . Let Df be
a γ2-set of Tf . We note that the leaf x ∈ Df . If z ∈ Df , then we can replace z in Df

with the vertex v. Hence, we can choose the set Df to contain the vertices v and x.
The set D′ = Df \ {x} is a 2-dominating set of T ′, and so γ2(T

′) ≤ |D′| = |Df | − 1.
However since the vertex v has status B in (T ′, S ′), by the inductive hypothesis the
set D′ is not a γ2-set of T

′, implying that γ2(T
′) ≤ |D′| − 1 = |Df | − 2 = γ2(Tf )− 2.

Thus, γ2(Tf ) ≥ γ2(T
′) + 2 = γ2(T ) + 1. Thus, subdividing the edge vx increases the

2-domination number of the tree T . From these properties we infer that the tree T
is γ2-2-critical. Thus, property (f) holds in the labeled tree (T, S). This completes
the proof of the theorem. 2

6 γ2-2-Critical trees

In this section, we characterize γ2-2-critical trees. Adopting our earlier notation,
if T is a tree and e ∈ E(T ), then we denote by Te the tree obtained from T by
subdividing the edge e. Further, if {e, f} ⊂ E(T ), then we denote by Te,f the tree
obtained from T by subdividing both edges e and f . We are now in a position to
prove Theorem 2.1. Recall the statement of the theorem.

Theorem 2.1. A tree T is γ2-2-critical if and only if (T, S) ∈ F2 for some label-

ing S.

Proof. If (T, S) ∈ F2, then by Theorem 5.2(f) the tree T is γ2-2-critical. Hence it
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suffices for us to show that if T is γ2-2-critical tree, then (T, S) ∈ F2 for some labeling
S. We proceed by induction on the order n of a γ2-2-critical tree T . If n ∈ {1, 2, 3},
then T is not γ2-2-critical. Hence, n ≥ 4. If T is a star, then T = K1,n−1. In this case,
γ2(T ) = n− 1 (with the set of leaves in T as the unique γ2-set of T ) and γ2(Te) = n
for every edge e ∈ E(T ), implying that T is γ2-1-critical, a contradiction. Thus, T is
not a star. If n = 4, then since T is not a star, the tree T is a path, namely T = P4,
and the labeled tree (T, S) ∈ F2 where S is the labeling associated with the labeled
base tree shown in Figure 7. This proves the base cases when n ≤ 4. Let n ≥ 5 and
assume that if T ′ is γ2-2-critical tree of order n

′ where n′ < n, then (T ′, S ′) ∈ F2 for
some labeling S ′.

We now consider the γ2-2-critical tree T of order n ≥ 5 and diameter diam(T ) ≥
3. Among all longest paths in T (called a diametrical path in the literature), let
P : v0v1 . . . vd be chosen so that

(1) degT (v1) is a maximum, and
(2) subject to (1), the vertex v2 has the minimum number of leaf neighbors.

We note that d = diam(T ) ≥ 3. We now root the tree T at the vertex r = vd.
Necessary, v1 is a support vertex of T and all children of v1 are leaves. In particular,
v0 is a leaf in T . We proceed further by proving two claims.

Claim 1 If degT (v1) ≥ 4, then (T, S) ∈ F2 for some labeling S.

Proof. Suppose that degT (v1) ≥ 4. In this case, the vertex v1 is a strong support
vertex in T with at least three leaf neighbors. Let T ′ = T−v0 and let T ′ have order n′,
and so n′ = n − 1. By Lemma 4.4, the tree T ′ is a γ2-2-critical tree. Applying the
inductive hypothesis to the tree T ′ of order n − 1, the labeled tree (T ′, S ′) ∈ F2

for some labeling S ′. Since v1 is a strong support vertex in T ′, the vertex v1 has
status B in (T ′, S ′) by Observation 5.1(h). Moreover by Observation 5.1(a), every
leaf has status A in (T ′, S ′). Applying Operation O5 to the labeled tree (T ′, S ′) we
add back the vertex v0 and the edge v0v1, and assign to v0 the status A, thereby
producing a labeled tree (T, S) ∈ F2. (2)

Claim 2 If degT (v1) = 3, then (T, S) ∈ F2 for some labeling S.

Proof. Suppose that degT (v1) = 3. Let u0 be the child of v1 different from v0,
and so C(v1) = {u0, v0} and D[v1] = C(v1) ∪ {v1}. Let T ′ be the tree obtained
from T by deleting v1 and its two children, that is, T ′ = T −D[v]. By Lemma 4.5,
γ2(T ) = γ2(T

′) + 2. Since the tree T is γ2-2-critical, by Lemma 4.6 the tree T ′ is
γ2-2-critical. Applying the inductive hypothesis to the tree T ′ of order n − 3, the
labeled tree (T ′, S ′) ∈ F2 for some labeling S ′. Recall that v2 is the parent of the
vertex v1, and v3 is the parent if v2 in the tree T .

Suppose, to the contrary, that sta(v2) = A and the vertex v2 has no neighbor of
status B in the labeled tree (T ′, S ′). From properties of labeled trees that belong to
the family F2, we infer by Observation 5.1 that v2 is a leaf in T ′ and has status A



M. DETTLAFF ET AL. /AUSTRALAS. J. COMBIN. 92 (3) (2025), 357–381 377

and either its parent v3 has status A or its parent v3 has status X where X ∈ {Y, Z}
in the labeled tree (T ′, S ′). In both cases, by Theorem 5.2(b) there exists a γ2-set
S ′ of T ′ that contains both v2 and v3. The set S = (S ′ \ {v2}) ∪ {u0, v0, v1} is a
2-dominating set of T , and so γ2(T

′) + 2 = γ2(T ) ≤ |S| = |S ′| + 2 = γ2(T
′) + 2.

Consequently, we must have equality throughout this inequality chain, implying that
S is a γ2-set of T . We note that the set S contains the strong support vertex v1.
However by Lemma 4.2, v1 ∈ N2(T ). This produces a contradiction.

Hence, sta(v2) = A and the vertex v2 has at least one neighbor with status B or
sta(v2) ∈ {B,X} where X ∈ {Y, Z} in the labeled tree (T ′, S ′). In this case, applying
Operation O4 to (T ′, S ′) we add back the path u0v1v0 and the edge v1v2, and assign
to v1 the status B and to each of u0 and v0 the status A, thereby producing a labeled
tree (T, S) ∈ F2. (2)

By Claims 1 and 2, we may assume that degT (v1) = 2, for otherwise (T, S) ∈ F2

for some labeling S. By our choice of the path P , we infer that if Q : u0u1 . . . ud is a
diametrical path in T , then degT (u1) = degT (ud−1) = 2. Recall that d = diam(T ) ≥
3. If d = 3, then degT (v1) = degT (vd−1) = 2, and so T = P4, contradicting the fact
that n ≥ 5. Hence, d ≥ 4.

Claim 3 If d = 4, then (T, S) ∈ F2 for some labeling S.

Proof. Suppose that d = 4. Thus the path P is given by v0v1v2v3v4. By our earlier
observations, every neighbor of v2 is either a leaf or a support vertex of degree 2.
Let S be a γ2-set of T . By Observation 4.1, the set S contains all leaves in T . In
particular, v0 ∈ S. If v1 ∈ S, then we can simply replace the vertex v1 in S with the
vertex v2. Hence, we may assume that v1 /∈ S, implying that v2 ∈ S. By Lemma 4.2,
we therefore infer that v2 is not a strong support vertex in a T , and so either v2 has
exactly one leaf neighbor or every neighbor of v2 is a support vertex of degree 2.

We show that v2 has exactly one leaf neighbor. Suppose, to the contrary, that v2
has no leaf neighbor, and so every neighbor of v2 is a support vertex of degree 2. Thus
in this case, T is obtained from a star K1,k where k ≥ 2 by subdividing every edge
exactly once. The resulting tree T has order n = 2k + 1 and satisfies γ2(T ) = k + 1.
Further the set L(T )∪{v2} consisting all k leaves of T together with the central vertex
v2 of T is the unique γ2-set of T . However subdividing any edge of T increases the
2-domination number, contradicting the fact that T is a γ2-2-critical tree.

Therefore, v2 has exactly one leaf neighbor, say w. Thus, T is obtained from a
star K1,k where k ≥ 2 by subdividing every edge exactly once, and then adding a
new vertex w and adding the edge v2w. Starting with the labeled base tree (T1, S1)
given by the path v0v1v2w where v0 and w have status A, v1 has status X and v2
has status X, we apply Operation O2 to (T ′, S ′) by adding the path v3v4 and the
edge v2v3, and changing the status of v1 and v2 to B and A, respectively, and letting
v3 and v4 have status B and A, respectively, to produce the labeled tree (T2, S2). If
k = 2, then we let (T, S) = (T2, S2). Otherwise if k ≥ 3, then by k−2 applications of
Operation O3 with v2 as the link vertex we produce the labeled tree (T, S) = (Tk, Sk)
where S is the labeling that labels all support vertices different from v2 the label B
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and labels all other vertices the label A. Thus, (T, S) ∈ F2 for some labeling S. In
the special case when k = 4, the construction of the labeled tree (T, S) = (T4, S4) is
illustrated in Figure 17. (2)

A

X

X

A

v0

v1

v2

w

(a) (T1, S1)

−→
O2

A

B

A

A

A

B

v2

(b) (T2, S2)

−→
O3

A

B

A

A

A

B

A

B

v2

(c) (T3, S3)

−→
O3

A

B

A

A

A

B

A

B

A

B

v2

(c) (T4, S4)

Figure 17: Construction a tree (T, S) = (T4, S4) in the proof of Claim 3

By Claim 3, we may assume that d = diam(T ) ≥ 5, for otherwise the desired
result follows. By our earlier observations, every neighbor of v2 is either a leaf or a
support vertex of degree 2. We show next that no neighbor of v2 is a leaf.

Claim 4 Every child of v2 is a support vertex in T of degree 2.

Proof. Suppose, to the contrary, that the vertex v2 has a neighbor, say u2, that is
leaf. Let S be a γ2-set of T . By Observation 4.1, the set S contains all leaves in T .
In particular, v0 ∈ S. If v1 ∈ S, then we can replace the vertex v1 in S with the
vertex v2. Hence, we may assume that v1 /∈ S, implying that v2 ∈ S. By our choice
of the path P , we note that degT (vd−1) = 2. Symmetrical arguments show that we
can choose the set S so that vd−1 /∈ S, implying that {vd−2, vd} ⊂ S. Moreover by
our choice of the path P , the vertex vd−2 has at least as many leaf neighbors as
does the vertex v2, implying that the vertex vd−2 has at least one leaf neighbor, say
ud−2. By assumption, d ≥ 5, and so v2 and vd−2 are distinct vertices. By our earlier
observations, {u2, v2, ud−2, vd−2} ⊂ S. Hence letting e = u2v2 and f = ud−2vd−2, the
set S is a 2-dominating set of Te,f , implying that γ2(Te,f ) ≤ |S| = γ2(T ), contradicting
the fact that T is a γ2-2-critical tree. Hence, the vertex v2 has no leaf neighbor,
implying by our earlier observations that every child of v2 is a support vertex in T
of degree 2. (2)

Suppose that v2 has k children, and so k = degT (v2) − 1 ≥ 1. Let C(v2) =
{v1,1, . . . , vk,1} be the set of k children of v2. Further, let vi,0 denote the (unique)
child of vi,1 for i ∈ [k]. We note that vi,0 is a leaf for all i ∈ [k]. Renaming vertices if
necessary, we may assume that v0 = v1,0 and v1 = v1,1. Let K = {v1,0, . . . , vk,0}, and
let T ′ be obtained from T by deleting all 2k descendants of v2. Thus, T

′ = T−D(v2),
where D(v2) = C(v2)∪K. We note that the vertex v2 is a leaf in the tree T ′. Let T ′

have order n′, and so n′ = n− 2k.
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Claim 5 γ2(T ) = γ2(T
′) + k.

Proof. Let S be a γ2-set of T . By Observation 4.1, vi,0 ∈ A2(T ), and so vi,0 ∈ S for
all i ∈ [k]. By our earlier observations, degT (vi,1) = 2 for all i ∈ [k]. If vi,1 ∈ S for
some i ∈ [k], then we can replace vi,1 in S by the vertex v2. Hence we can choose the
set S so that S ∩ C(v2) = ∅, implying that v2 ∈ S. The set S \K is a 2-dominating
set of T ′, and so γ2(T

′) ≤ |S| − |K| = γ2(T ) − k. Conversely, let S ′ be a γ2-set of
T ′. By our earlier observations, the vertex v2 is a leaf in T ′, and so v2 ∈ S ′. The
set S ′ can be extended to a 2-dominating set of T by adding to it the set K, and so
γ2(T ) ≤ |S ′|+ |K| = γ2(T

′) + k. Consequently, γ2(T ) = γ2(T
′) + k. (2)

Claim 6 The tree T ′ is γ2-2-critical.

Proof. Let {e1, e2} ⊂ E(T ′), and let S ′ be a γ2-set of T
′
e1,e2

. We show that γ2(T
′) <

γ2(T
′
e1,e2

). Suppose, to the contrary, that γ2(T
′) ≥ γ2(T

′
e1,e2

), implying that γ2(T
′) =

γ2(T
′
e1,e2

) since subdividing edges cannot decrease the 2-domination number. By
Claim 5, γ2(T ) = γ2(T

′)+k. Since the vertex v2 is a leaf in T ′
e1,e2

, we note that v2 ∈ S ′.
The set S ′ can therefore be extended to a 2-dominating set of T by adding to it the set
K, and so γ2(Te1,e2) ≤ |S ′|+|K| = γ2(T

′
e1,e2

)+k = γ2(T
′)+k = γ2(T ). Hence we must

have equality throughout this inequality chain. In particular, γ2(Te1,e2) = γ2(T ).
This contradicts the fact that T is a γ2-2-critical tree. Hence, γ2(T

′) < γ2(T
′
e1,e2

).

It remains for us to show that there exists an edge e′ ∈ E(T ′) such that γ2(T
′) =

γ2(T
′
e). Since T is a γ2-2-critical tree, there exists an edge e ∈ E(T ) such that

γ2(T ) = γ2(Te). Suppose that e /∈ E(T ′). Renaming vertices if necessary, we may
assume that e = v0v1 or e = v1v2. By symmetry, we may assume that e = v0v1
(noting that Tv0v1

∼= Tv1v2). If k ≥ 2, then by our earlier observations we may choose
the set Se so that {v1, v2}∪K ⊂ Se, implying that |Se| ≥ γ2(T )+ 1, a contradiction.
Hence, k = 1, implying that degT (v2) = 2. However in this case, the tree Te is
isomorphic to the tree Tf where f = v2v3. Therefore we may choose the edge e so
that e ∈ E(T ′), where recall that γ2(T ) = γ2(Te).

Let Se be a γ2-set of T ′. By Theorem 5.2(e), we can choose the set Se so that
v2 ∈ Se. Thus the set Se \K is a 2-dominating set of T ′

e, and so γ2(T
′
e) ≤ |Se|−|K| =

γ2(Te) − k = γ2(T ) − k = γ2(T
′). Since subdividing an edge cannot decrease the

2-domination number, we infer that γ2(T
′
e) = γ2(T

′). Thus there exists an edge in
T ′ which when subdivided does not change the 2-domination number. As observed
earlier, if e1 and e2 are two arbitrary distinct edge of T ′, then γ2(T

′) < γ2(T
′
e1,e2

).
These observations imply that the tree T ′ is γ2-2-critical. (2)

By Claim 6, the tree T ′ is γ2-2-critical. Applying the inductive hypothesis to the
tree T ′, the labeled tree (T ′, S ′) ∈ F2 for some labeling S ′. By Observation 5.1(a),
L(T ′) ⊆ SA(T

′). In particular, the leaf v2 in the labeled tree (T ′, S ′) has status A.
We now consider the neighbor of v2 in T ′, namely the vertex v3.
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Claim 7 If v3 has status B in (T ′, S ′), then (T, S) ∈ F2 for some labeling S.

Proof. Suppose that the vertex v3 has status B in the labeled tree (T ′, S ′). Thus the
vertex v2 has status A in (T ′, S ′), with its (unique) neighbor of status B. Applying
Operation O3 to (T ′, S ′) we add back the deleted vertices v0 and v1 and the deleted
edges v0v1 and v1v2, and assign to v0 the status A and to v1 the status B, thereby
producing a labeled tree (T, S) ∈ F2. (2)

Claim 8 If v3 does not have status B in (T ′, S ′), then (T, S) ∈ F2 for some label-

ing S.

Proof. Suppose that the vertex v3 does not have status B in the labeled tree (T ′, S ′).
Thus the vertex v3 has status A or status X where X ∈ {Y, Z} in (T ′, S ′). In both
cases, applying Operation O1 to (T ′, S ′) we add back the deleted vertices v0 and v1
and the deleted edges v0v1 and v1v2. Further we assign to v0 the status A, to v1 the
status X, and to v2 the status X, thereby producing a labeled tree (T, S) ∈ F2. (2)

The proof of Theorem 2.1 now follows from Claims 7 and 8. 2
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