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Abstract

This is the second paper in a sequence of three that describe the 3-
connected binary matroids with circumference 8. A matroid M is said to
be bent provided it has a maximum size circuit C such that M/C has a
connected component with rank exceeding 1. In this paper, we describe
the bent 3-connected binary matroids with circumference 8.

1 Introduction

We assume familiarity with matroid theory. The notation and terminology used in
this article follow Oxley [9]. For a positive integer n, we use [n] to denote the set
{1, 2, . . . , n}. Let SC(M) be the family of series classes of a matroid M .

There are many sharp extremal results in matroid theory whose bounds depend
on the circumference. When one of these bounds is used to prove a theorem, it may
imply that a counter-example to it must have small circumference. It is likely that
the knowledge of all matroids with small circumference may simplify the proof of such
a result. This was the motivation to construct the 3-connected binary matroids with
circumference at most 7 and large rank by Cordovil, Maia Jr. and Lemos [2]. In this
paper, we continue to construct all 3-connected binary matroids with circumference 8
and large rank. We hope to apply our results together with the main result of Lemos
and Oxley [8] to describe the 3-connected binary matroids with no odd circuit with
size exceeding 7, extending the main result of Chun, Oxley and Wetzler [1].

Lemos and Oxley [7] establish that 6 is a sharp lower bound for the circumference
of a 3-connected matroid with large rank. Cordovil and Lemos [3] constructed the
3-connected matroids with circumference 6 and large rank. These matroids can be
described using a natural generalization of book for non-binary maroids.

A binary matroid M is said to be a book having pages M1,M2, . . . ,Mn, for n ≥ 2,
and r-spine T , for r ≥ 2, provided:
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(i) M1,M2, . . . ,Mn are binary matroids; and

(ii) T = E(M1) ∩ E(M2) ∩ · · · ∩ E(Mn); and

(iii) E(M1)− T,E(M2)− T, . . . , E(Mn)− T are pairwise disjoint sets; and

(iv) M1|T = M2|T = · · · = Mn|T = K is isomorphic to PG(r − 1, 2); and

(v) M = PK(M1,M2, . . . ,Mn), that is, the circuit space ofM is spanned by C(M1)∪
C(M2) ∪ · · · ∪ C(Mn).

The main results of Cordovil, Maia Jr. and Lemos [2] can be stated using the concept
of book proposed by Chun, Oxley and Wetzler [1] (see Lemos [4]). We need books
having a 3-spine in [4].

For an integer k exceeding 3, we denote by Zk the rank-k binary spike. There
is just one element of Zk belonging to k triangles. This element is called the tip of
Zk. All matroids obtained from Zk by deleting an element other than the tip are
isomorphic. When k = 4, such a matroid is isomorphic to S8. The tip of S8 is its
unique element belonging to three triangles. Remember that a matroid M is said to
be bent provided it has a maximum size circuit C such that M/C has a connected
component with rank exceeding 1. Now, we state the main result of this paper:

Theorem 1.1 Let M be a bent 3-connected binary matroid with circumference 8. If
r(M) ≥ 14, then there is a book M ′ with pages M1,M2, . . . ,Mn and 2-spine T such
that, for a fixed e∈T , Mi is isomorphic to a matroid belonging to {Z4, S8, F7,M(K4)}
and, when r(Mi) = 4, e is the tip of Mi, for each i ∈ [n], and M = M ′\T ′, for some
T ′ ⊆ T . Moreover, m = |{i ∈ [n] : r(Mi) = 4}| ≥ 3 and m+ n ≥ 12.

In Theorem 1.1, the circumference of M ′ is 8 provided m ≥ 2 and n ≥ 3. We
need m ≥ 3 to guaranty that M is bent. The condition m + n ≥ 12 follows from
r(M) ≥ 14.

Let M be a book having pages M1,M2,M3 and 2-spine T = {e, f, g}. Assume
that M1,M2 and M3 are isomorphic to Z4 having e, e and f as tips respectively. For
i ∈ {1, 2, 3}, Mi has a circuit Ci such that |Ci| = 4, |Ci ∩ T | = 1 and Ci ∩ T can
be chosen to be any element of T other than the tip of Mi. We can choose C1, C2

and C3 such that g ∈ C1, f ∈ C2 and e ∈ C3. Note that C = C1 △ C2 △ C3 △ T is
a 9-element circuit of M . This example justify the condition imposed on all pages
with rank-4 in Theorem 1.1 to have the same tip.

Now, we describe the main result of Lemos [4]. Let M be an unbent 3-connected
binary matroid having circumference 8. We say that M is crossing when M has an 8-
element circuit C, sets X and Y contained in different rank-1 connected components
of M/C such that |X| = |Y | = 2 and M |(C ∪X ∪ Y ) is a subdivision of M(K4).

Theorem 1.2 Let M be an unbent crossing 3-connected binary matroid with cir-
cumference 8. If r(M) ≥ 11, then

(i) M is a 3-connected rank-preserving restriction of M ′′, where M ′′ is a book
with pages M1,M2, . . . ,Mt, for t = r(M) − 3, and 3-spine F such that Mi is
isomorphic to PG(3, 2), for every i ∈ [t]; or
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(ii) M = M ′′\T ′, where T ′ ⊆ T and M ′′ is a book with pages M1,M2, . . . ,Mt, for
t = r(M)−5, and 2-spine T such that, for each i ∈ [t]−{1}, Mi is isomorphic
to K(K4) or F7 and M1 is a 3-connected binary matroid satisfying:

(A) M1 has a circuit D such that |D| = 6 and |D ∩ T | = 2; and

(B) the simplification of M1/T is isomorphic to F ∗
7 or AG(3, 2).

If M ′′ is the book described in Theorem 1.2(i), then M ′′ is internally 4-connected
and M ′′\F is 4-connected. Both M ′′ and M ′′\F have circumference equal to 8. Note
that M ′′\F has a rank-preserving restriction isomorphic to M(K4,t).

Every matroid described in the conclusion of Theorem 1.1 is a bent 3-connected
binary matroid with circumference 8. To restrict the matroids described in The-
orem 1.2(i) so that they are contained in the class of unbent crossing 3-connected
binary matroids with circumference 8 would produce a cumbersome statement. In
Lemos [4], we state the condition. Moreover, we establish that any matroid described
in Theorem 1.2(i) has circumference at most 8. We also prove that, whenM ′′ satisfies
Theorem 1.2(ii), the circumference of both M ′′ and M ′′\T are 8.

The next results about the circuit space of a binary matroid M are used without
reference along this paper:

(i) A cycle of M is an union of pairwise disjoint circuits of M .

(ii) The symmetric difference of circuits of M is a cycle of M .

(iii) The circuit space of M is spanned by the circuits of M and it has dimension
equal to r∗(M).

2 Seymour’s Arcs Theorem

A result of Seymour [10] that gives conditions to extend a k-separation of a restriction
to the whole matroid will be fundamental in this paper. To state this result, we need
to give more definitions. Let M be a matroid. For F ⊆ E(M), an F -arc (see Section
3 of [10]) is a minimal non-empty subset A of E(M) − F such that there exists a
circuit C of M with C − F = A and C ∩ F 6= ∅. Such a circuit C is called an
F -fundamental for A. Let A be an F -arc and P ⊆ F . Then A → P if there is an
F -fundamental for A contained in A∪P . Thus A 6→ P denotes that there is no such
F -fundamental. Note that A is an F -arc if and only if A ∈ C(M/F )− C(M).

Theorem 2.1 ((3.8) of Seymour [10]) Let M be a matroid on S, let Z ⊆ S, and
let (P1, P2) be a partition of Z. Then either there is a Z-arc A such that A 6→
P1, A 6→ P2, or there is a partition (X1, X2) of S such that Xi∩Z = Pi(i = 1, 2) and

r(X1) + r(X2)− r(S) = r(P1) + r(P2)− r(Z).

The proof of Theorem 2.1 can be adapted to establish that:
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Theorem 2.2 Let M be a matroid on S, let Z ⊆ S, and let (P1, P2) be a partition
of Z. If A → P1 or A → P2, for each Z-arc A, and

P ′
2 =

⋃
{A : A ⊆ S − Z and A is a Z-arc such that A → P2}

then, when X2 = P2 ∪ P ′
2 and X1 = S −X2,

r(X1) + r(X2)− r(S) = r(P1) + r(P2)− r(Z).

The next result is Lemma 2.2 of Lemos [4].

Lemma 2.3 Let M be a connected matroid. Suppose that M |F is connected, for
∅ 6= F $ E(M). If |A| ≤ 2, for every F -arc A, then every connected component of
M/F has rank equal to 0 or 1.

3 Basic results about theta sets and their arcs

We say that L is a theta set of a matroid M provided L ⊆ E(M) and M |L is a
subdivision of U1,3. When L1, L2 and L3 are the series classes of M |L, {L1, L2, L3}
is said to be the canonical partition of L in M . If |L1| = a, |L2| = b and |L3| = c,
then L is said to be an (a,b,c)-theta set of M . The next two results are respectively
Lemmas 2.3 and 2.4 of Lemos [4].

Lemma 3.1 Let M be a matroid with circumference 8. If L is a theta set of M ,
then |L| ≤ 12. Moreover, when |L| ∈ {11, 12}, L is an (a, b, c)-theta set of M , where
(a, b, c) ∈ {(4, 4, 4), (4, 4, 3), (5, 3, 3)}.

Lemma 3.2 If M is a matroid with circumference 8, then the following statements
are equivalent:

(i) M is unbent.

(ii) Every theta set of M has at most 10 elements.

Now, we establish that Theorem 1.1 is equivalent to:

Theorem 3.3 Let M be a 3-connected binary matroid with circumference 8. If
r(M) ≥ 14, then

(i) |L| ≤ 10, for every theta set L of M ; or

(ii) there is a book M ′ with pages M1,M2, . . . ,Mn and 2-spine T such that, for a
fixed e ∈ T , Mi is isomorphic to a matroid belonging to {Z4, S8, F7,M(K4)}
and, when r(Mi) = 4, e is the tip of Mi, for each i ∈ [n], and M = M ′\T ′,
for some T ′ ⊆ T . Moreover, if m = |{i ∈ [n] : r(Mi) = 4}|, then m ≥ 3 and
m+ n ≥ 12.
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Lemma 3.2 implies that Theorem 3.3(i) holds if and only if M is unbent. Hence
Theorem 3.3(ii) is the description of bent 3-connected binary matroid with circum-
ference 8. But it is just the conclusion of Theorem 1.1.

When Theorem 3.3(i) holds, we conclude that M/C has only rank-0 or rank-1
connected components, when C is a circuit of M such that |C| = 8. In [4, 5], we
analyse how these small connected components attach to C to obtain the others
3-connected binary matroids having circumference 8.

Now, we fix some notation that we use along this section and in the next two.
Let {L1, L2, L3} be the canonical partition of a theta set L of a binary matroid M .
We assume that |L1| ≥ |L2| ≥ |L3|. We define, for i ∈ [3],

A = {A ⊆ E(M)− L : A is an L-arc of M},

Ai = {A ∈ A : A → Li} and

A′ = A− (A1 ∪ A2 ∪ A3).

(Note that A,Ai and A′ depend on M,L,L1, L2 and L3. We do not emphasize these
dependencies to avoid a cumbersome notation. Consequently, when we use any of
these subsets of L-arcs of M , it is implicit that M is the binary matroid, L is the
theta set and its canonical partition is {L1, L2, L3}.)

Lemma 3.4 If M is 3-connected, then A′ 6= ∅.

Proof. Suppose that A′ = ∅. Therefore A = A1∪A2∪A3. Consider the 2-separation
{L1, L2 ∪ L3} of M |L. As A → L1 or A → L2 ∪ L3, for every A ∈ A, it follows,
by Theorem 2.1, that M has a 2-separation {X, Y } such that X ∩ L = L1 and
Y ∩ L = L2 ∪ L3, a contradiction. Hence A′ 6= ∅. 2

Lemma 3.5 If A ∈ A′, then the cosimplification of M |(L ∪ A) is isomorphic to
M(K4) or F ∗

7 . Moreover, when co(M |(L ∪ A)) ∼= M(K4), there is i ∈ [3] such that
Li is a series class of M |(L ∪ A).

Proof. Observe that r∗(M |(L ∪ A)) = 3. If C is a circuit of M such that A ⊆ C ⊆
L∪A, then the circuit space of M |(L∪A) is spanned by L1 ∪L2, L1 ∪L3 and C. To
conclude the proof, we need to establish that any pair of circuits of M |(L∪A) meet,
since M |(L ∪ A) is coloopless. Suppose that D and D′ are circuits of M |(L ∪ A)
such that D ∩ D′ = ∅. As A is a series class of M |(L ∪ A), we may assume that
A ∩D = ∅, that is, D = Li ∪ Lj, for a 2-subset {i, j} of [3]. Thus A ⊆ D′ ⊆ A ∪ Lk,
where {i, j, k} = [3]. We arrive at a contradiction because A 6→ Lk. Therefore any
two circuits of M meet. Consequently M |(L∪A) has 6 or 7 series classes. Moreover,
when it has 6 series classes one must be Li, for some i ∈ [3]. The result follows. 2

Lemma 3.5 suggests the following partition for A′:

A′
F = {A ∈ A′ : co(M |(L ∪ A)) ∼= F ∗

7 },

A′
K = {A ∈ A′ : co(M |(L ∪ A)) ∼= M(K4)}.
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Now, we define a circuit CA of M , for each A ∈ A, such that A ⊆ CA ⊆ L ∪ A. We
use this notation along this section and in the next two. We have three cases to deal
with:

(i) When A ∈ A′
F , let C be a circuit of M such that A ⊆ C ⊆ L ∪ A. We use CA

to denote any circuit of M belonging to

{C,C △ (L1 ∪ L2), C △ (L1 ∪ L3), C △ (L2 ∪ L3)}.

At a given proof, we may need to choose CA conveniently.

(ii) When A ∈ A′
K , let Li be the series class of M |(L ∪ A), for i ∈ [3]. Let C be a

circuit of M such that A ⊆ C ⊆ (L−Li)∪A. We use CA to denote any circuit
of M belonging to {C,C △ (L− Li)}. Note that M |(L ∪ A) contains another
two circuits containing A. These circuits are “too big” to be called CA because
they also contain Li. We consider these circuits in Lemma 3.11.

(iii) When A ∈ Ai, for some i ∈ [3], let CA be the unique circuit of M contained in
A ∪ Li. If {i, j, k} = [3], then C = CA △ (Li ∪ Lj) and D = CA △ (Li ∪ Lk)
are the other circuits of M |(L ∪ A) that contain A. When, CA = A ∪ Li, then
C = A∪ Lj and D = A∪ Lk. That is, A ∈ A1 ∩A2 ∩A3. When we view A as
an element of Aj or Ak, CA becomes C or D respectively. In this case CA also
depends on i. We do not need to emphasize this dependence because it will be
clear from the context which CA we are talking about in this very special case.

Lemma 3.6 If A ∈ Ak, for k ∈ [3], then

(i) |A| ≤ |CA ∩ Lk|; or

(ii) M has a theta set L′ such that |L′| > |L|.

Proof. Suppose that |CA ∩ Lk| < |A|. Observe that r∗(M |(L ∪ A)) = 3. Hence
CA, L1 ∪ L2 and L1 ∪ L3 span the circuit space of M |(L ∪ A). Thus CA ∩ Lk is
a series class of M |(L ∪ A). If L′ = (L ∪ A) − (CA ∩ Lk), then r∗(M |L′) = 2
since M |L′ = [M |(L ∪ A)]\(CA ∩ Lk). Observe that L′ is a theta set of M because
CA △ (Lk ∪ Li), CA △ (Lk ∪ Lj) and Li ∪ Lj, for {i, j, k} = [3], are pairwise different
circuits of M |L′. Note that

|L′| = |L ∪ A| − |CA ∩ Lk| = |L|+ (|A| − |CA ∩ Lk|)

and so |L′| > |L|. We have (ii). 2

Let A and A′ be L-arcs of M . We say that {A,A′} is an apart pair of L-arcs of
M provided A∩A′ = ∅ and (M/L)|(A∪A′) = [(M/L)|A]⊕ [(M/L)|A′]. Note that a
pair of L-arcs {A,A′} of M is apart if and only if A and A′ are different series classes
of M |(L ∪ A ∪ A′).
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Lemma 3.7 Let {A,A′} be an apart pair of L-arcs of M . If A ∈ Ak, for some
k ∈ [3], and A′ ∈ A′

F , then CA ∩ CA′ = ∅ or CA △ CA′ is a circuit of M .

Proof. Let {i, j} be a 2-subset of [3] such that {i, j, k} = [3]. Consider

C = CA △ CA′ = A ∪ A′ ∪ [(CA △ CA′) ∩ Lk] ∪ [CA′ ∩ (Li ∪ Lj)]. (3.1)

If C is not a circuit of M , then, for n ≥ 2, there are pairwise disjoint circuits
C1, C2, . . . , Cn of M |(L ∪ A ∪ A′) such that C = C1 ∪ C2 ∪ · · · ∪ Cn. By (3.1),

C ∩ Li = CA′ ∩ Li $ Li and C ∩ Lj = CA′ ∩ Lj $ Lj, (3.2)

and so C(M |L) ∩ {C1, C2, . . . , Cn} = ∅. Hence each Ci contains a series class of
M |(L∪A∪A′) avoiding L. These series classes are A and A′. Thus n = 2. We may
assume that A ⊆ C1 and A′ ⊆ C2. Therefore C1 = CA because, by (3.2), Li 6⊆ C1

and Lj 6⊆ C1. Consequently CA ∩ CA′ = ∅. 2

Lemma 3.8 Suppose that A′ ∈ A′
F and A ∈ Ak, for some k ∈ [3]. If A ∪ A′ is a

theta set of M/L, then CA △ CA′ is a circuit of M .

Proof. Observe that A∩A′ 6= ∅ because A∪A′ is a theta set of M/L. If CA△CA′ is
not a circuit of M , then, for n ≥ 2, there are pairwise disjoint circuits C1, C2, . . . , Cn

of M |(L∪A∪A′) such that C = C1 ∪C2 ∪ · · · ∪Cn. Note that C((M/L)|(A∪A′)) =
{A,A′, A △ A′}, since A ∪ A′ is a theta set of M/L. There is i ∈ [n] such that
Ci − L = A △ A′, say i = 1. As (CA △ CA′) − (A △ A′) ⊆ L, it follows that
{C2, . . . , Cn} ⊆ C(M |L). We arrive at a contradiction because Lj − (CA △ CA′) =
Lj − CA′ 6= ∅ for every j ∈ [3] such that j 6= k. 2

Lemma 3.9 Let {A,A′} be a 2-subset of Ak, for some k ∈ [3]. If {A,A′} is an
apart pair of L-arcs of M , then

(i) (CA △ CA′)△ (Li ∪ Lk) is a circuit of M , for i ∈ [3] such that i 6= k; or

(ii) CA ∩ Lk ⊆ CA′ ∩ Lk or CA′ ∩ Lk ⊆ CA ∩ Lk.

Proof. For i ∈ [3] satisfying i 6= k, consider

C = (CA △ CA′)△ (Li ∪ Lk) = A ∪ A′ ∪ [Lk − (CA △ CA′)] ∪ Li. (3.3)

If (CA △ CA′) ∩ Lk = ∅, then CA ∩ Lk = CA′ ∩ Lk and (ii) follows. Assume that

(CA △ CA′) ∩ Lk 6= ∅. (3.4)

By (3.3) and (3.4),
C(M |L) ∩ C(M |C) = ∅. (3.5)

If C is a circuit of M , then (i) follows. Suppose that C is not a circuit of M . For
n ≥ 2, there are pairwise disjoint circuits C1, C2, . . . , Cn of M |(L∪A∪A′) such that
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C = C1 ∪C2 ∪ · · · ∪Cn. By (3.5), Cj −L 6= ∅, for every j ∈ [n]. As A and A′ are the
unique series classes of M |(L∪A∪A′) avoiding L, it follows that n = 2, A ⊆ C1 and
A′ ⊆ C2, say. By (3.3), C1 ∈ {CA, CA △ (Li ∪Lk)} and C2 ∈ {CA′ , CA′ △ (Li ∪Lk)}.
As Li ⊆ [CA △ (Li ∪ Lk)] ∩ [CA′ △ (Li ∪ Lk)], it follows that C1 = CA or C2 = CA′ ,
say C1 = CA. By (3.3),

CA = A ∪ [CA ∩ Lk] ⊆ A ∪ [Lk − (CA △ CA′)]

and so CA ∩ Lk ⊆ Lk − (CA △ CA′). Thus (CA − CA′) ∩ Lk = ∅, that is, CA ∩ Lk ⊆
CA′ ∩ Lk. We have (ii). 2

Lemma 3.10 Suppose that M has circumference 8 and

11 ≤ |L| = max{|L′| : L′ is a theta set of M}. (3.6)

If A ∈ A′
F , then

(i) |A| ≤ 2; and

(ii) if |A| = 2, then |L| = 12 and every series class of M |(L ∪ A) has size 2.

Proof. By Lemma 3.1, L is a (4, 4, 4)- or (4, 4, 3)- or (5, 3, 3)-theta set ofM . Replacing
CA by CA △ (L2 ∪ L3), when necessary, we may assume

|CA ∩ L3| ≥ 2. (3.7)

Replacing CA by CA △ (L1 ∪ L2), when necessary, we may suppose

|CA ∩ (L1 ∪ L2)| ≥ 4. (3.8)

By (3.7) and (3.8),

8 ≥ |CA| = |A|+ |CA ∩ (L1 ∪ L2)|+ |CA ∩ L3| ≥ |A|+ 6. (3.9)

Hence |A| ≤ 2 and so (i) follows. Suppose that |A| = 2. We must have equality
in (3.7), (3.8) and (3.9). Now, we establish that |L3| = 4. If |L3| 6= 4, then |L3| = 3.
By the equality in (3.7), we have that |L3−CA| = 1. Remember that L1∪L2, L1∪L3

and CA span the circuit space of M |(L ∪ A). Therefore

SC(M |(L ∪ A)) = {A,L1 ∩ CA, L1 − CA, L2 ∩ CA, L2 − CA, L3 ∩ CA, L3 − CA}.

As L3 −CA ∈ SC(M |(L∪A)), |L3 −CA| = 1 and r∗([M |(L ∪A)]\(L3 −CA)) = 2, it
follows that L′ = (L∪A)−(L3−CA) is a theta set of M . We arrive at a contradiction
to (3.6) since

|L′| = |L ∪ A| − |L3 − CA| = |L|+ |A| − |L3 − CA| > |L|.

Hence |L3| = 4 and so L is a (4, 4, 4)-theta set of M . In particular, |L| = 12. By the
equality of (3.7), we have that |CA ∩ L3| = |L3 − CA| = 2. We conclude that any
element of SC(M |(L ∪ A)) has size 2, since, by symmetry, any Li can be chosen to
be L3. We have (ii). 2
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Lemma 3.11 Suppose that M has circumference 8 and that |L| ≥ 11. If A ∈ A′
K,

then

(i) |A| = 1; and

(ii) there is i ∈ [3] such that Li is a series class of M |(L ∪ A) and |Li| = 3; and

(iii) there are circuits D1 and D2 of M |(L∪A) such that |D1| = |D2| = 8, A∪Li =
D1∩D2, D1△D2 = L−Li and D1, D2, CA, CA△(L−Li) are the unique circuits
of M |(L ∪ A) containing A; and

(iv) for A′ ∈ Ak, where k ∈ [3] and k 6= i, set S1 = (CA ∩ Lk) − CA′ , S2 =
(CA ∩ Lk) ∩ CA′ , S3 = (Lk − CA) ∩ CA′ , S4 = (Lk − CA) − CA′. If S2 6= ∅ and
S3 6= ∅, then

(a) S1 = S4 = ∅ and CA′ = A′ ∪ Lk; or

(b) S1 = ∅ and |S3|+ |A′| ≤ |S2|; or

(c) S4 = ∅ and |S2|+ |A′| ≤ |S3|.

Proof. By Lemma 3.1, L is a (4, 4, 4)- or (4, 4, 3)- or (5, 3, 3)-theta set of M . By
Lemma 3.5, there is i ∈ [3] such that Li is a series class ofM |(L∪A). If {i, j, k} = [3],
then, by definition, CA ⊆ A ∪ (Lj ∪ Lk). Consider the circuits of M |(L ∪ A):

D1 = CA △ (Li ∪ Lk) and D2 = CA △ (Li ∪ Lj).

Note that D1 ∩D2 = A ∪ Li and D1 △D2 = Lj ∪ Lk. Hence

16 ≥ |D1|+ |D2| = 2|D1 ∩D2|+ |D1 △D2| = 2|A ∪ Li|+ |Lj ∪ Lk| =

= |L|+ |Li|+ 2|A| ≥ 14 + 2|A| ≥ 16.
(3.10)

We must have equality along (3.10). Thus |A| = 1, |Li| = 3, |L| = 11 and |D1| =
|D2| = 8. Therefore (i), (ii) and (iii) follows.

Now, we establish (iv). Observe that

L1 ∪ L2, L1 ∪ L3, CA and CA′ span the circuit space of M |(L ∪ A ∪ A′) (3.11)

because r∗(M |(L ∪ A ∪ A′)) = 4. In Figure 1, H is a graph such that E(H) =
SC(M |(L∪A∪A′)). (To simplify the figure, we set S5 = CA∩Lj and S6 = Lj−CA.)
Let G be a subdivision of H such that each edge S is replaced by a path of length
|S| whose edges are labelled by the elements of S. Note that the cycles of G whose
edge sets are displayed in (3.11) span the circuit space of M(G). Therefore M(G) =
M |(L ∪ A ∪ A′). By (iii), S1 ∪ S2 ⊆ D2 and S3 ∪ S4 ⊆ D1. Now, we show that:

D2 △ CA′ is not a circuit of M or |S3|+ |A′| ≤ |S2|. (3.12)

Suppose that D2 △ CA′ is a circuit of M . Hence

8 ≥ |D2 △ CA′ | = |D2 − CA′ |+ |CA′ −D2| = |D2 − S2|+ |CA′ − S2| =

= [|D2| − |S2|] + [|A′|+ |S3|] = 8 + (|S3|+ |A′| − |S2|).
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(A)

S2

S3

S5

S6

A′ A Li

(B)
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S3

S5

S6

A′ A Li

S4

(C)

S2

S3

S5

S6

A′ A Li

S1 (D)

S2

S3

S5

S6

A′ A Li

S1

S4

Figure 1: The graph H. In (A), when S1 = S4 = ∅. In (B), when S1 = ∅ 6= S4.
In (C), when S1 6= ∅ = S4. In (D), when S1 6= ∅ 6= S4.

Thus |S2| ≥ |S3|+ |A′| and (3.12) holds. Now, we prove that

S4 = ∅ or |S3|+ |A′| ≤ |S2|. (3.13)

As M |(L ∪ A ∪ A′) = M(G), it follows that D2 △ CA′ is not a circuit of M if and
only if S4 = ∅. Thus (3.13) follows from (3.12). By symmetry, when we repeat this
argument with D1 in the place of D2, we obtain that

S1 = ∅ or |S2|+ |A′| ≤ |S3|. (3.14)

When S1 = S4 = ∅, CA′ = A′ ∪ S2 ∪ S3 = A′ ∪ Lk and (iv)(a) follows. Assume that
S1 6= ∅ or S4 6= ∅. By (3.13) and (3.14), S1 = ∅ or S4 = ∅. If S1 = ∅, then, by (3.13),
we have (iv)(b). If S4 = ∅, then, by (3.14), we have (iv)(c). 2

The proof of the next result is very simple. It gives a condition for a cycle to be
a circuit in a binary matroid. We state it because it covers a situation that occurs
many times in this paper.

Lemma 3.12 Suppose that C is a cycle of a binary matroid N . If C−F is an F -arc
of N and C ∩ F is independent in N , for F ⊆ E(N), then C is a circuit of N .

Proof. Note that C 6= ∅ because C − F is an F -arc of N . If C is not a circuit of
N , then there are pairwise disjoint circuits C1, C2, . . . , Cn of N , for n ≥ 2, such that
C = C1 ∪ C2 ∪ · · · ∪ Cn. As A = C − F is contained in a series class of M |(F ∪ C),
then A ⊆ Ci, for some i ∈ [n], say i = 1. Thus C2 ⊆ C ∩ F , a contradiction to
hypothesis. 2

4 Only (5, 3, 3)-theta sets

In this section, we establish the next result:
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Theorem 4.1 Let M be a 3-connected binary matroid having circumference 8. If
r(M) ≥ 14 and L is a theta set of M satisfying |L| ∈ {11, 12}, then L is a (5, 3, 3)-
theta set of M . Moreover, for each L-arc A of M , the matroid M |(L∪A) is graphic.

We divide the proof of Theorem 4.1 into a sequence of lemmas. We set

L1 = {L′ ⊆ E(M) : L′ is a (4, 4, 4)-theta set of M},

L2 = {L′ ⊆ E(M) : L′ is a (4, 4, 3)-theta set of M} and

L3 = {L′ ⊆ E(M) : L′ is a (5, 3, 3)-theta set of M}.

By Lemma 3.1, L ∈ L1 ∪L2 ∪L3. Choose L and u ∈ [3] such that L ∈ Lu and u is a
small as possible. (If u = 1, then L is a (4, 4, 4)-theta set of M . If u = 2, then L is a
(4, 4, 3)-theta set of M and, by the choice of L and u, M does not have a theta set
with 12 elements. If u = 3, then L is a (5, 3, 3)-theta set of M and, by the choice of L
and u, every theta set of M with more than 10 elements is a (5, 3, 3)-theta set.) Let
{L1, L2, L3} be the canonical partition of L. We assume that |L1| ≥ |L2| ≥ |L3|. For
i ∈ [3], define A,Ai,A

′,A′
K and A′

F as we did in the previous section. For A ∈ A,
define CA as we did in the previous section. Our goal is to show that u = 3 and
A′

F = ∅. By the next result, we need to establish only that A′
F = ∅.

Lemma 4.2 If u ∈ {1, 2}, then A′
F 6= ∅.

Proof. If u = 1, then, by Lemma 3.11(ii), A′
K = ∅ because |L1| = |L2| = |L3| = 4.

Thus A′
F = A′. In this case, the result follows from Lemma 3.4. Assume that

u = 2 and A′
F = ∅. By Lemma 3.11(ii), when A ∈ A′ = A′

K , L3 is a series class of
M |(L ∪ A), since |L1| = |L2| = 4. Hence A → L1 ∪ L2. Therefore, when A′ ∈ A,
A′ → L1 ∪ L2 or A′ → L3 depending on A′ ∈ A1 ∪ A2 ∪ A′ or A′ ∈ A3 respectively.
By Theorem 2.1, M has a 2-separation {X, Y } such that X ∩ L = L1 ∪ L2 and
Y ∩ L = L3, a contradiction. 2

Lemma 4.3 If A ∈ A, then |A| ≤ 3.

Proof. Suppose that |A| ≥ 4. By Lemmas 3.10(i) and 3.11(i), A ∈ Ak, for some
k ∈ [3]. By Lemma 3.6 and the choice of L and u, 4 ≤ |A| ≤ |CA ∩Lk| ≤ |Lk|. Thus
|Lk| ∈ {4, 5}. Reordering the Li’s, when necessary, we may assume that k = 1. If
|L3| = 3, then L′ = A∪L1∪L2 is a theta set of M such that |L′| = |A|+ |L1|+ |L2| ≥
12 > |L|. We arrive at a contradiction to the choice of L and u. Thus |L3| = |A| = 4.
In particular, u = 1. Set L4 = A. As the circuit space of M |(L ∪ L4) is spanned
by L1 ∪ L2, L1 ∪ L3 and L1 ∪ L4, it follows that M |(L ∪ L4) is a subdivision of U1,4

having L1, L2, L3 and L4 as series classes. By Theorem 2.1, there is an (L ∪ L4)-arc
A′ of M such that A′ 6→ L1 ∪ L2 and A′ 6→ L3 ∪ L4. Choose a circuit C of M such
that A′ ⊆ C ⊆ A′∪L∪L4 and l = |J | is minimum, where J = {i ∈ [4] : C ∩Li 6= ∅}.
Observe that J ∩ {1, 2} 6= ∅, otherwise A′ → L3 ∪ L4. Similarly, J ∩ {3, 4} 6= ∅.
Assume that l = 2, say J = {2, 3}. Note that A′ is an L-arc of M such that
A′ ∈ A′

K . We arrive at a contradiction to Lemma 3.11(ii). Therefore l ≥ 3. If i ∈ J
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and Li ⊆ C, then, by Lemma 3.12, for j ∈ J − {i}, C △ (Li ∪ Lj) is a circuit of M
contrary to the choice of C. Hence, for every i ∈ J , ∅ 6= C ∩ Li $ Li. To simplify
the notation, we may suppose that {1, 2, 3} ⊆ J . By Lemma 3.12, we can replace C
by C △ (L1 ∪ L2), when necessary, to assume that

|C ∩ (L1 ∪ L2)| ≥ 4. (4.1)

By Lemma 3.12, D = C △ (L3 ∪ L4) is a circuit of M such that

16 ≥ |C|+ |D| = 2|C ∩ (L1 ∪ L2)|+ |L3 ∪ L4|+ 2|A′|.

We have a contradiction by (4.1). 2

Lemma 4.4 If A ∈ A′
F , then we can choose CA such that

vA ∈ {(4, 2, 1), (3, 3, 1), (3, 2, 2), (2, 3, 2), (2, 2, 3), (2, 2, 2)}, (4.2)

where vA = (|CA ∩ L1|, |CA ∩ L2|, |CA ∩ L3|).

Proof. We can choose CA satisfying:

(i) |CA ∩ L1| ≥ 2. (If |CA ∩ L1| = 1, then replace CA by CA △ (L1 ∪ L2).)

(ii) |CA ∩ L2| ≥ 2 and, when |L2| = 4, |CA ∩ (L2 ∪ L3)| ≥ 4. (If |CA ∩ L2| = 1 or,
when |L2| = 4, |CA ∩ (L2 ∪ L3)| ≤ 3, then replace CA by CA △ (L2 ∪ L3).)

(iii) |CA ∩ L3| ≥ 2, when |L1 − CA| ≥ 2. (If |CA ∩ L3| = 1 and |L1 − CA| ≥ 2, then
replace CA by CA △ (L1 ∪ L3).)

Now, we show that vA satisfies (4.2). By (i), we have three cases to deal with
|CA ∩ L1| ∈ {2, 3, 4}.

If |CA ∩ L1| = 4, then, by (ii), |CA ∩ L2| = 2 because |CA ∩ L3| ≥ 1 and |CA| ≤ 8.
Thus vA = (4, 2, 1).

If |CA ∩L1| = 3, then, by (ii), we have two subcases to deal with |CA ∩L2| ∈ {2, 3}.
If |CA∩L2| = 3, then |CA∩L3| = 1 because |CA| ≤ 8. In this subcase, vA = (3, 3, 1).
Assume that |CA ∩ L2| = 2. If |CA ∩ L3| ≥ 2, then vA = (3, 2, 2). If |CA ∩ L3| = 1,
then |CA ∩ (L2 ∪ L3)| = 3 and, by (ii), |L2| = 3. Thus |L1| = 5 and |L1 −CA| ≥ 2, a
contradiction to (iii).

If |CA ∩ L1| = 2, then, by (ii), |CA ∩ L2| ∈ {2, 3}. As |L1 − CA| ≥ 2, it follows,
by (iii), that |CA ∩ L3| ∈ {2, 3}. Therefore vA ∈ {(2, 3, 2), (2, 2, 3), (2, 2, 2)} because
|CA| ≤ 8. 2

We improve Lemma 4.3 in a special case. Lemma 4.5 is central in this proof
because it implies that every connected component of M/L has rank equal to 0 or
1, when A′

F 6= ∅.

Lemma 4.5 Suppose that A′
F 6= ∅. If A ∈ A, then |A| ≤ 2.
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Proof. Consider AT = {A ∈ A : |A| ≥ 3}. Suppose that AT 6= ∅. By Lemma 4.3,
|A| = 3, for every A ∈ AT . By Lemmas 3.10(i) and 3.11(i), when A ∈ AT , there is
k ∈ [3] such that A ∈ Ak. That is, AT ⊆ A1 ∪ A2 ∪ A3. When A ∈ AT ∩ Ak, for
k ∈ [3], by Lemma 3.6, we have that |CA ∩ Lk| ≥ |A| ≥ 3.

Claim 1. If A′ ∈ A′
F , then |A′| = 1.

Assume that |A′| ≥ 2, for some A′ ∈ A′
F . By Lemmas 3.10 and 3.11(i), |A′| = 2 and

u = 1. By Lemma 3.10(ii), |CA′ ∩ Lk| = 2, for every k ∈ [3]. Choose A ∈ AT , say
A ∈ AT ∩ Ak, for k ∈ [3]. As |CA ∩ Lk| ≥ 3, |CA′ ∩ Lk| = 2 and |Lk| = 4, it follows
that (CA ∩ CA′) ∩ Lk 6= ∅. First, we show that

{A,A′} is not an apart pair of L-arcs of M. (4.3)

If (4.3) fails, then, by Lemma 3.7, C = CA △ CA′ is a circuit of M . Therefore

8 ≥ |C| = |A|+ |A′|+ |CA′ ∩ (Li ∪ Lj)|+ |(CA △ CA′) ∩ Lk|,

where {i, j, k} = [3]. We arrive at a contradiction because |A| = 3, |A′| = 2 and, by
Lemma 3.10(ii), |CA′ ∩ (Li ∪ Lj)| = 4. Therefore (4.3) follows.

InM/L, A′ is contained in a parallel class P and A is a triangle. By (4.3), (M/L)|(A∪
A′) is connected. As M/L is binary, it follows that A ∩ P 6= ∅. Next, we show that

A ∩ A′ = ∅. (4.4)

Assume that A ∩ A′ 6= ∅, say a ∈ A ∩ A′ and A′ = {a, a′}. Hence A ∪ A′ is a theta
set of M/L. Choose CA′ such that

|(CA △ CA′) ∩ Lk| is maximum. (4.5)

By Lemma 3.8, C = CA △ CA′ is a circuit of M . Thus

8 ≥ |C| = |A△ A′|+ |CA′ ∩ (Li ∪ Lj)|+ |(CA △ CA′) ∩ Lk|,

where {i, j, k} = [3]. By Lemma 3.10(ii), |CA′ ∩ (Li ∪ Lj)| = 4. Hence 1 ≥ |(CA △
CA′) ∩ Lk| because |A △ A′| = 3. Therefore CA′ ∩ Lk ⊆ CA ∩ Lk. Note that
D = CA′ △ (Li ∪ Lk) is contrary to the choice of CA′ done in (4.5), since

(D△ CA) ∩ Lk = (CA′ ∩ Lk) ∪ (Lk − CA)

has at least two elements. Thus (4.4) follows.

By (4.4), we may assume that α ∈ P ∩ A and A′ = {a, a′} with α 6∈ A′. In M/L,
A1 = (A−α)∪a and A2 = (A−α)∪a′ are triangles. As A1△A2 = A′, it follows that
A1 or A2 is not a triangle of M , say A1. Hence A1 ∈ AT ; a contradiction to (4.4)
applied to A1. Thus Claim 1 follows.

When A′ ∈ A′
F , we can choose CA′ as in Lemma 4.4. Now, we show that:
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Claim 2. If A′ ∈ A′
F and A ∈ AT ∩ Ak, for some k ∈ [3], then CA ∩ CA′ = ∅ or

CA ∩ Lk ⊆ CA′ ∩ Lk $ Lk.

Assume that CA ∩ CA′ 6= ∅. By Claim 1, |A′| = 1. Thus {A,A′} is an apart pair of
L-arcs of M . By Lemma 3.7, C = CA △ CA′ is a circuit of M . Thus

8 ≥ |C| = |A|+ |A′|+ |(CA △ CA′) ∩ Lk|+ |CA′ ∩ (Li ∪ Lj)|,

where {i, j, k} = [3]. As |A| + |A′| = 4 and |CA′ ∩ (Li ∪ Lj)| ≥ 3, it follows that
|(CA △ CA′) ∩ Lk| ≤ 1. Note that Claim 2 follows unless |(CA △ CA′) ∩ Lk| = 1 and
|(CA∩Lk)−(CA′∩Lk)| = 1. We may assume this is the case. Hence |CA′∩(Li∪Lj)| =
3. By Lemma 4.4, {i, j} = {2, 3}, k = 1 and (|CA′ ∩ L1|, |CA′ ∩ L2|, |CA′ ∩ L3|) =
(4, 2, 1). Thus CA = A ∪ L1. Applying Lemma 3.7 to CA and CA′ △ (L1 ∪ L3), we
conclude that

CA △ [CA′ △ (L1 ∪ L3)] = A ∪ A′ ∪ (CA′ ∩ L1) ∪ (CA′ ∩ L2) ∪ (L3 − CA′)

is a circuit of M with 12 elements; a contradiction and Claim 2 follows.

Claim 3. If A ∈ AT , then |CA| = 6.

By Claim 2, when A ∈ Ak, for k ∈ [3], then CA ∩ Lk $ Lk. By Lemma 3.6,
|CA∩Lk| ∈ {3, 4}. If |CA∩Lk| = 3, then Claim 3 follows. Assume that |CA∩Lk| = 4.
Therefore k = 1, |L1| = 5, u = 3 and L′ = A ∪ L1 ∪ L2 is a (4, 4, 3)-theta set of M
with canonical partition {CA ∩ L1, (L1 − CA) ∪ L2, A}. We have a contradiction to
the choice of L and u. Hence Claim 3 follows.

Claim 4. If {A,A′′′} ⊆ AT ∩ Ak and CA ∩ Lk 6= CA′′′ ∩ Lk, for some k ∈ [3], then
k = 1, |L1| = 5, u = 3 and (CA ∪ CA′′′) ∩ L1 = CA′ ∩ L1, for every A′ ∈ A′

F .

By Claim 2, CA ∩ Lk ⊆ X ∈ {Lk ∩ CA′ , Lk − CA′} and CA′′′ ∩ Lk ⊆ Y ∈ {Lk ∩
CA′ , Lk − CA′}, where A′ ∈ A′

F . As {Lk ∩ CA′ , Lk − CA′} contains a unique element
with cardinality exceeding 2, it follows that X = Y . By Claim 3, |CA ∩ Lk| =
|CA′′′ ∩Lk| = 3. As CA∩Lk 6= CA′′′ ∩Lk, it follows that |(CA∩Lk)∪ (CA′′′ ∩Lk)| ≥ 4.
Hence X = (CA ∪ CA′′′) ∩ Lk has 4 elements and so k = 1; |L1| = 5; u = 3; and
CA′ ∩ L1 = (CA ∪ CA′′′) ∩ L1.

Claim 5. Suppose that A ∈ AT ∩ Ak, for k ∈ [3]. There is an L-arc A′′ of M such
that

A′′ 6→ CA ∩ Lk and A′′ 6→ L− CA. (4.6)

Moreover, when A′′ satisfies (4.6),

(i) A′′ ∈ Ak;

(ii) {A,A′′} is not an apart pair of L-arcs of M . In particular, |A′′| ≥ 2;

(iii) k = 1 and there is A′′′ ∈ AT ∩A1 such that CA∩L1 6= CA′′′∩L1 and (CA∪CA′′)∩
L1 = (CA∪CA′′′)∩L1 = CA′ ∩L1, for every A′ ∈ A′

F . Moreover, A′′ → CA′ ∩L1.
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Observe that A′′ exists, by Theorem 2.1, since {CA ∩ Lk, L − CA} is a 2-separation
for M |L. Now, we prove (i).

First, suppose that A′′ ∈ A′. By Claim 2 and (4.6), A′′ 6∈ A′
F and so A′′ ∈ A′

K .
Set S1 = (CA′′ ∩ Lk) − CA, S2 = (CA′′ ∩ Lk) ∩ CA, S3 = (Lk − CA′′) ∩ CA and S4 =
(Lk−CA′′)−CA. By (4.6), S2 6= ∅ and S3 6= ∅. By Claim 3, 3 = |CA∩Lk| = |S2|+|S3|
and so {|S2|, |S3|} = {1, 2}. As |A| = 3 and {|S2|, |S3|} = {1, 2}, it follows that
Lemma 3.11(iv)(a) holds. That is, S1 = S4 = ∅ and CA = A∪Lk, a contradiction to
Claim 2. Thus A′′ 6∈ A′. There is l ∈ [3] such that A′′ ∈ Al. By (4.6), l = k and (i)
follows.

Next, we establish (ii). Assume that {A,A′′} is an apart pair of L-arcs ofM . By (4.6)
and (i), all the sets S1 = (CA − CA′′) ∩ Lk, S2 = (CA′′ − CA) ∩ Lk and S3 = (CA ∩
CA′′)∩Lk are non-empty. Choose i ∈ [3], i 6= k, such that |Li ∪Lk| = 8. (We can do
this because, by Claims 2 and 3, |Lk| ≥ 4.) Note that A and A′′ are series classes of
N = M |(A∪A′′∪Lk∪Li). As r

∗(N) = 3 and SC(N) = {A,A′′, S1, S2, S3, S4}, where
S4 = (Li ∪ Lk) − (S1 ∪ S2 ∪ S3), it follows that N is isomorphic to a subdivision of
M(K4). Thus

C = CA △ CA′′ △ (Li ∪ Lk) = A ∪ A′′ ∪ S3 ∪ S4

is a circuit of M . Hence

8 ≥ |C| = |A|+ |A′′|+ |S3|+ |S4| ≥ 6 + |A′′|+ |S3|+ |S4 − Li|.

So |A′′| = |S3| = 1 and |S4| = |Li| = 3. As |Lk∪Li| = 8, it follows that |Lk| = 5, that
is, k = 1 and u = 3. By Claim 3, |S1|+|S3| = |CA∩L1| = 3 and so |S1| = 2. Therefore
|S2| = |L1| − (|S1| + |S3|) = 2, say S2 = {α, β}. By Claim 2, we may assume that
CA′ ∩L1 = L1−β, for some A′ ∈ A′

F . (If CA′ ∩L1 = S2, then [CA′ △ (L1∪Li)]△CA′′

is a circuit of M , by Lemma 3.7, having at least 9 elements, a contradiction.) By
Claim 1, |A′| = 1 and so A′ ∩ (A ∪ A′′) = ∅. Note that L′ = A ∪ S3 ∪ A′′ ∪ L2 ∪ L3

is a (5, 3, 3)-theta set of M having canonical partition {L′
1 = A ∪ S3 ∪ A′′, L2, L3}.

If D = CA′ △ (L1 ∪ L3), then D is a circuit of M such that D − L′ = A′ ∪ β. As
β is a coloop of M |(L′ ∪ β), it follows that A′ ∪ β is an L′-arc of M . Observe that
D ∩ L′

1 = ∅, ∅ 6= D ∩ L2 = CA′ ∩ L2 $ L2 and ∅ 6= D ∩ L3 = L3 − CA′ $ L3.
Hence M |(L′ ∪ A′ ∪ β) is isomorphic to a subdivision of M(K4); a contradiction to
Lemma 3.11(i) applied to L′ because A′ ∪β is an L′-arc of M satisfying |A′ ∪β| = 2.
Thus (ii) holds. Now, we establish (iii).

By (i) and (ii), A′′ ∈ Ak and |A′′| ∈ {2, 3}. If |A′′| = 3, then, by (4.6), CA ∩ Lk 6=
CA′′ ∩ Lk. Therefore (iii) follows from Claim 4 applied to A′′′ = A′′. Assume that
|A′′| = 2. By (ii), (M/L)|(A ∪ A′′) is connected. In M/L, A is a triangle, A′′ is
contained in a parallel class P and P ∩ A 6= ∅, say α ∈ P ∩ A. (Remember that
M/L is binary.) Set A′′ = {a, a′}. If α = a, then A′′′ = A △ A′′ = (A − α) ∪ a′ is
an L-arc of M because, by (4.6), (CA − CA′′) ∩ Lk 6= ∅ 6= (CA′′ − CA) ∩ Lk and so
CA △ CA′′ = A′′′ ∪ [(CA △ CA′′) ∩ Lk] = CA′′′ . Thus A′′′ ∈ AT ∩ Ak. Observe that
(iii) follows from Claim 2 since (CA∪CA′′)∩Lk = (CA∪CA′′′)∩Lk. We may assume
that α 6∈ A′′. Set A1 = (A − α) ∪ a and A2 = (A − α) ∪ a′. Note that A1 and A2
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are triangles of M/L. For i ∈ [2], Ai is a triangle of M or Ai is an L-arc of M . We
define

Ci =

{
Ai, if Ai ∈ C(M);

CAi
, if Ai ∈ AT .

As A1 △ A2 = A′′, it follows that A1 6∈ C(M) or A2 6∈ C(M), say A1 6∈ C(M). There
is j ∈ [3] such that A1 ∈ AT ∩ Aj. By Claim 2, CA1

∩ Lj $ Lj. Thus

CA △ CA1
=

{
{a, α} ∪ (CA1

∩ Lj) ∪ (CA ∩ Lk), when j 6= k

{a, α} ∪ [(CA1
∩ Lk)△ (CA ∩ Lk)], when j = k

is a cycle of M . Hence {a, α} ∈ A since {a} 6∈ A and {α} 6∈ A. By Lemma 3.12,
CA△CA1

is a circuit ofM and so CA△CA1
= C{a,α}. By Lemma 3.11(i), j = k. Now,

we prove that CA1
∩Lk 6= CA∩Lk. If CA1

∩Lk = CA∩Lk, then CA△CA1
= A△A1 =

{α, a}, a contradiction. Hence CA1
∩Lk 6= CA∩Lk. By Claim 4, k = 1, u = 3, |L1| = 5

and
(CA ∪ CA1

) ∩ L1 = CA′ ∩ L1, for every A′ ∈ A′
F . (4.7)

We have two possibilities for C2. If C2 = A2, then

CA1
△ C2 = (A1 △ A2) ∪ (CA1

∩ L1) = {a, a′} ∪ (CA1
∩ L1).

Thus CA′′ = {a, a′} ∪ (CA1
∩ L1). Combining this with (4.7), we have (iii) taking

A′′′ = A1 in Claim 4. Assume that C2 = CA2
. By (4.7) applied to A2, we get

(CA ∪ CA2
) ∩ L1 = CA′ ∩ L1, for every A′ ∈ A′

F . (4.8)

By (4.7) and (4.8), we have that (CA1
∩ L1)− CA = (CA2

∩ L1)− CA. Hence

CA1
△ CA2

= {a, a′} ∪ [(CA1
∩ L1)△ (CA2

∩ L1)] ⊆ A′′ ∪ (CA ∩ L1).

We arrive at a contradiction to (4.6) because, by Lemma 3.12, CA′′ = CA1
△ CA2

.
With this contradiction we conclude the proof of Claim 5.

Now, we finish the proof of Lemma 4.5 by arriving at a contradiction. By Claim 5(iii),
there are A1, A2 ∈ AT ∩ A1, with CA1

∩ L1 6= CA2
∩ L1, such that

(CA1
∪ CA2

) ∩ L1 = CA′ ∩ L1, for any A′ ∈ A′
F . (4.9)

Moreover, u = 3 and |L1| = 5. By Theorem 2.1, there is an L-arc A′′ of M such that

A′′ 6→ CA′ ∩ L1 and A′′ 6→ L− CA′ , for A′ ∈ A′
F . (4.10)

We establish that A′′ cannot satisfy (4.6). If A′′ satisfies (4.6), for some A ∈ AT ,
then, by Claim 5(iii), A′′ → CA′ ∩ L1, a contradiction to (4.10). Thus A′′ cannot
satisfy (4.6), for every A ∈ AT . That is, A′′ → CAi

∩ L1 or A′′ → L − CAi
, where

i ∈ [2]. As CAi
∩ L1 ⊆ CA′ ∩ L1, it follows that A

′′ → L− CAi
. There is a circuit Ci

of M such that
A′′ ⊆ Ci ⊆ (L− CAi

) ∪ A′′. (4.11)
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By (4.9) and Claim 3, there are elements a1 and a2 of M such that {a1} = (CA1
−

CA2
)∩(CA′∩L1) and {a2} = (CA2

−CA1
)∩(CA′∩L1). By (4.10) and (4.11), a3−i ∈ Ci.

By (4.11), {a1, a2} ⊆ C1△C2 ⊆ L−(CA1
∩CA2

); a contradiction because L1 is a series
class ofM |L, C1△C2 is a cycle ofM |L and ∅ 6= (C1△C2)∩L1 ⊆ L1−(CA1

∩CA2
) $ L1.

Therefore AT = ∅. 2

Our goal is to prove Theorem 4.1, that is, u = 3 and A′
F = ∅. By Lemma 4.2,

it is enough to establish that A′
F = ∅. Assume that A′

F 6= ∅. By Lemma 4.5,
|A| ≤ 2, for every A ∈ A. By Lemma 2.3, each connected component of M/L has
rank 0 or 1. Let H1, H2, . . . , Hn be the rank-1 connected components of M/L. Hence
r(M) = r(L) + r(M/L) = (|L| − 2) + n. Thus

n = r(M) + 2− |L| ≥ 4. (4.12)

For i ∈ [n], choose ai ∈ E(Hi). If B = (L− {α, β}) ∪ {a1, a2, . . . , an}, where α ∈ L1

and β ∈ L2, then B is a basis of M . As clM(B − ai) = E(M) − E(Hi), it follows
that E(Hi) is a cocircuit of M , for every i ∈ [n]. Therefore r(E(Hi)) ≥ 3 because
M is 3-connected. For i ∈ [n], there is an independent set Ii of M such that |Ii| = 3
and Ii ⊆ E(Hi). We use

(
X

2

)
to denote the family of 2-subsets of a set X. Note that

each element of
(
E(Hi)

2

)
is an L-arc of M .

Lemma 4.6 If A′ ∈
(
Ii
2

)
∩A′ and A ∈

(
Ij
2

)
∩Ak, for k ∈ [3] and {i, j} a 2-subset of

[n], then CA ∩ Lk ∈ {CA′ ∩ Lk, Lk − CA′}.

Proof. By Lemmas 3.10 and 3.11(i), A′ ∈ A′
F , u = 1 and every element of SC(M |(L∪

A′)) has size 2. By Lemma 3.6, 2 = |A| ≤ |CA ∩ Lk|. If CA ∩ CA′ = ∅, then
CA∩Lk ⊆ Lk−CA′ . Thus CA∩Lk = Lk−CA′ since |Lk−CA′ | = 2 and |CA∩Lk| ≥ 2.
Assume that CA ∩ CA′ 6= ∅. As {A,A′} is an apart pair of L-arcs of M , it follows,
by Lemma 3.7, that CA △ CA′ is a circuit of M . Thus

8 ≥ |CA △ CA′| = |A|+ |A′|+ |(CA △ CA′) ∩ Lk|+ |CA′ ∩ (L− Lk)|.

Therefore |(CA △ CA′) ∩ Lk| = 0 because |A| = |A′| = 2 and |CA′ ∩ (L − Lk)| = 4.
Hence CA ∩ Lk = CA′ ∩ Lk. 2

Lemma 4.7 If A1 ∈
(
Ii
2

)
∩ Aj and A2 ∈

(
Ii
2

)
∩ Ak, A1 6= A2, for i ∈ [n] and

{j, k} ⊆ [3], then
(
Ii
2

)
⊆ Aj or

(
Ii
2

)
⊆ Ak.

Proof. There are Xj ⊆ Lj and Xk ⊆ Lk such that CA1
= A1∪Xj and CA2

= A2∪Xk.
By Lemma 3.6, |Xj| ≥ 2 and |Xk| ≥ 2. If A3 = A1 △ A2, then

(
Ii
2

)
= {A1, A2, A3}.

First, we show that
j = k or Xj = Lj or Xk = Lk. (4.13)

Assume that j 6= k and Xj $ Lj and Xk $ Lk. By Lemma 3.12,

CA3
= CA1

△ CA2
= (A1 △ A2) ∪ (Xj ∪Xk) = A3 ∪ (Xj ∪Xk).
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In this case, M |(L ∪ A3) is a subdivison of M(K4). We arrive at a contradiction
to Lemma 3.11(i), since |A3| = 2. Thus (4.13) follows. If j = k, then A3 → Lj

and
(
Ii
2

)
⊆ Aj since, by Lemma 3.12, CA3

= A3 ∪ (Xj △ Xk). Suppose that j 6= k.
By (4.13), Xj = Lj or Xk = Lk, say Xj = Lj. Hence C = CA1

△ (Lj ∪Lk) = A1∪Lk

is a circuit of M and so A1 → Lk, that is, A1 ∈ Ak. Observe that

CA3
= C △ CA2

= (A1 ∪ Lk)△ (A2 ∪Xk) = A3 ∪ (Lk − Ak).

Thus A3 → Lk and A3 ∈ Ak. Therefore
(
Ii
2

)
⊆ Ak. 2

Lemma 4.8 Exactly one of the following statements holds:

(a)
(
Ii
2

)
∩ A′ 6= ∅, for every i ∈ [n]; or

(b)
(
Ii
2

)
∩ A′ = ∅, for every i ∈ [n].

Proof. Assume this result fails. There is a 2-subset {i, j} of [n] such that
(
Ii
2

)
∩A′ 6= ∅

and
(
Ij
2

)
∩A′ = ∅. Suppose that

(
Ij
2

)
= {A1, A2, A3} andA′ ∈

(
Ii
2

)
∩A′. By Lemma 4.7,

there is k ∈ [3] such that
(
Ij
2

)
⊆ Ak. By Lemma 4.6, {CA1

∩Lk, CA2
∩Lk, CA3

∩Lk} ⊆
{CA′ ∩ Lk, Lk − CA′}. We have a contradiction because, by Lemma 3.12,

CA3
= CA1

△ CA2
= (A1 △ A2) ∪ [(CA1

∩ Lk)△ (CA2
∩ Lk)]

and so CA3
= A3 or CA3

= A3 ∪ Lk. 2

Lemma 4.9 If Lemma 4.8(a) holds, then

(
I1
2

)
∪

(
I2
2

)
∪ · · · ∪

(
In
2

)
⊆ A′. (4.14)

Proof. Assume that (4.14) fails. First, we show that, for i ∈ [n], k ∈ [3] and
A ∈

(
Ii
2

)
∩ Ak,

(a)
(
Ii
2

)
− {A} ⊆ A′; and

(b) |CA| = 4; and

(c) for j ∈ [n], j 6= i, there is Aj ∈
(
Ij
2

)
− A′, say Aj ∈ Akj , for some kj ∈ [3].

Moreover, kj is unique and kj 6= k.

Note that (a) is a consequence of Lemma 4.7. By Lemma 4.7 and hypothesis, there
are A′

j and A′′
j in

(
Ij
2

)
∩ A′, with A′

j 6= A′′
j . By Lemma 4.6,

CA ∩ Lk ∈ {CA′

j
∩ Lk, Lk − CA′

j
} ∩ {CA′′

j
∩ Lk, Lk − CA′′

j
}.

We can choose CA′

j
and CA′′

j
such that α 6∈ CA′

j
∪ CA′′

j
, for α ∈ Lk − CA. Thus

CA∩Lk = CA′

j
∩Lk = CA′′

j
∩Lk. Therefore |CA| = |A|+|CA∩Lk| = |A|+|CA′

j
∩Lk| = 4.

We have (b). By Lemma 3.12, CAj
= CA′

j
△CA′′

j
. As CA′

j
△CA′′

j
⊆ (A′

j△A′′
j )∪(L−Lk),
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it follows, by Lemma 3.11(i), that Aj = A′
j △ A′′

j 6∈ A′. Thus Aj ∈ Akj , for some
kj ∈ [3] with kj 6= k. By (b) applied to Aj, we conclude that |CAj

| = 4 and so kj
is unique. We define ki = k. Note that ki is unique by (b). By (c), ki 6= kj . Hence
k1, k2, . . . , kn are pairwise different and so n ≤ 3; a contradiction to (4.12). Therefore
A does not exist and so (4.14) holds. 2

Lemma 4.10 Item (b) of Lemma 4.8 holds. In particular, |A′| = 1, for every
A′ ∈ A′

F .

Proof. Suppose that Lemma 4.8(a) holds. By Lemma 4.9, we have that

A′′ =

(
I1
2

)
∪

(
I2
2

)
∪ · · · ∪

(
In
2

)
⊆ A′.

For A ∈ A′′, α ∈ L1 and β ∈ L2, choose CA such that CA ⊆ A∪(L1−α)∪(L2−β)∪L3,
say CA = A∪XA∪YA∪ZA, whereXA ⊆ L1−α, YA ⊆ L2−β and ZA ⊆ L3. (There is a
unique CA satisfying these conditions.) By Lemma 3.10(ii), |XA| = |YA| = |ZA| = 2.
For i ∈ [n], set

(
Ii
2

)
= {Ai, A

′
i, A

′′
i }. First, we show that

{XAi
, XA′

i
, XA′′

i
} =

(
L1 − α

2

)
, (4.15)

{YAi
, YA′

i
, YA′′

i
} =

(
L2 − β

2

)
, (4.16)

{ZAi
, ZA′

i
, ZA′′

i
} =

(
L3 − γi

2

)
, (4.17)

for some γi ∈ L3. By Lemma 3.12,

CA′′

i
= CAi

△ CA′

i
= (Ai △ A′

i) ∪ [XAi
△XA′

i
] ∪ [YAi

△ YA′

i
] ∪ [ZAi

△ ZA′

i
].

As XAi
, XA′

i
and XA′′

i
= XAi

△ XA′

i
are 2-subsets of L1 − α and |L1 − α| = 3,

it follows that (4.15) holds. A similar argument hods for (4.16). Observe that
ZAi

△ ZA′

i
△ ZA′′

i
= ∅. Thus the 2-subsets ZAi

, ZA′

i
and ZA′′

i
of L3 avoids an element

γi of L3. We have (4.17).

For A ∈ A′′, we set XA = {XA, YA, ZA}. Now, we prove that

XA ∩ XA′ 6= ∅, when {i, j} ∈

(
[n]

2

)
, A ∈

(
Ii
2

)
and A′ ∈

(
Ij
2

)
. (4.18)

Suppose that (4.18) fails. Consider

C = CA △ CA′ = A ∪ A′ ∪ [XA △XA′ ] ∪ [YA △ YA′ ] ∪ [ZA △ ZA′ ].

Observe that |C| ≥ 10 becuase: (a) |A| = |A′| = 2; (b) XA and XA′ are different
2-subsets of L1 − α and so |XA △ XA′ | = 2; and (c) similarly, |YA △ YA′ | = 2 and
|ZA △ ZA′ | ∈ {2, 4}. Thus C is not a circuit of M . As C ∩ L ⊆ L − {α, β} is
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independent in M and A and A′ are the unique series classes of M |(L ∪ A ∪ A′)
avoiding L, it follows that C1 ∪ C2 = C ⊆ (L − {α, β}) ∪ A ∪ A′, where C1 and C2

are disjoint circuits of M with A ⊆ C1 and A′ ⊆ C2. Hence C1 = CA and C2 = CA′ ,
a contradiction. Therefore (4.18) holds. Now, we refine (4.18) to

|XA ∩ XA′| = 1, when {i, j} ∈

(
[n]

2

)
, A ∈

(
Ii
2

)
and A′ ∈

(
Ij
2

)
. (4.19)

Assume that (4.19) fails. By (4.18), we have that |XA ∩XA′ | ≥ 2, say XA = XA′ and
YA = YA′ . By (4.15), (4.16) and (4.17),

XAj
,XA′

j
and XA′′

j
are pairwise disjoint. (4.20)

Assume that A′ = A′′
j . By (4.18), we have that

|XA ∩ XAj
| ≥ 1 and |XA ∩ XA′

j
| ≥ 1. (4.21)

By (4.20), XA ∩ XAj
⊆ XA − XA′ ⊆ {ZA} and XA ∩ XA′

j
⊆ XA − XA′ ⊆ {ZA}.

By (4.21), ZA = ZAj
and ZA = ZA′

j
, a contradiction to (4.20). We have (4.19).

By (4.15), (4.16) and (4.17), we may ssume that

{XA1
,XA′

1
,XA′′

1
} = {{X1, Y1, Z1}, {X2, Y2, Z2}, {X3, Y3, Z3}}, where

(
L1 − α

2

)
= {X1, X2, X3},

(
L1 − β

2

)
= {Y1, Y2, Y3},

(
L3 − γ1

2

)
= {Z1, Z2, Z3}.

By (4.19) applied nine times when i = 1 and j ∈ [n]− {1}, we obtain that

{XAj
,XA′

j
,XA′′

j
} = {{Xi1 , Yi2 , Zi3}, {Xj1 , Yj2 , Zj3}, {Xk1 , Yk2 , Zk3}}

with {i1, i2, i3} = {j1, j2, j3} = {k1, k2, k3} = [3]. By (4.15), (4.16) and (4.17) applied
to the index j, we have that {i1, j1, k1} = {i2, j2, k2} = {i3, j3, k3} = [3]. Therefore
there are two possibilities for {XAj

,XA′

j
,XA′′

j
}:

{{X1, Y2, Z3}, {X2, Y3, Z1}, {X3, Y1, Z2}} or {{X1, Y3, Z2}, {X2, Y1, Z3}, {X3, Y2, Z1}}.

Hence n ≤ 3, a contradiction to (4.12). 2

By Lemma 4.10, |A′| = 1, for every A′ ∈ A′
F . Fix CA′ satisfying Lemma 4.4.

Remember that our goal is to prove that A′
F = ∅. We are assuming that A′

F 6= ∅.

In the next lemma, item (iii) refines item (i). We state item (i) because it is a
step towards the proof of item (iii).

Lemma 4.11 Suppose that A ∈ A′
F . If A

′ ∈ Ai, for i ∈ [3], and |A′| = 2, then

(i) CA ∩ Li ⊆ CA′ ∩ Li or CA′ ∩ Li ⊆ CA ∩ Li or CA ∩ CA′ = ∅;

(ii) Li 6⊆ CA′; and
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(iii) CA′ ∩ Li ⊆ CA ∩ Li or CA ∩ CA′ = ∅.

Proof. Suppose that CA ∩ CA′ 6= ∅. As |A| = 1, it follows that {A,A′} is an apart
pair of L-arcs of M . By Lemma 3.7, CA △ CA′ is a circuit of M and

8 ≥ |CA △ CA′ | = |A|+ |A′|+ |CA ∩ (Lj ∪ Lk)|+ |(CA △ CA′) ∩ Li|,

where {i, j, k} = [3]. Thus

5 ≥ |CA ∩ (Lj ∪ Lk)|+ |(CA △ CA′) ∩ Li|. (4.22)

Now, we begin the proof of (i) to (iii).

(i) Assume that (i) fails. Hence (CA − CA′) ∩ Li 6= ∅ 6= (CA′ − CA) ∩ Li and so

|(CA △ CA′) ∩ Li| ≥ 2. (4.23)

Replacing (4.23) into (4.22), we get 3 ≥ |CA∩ (Lj ∪Lk)|. Therefore {|CA∩Lj|, |CA∩
Lk|} = {1, 2}. Hence vA = (4, 2, 1), i = 1 and |L1| = 5. Moreover, we have equality
in (4.23). In particular, |(CA−CA′)∩L1| = |(CA′ −CA)∩L1| = 1. Thus |CA∩L1| =
|CA′∩L1| = 4. There is {a, b} ∈

(
L1

2

)
such that CA∩L1 = L1−b and CA′∩L1 = L1−a.

Observe that D = CA △ (L1 ∪ L3) is a circuit of M such that D ∩ L1 = {b}. By
Lemma 3.7, D△ CA′ is a circuit of M . Hence

8 ≥ |D△ CA′ | = |A|+ |A′|+ |L1 − {a, b}|+ |CA ∩ L2|+ |L3 − CA|,

a contradiction because |D△ CA′ | = 10. Therefore (i) holds.

(ii) Assume that (ii) fails. Hence CA′ = A′ ∪ Li. First, we show that

|Li − CA| = 1. (4.24)

If |Li − CA| ≥ 2, then, by (4.22), |CA ∩ (Lj ∪ Lk)| = 3 and |Li − CA| = 2, since
(CA △ CA′) ∩ Li = Li − CA. That is, {j, k} = {2, 3} and i = 1, a contradiction
because vA = (4, 2, 1) and |L1 − CA| = 1. Thus (4.24) follows. For j ∈ [3], j 6= i, we
can view A′ ∈ Aj since

D = CA′ △ (Li ∪ Lj) = (A′ ∪ Li)△ (Li ∪ Lj) = A′ ∪ Lj

is a circuit of M . By (4.24) applied to j, we obtain |Lj −CA| = 1. Thus |L ∩CA| =
|L| − 3 ≥ 8. With this contradiction, we conclude the proof of (ii).

(iii) Assume that (iii) fails. By (i), CA ∩ Li $ CA′ ∩ Li. By (ii), CA′ ∩ Li $ Li. In
resume,

CA ∩ Li $ CA′ ∩ Li $ Li. (4.25)

Remember that CA △CA′ = [CA − (CA ∩ Li)] ∪A′ ∪ [(CA′ −CA) ∩ Li] is a circuit of
M . Thus

8 ≥ |CA|+ |A′ ∪ [(CA′ − CA) ∩ Li]| − |CA ∩ Li|. (4.26)
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As |CA| ∈ {7, 8}, it follows that |CA ∩ Li| ≥ 2 because |A′ ∪ [(CA′ − CA) ∩ Li]| ≥ 3.
By (4.25), |Li| ≥ 4. Next, we show that |Li| = 4. If |Li| = 5, then i = 1 and,
by (4.25), vA ∈ {(3, 2, 2), (2, 2, 2)}. Consider D = CA △ (L1 ∪ L3). By Lemma 3.7,
D△ CA′ is a circuit of M . As

D△ CA′ = A ∪ A′ ∪ [(L1 − CA′) ∪ (CA ∩ L1)] ∪ (CA ∩ L2) ∪ (L3 − CA),

it follows that |D| ≥ 1 + 2 + [1 + 2] + 2 + 1 = 9, a contradiction. Therefore |Li| = 4.
By (4.25), |CA′ ∩ Li| = 3 and |CA ∩ Li| = 2. Moreover, u ∈ {1, 2}. As |A′ ∪ [(CA′ −
CA) ∩ Li] ≥ 3, it follows, by (4.26), that |CA| = 7. Thus vA = (2, 2, 2). If j ∈ {1, 2}
and j 6= i, consider D = CA△ (Li∪Lj). Observe that (|D∩L1|, |D∩L2|, |D∩L3|) =
(2, 2, 2). Thus D can be taken to be CA; a contradiction because (i) is not satisfied
in this case. Therefore (iii) follows. 2

By Lemmas 4.7 and 4.10, for i ∈ [n], there is ki ∈ [3] such that

(
Ii
2

)
⊆ Aki .

Now, we prove:

Lemma 4.12 Suppose that A ∈ A′
F . If i ∈ [n], then CA ∩ Lki or Lki − CA contains

Xi =
⋃{

CA′ ∩ Lki : A
′ ∈

(
Ii
2

)}
.

Proof. Assume this result fails. By Lemma 4.11(iii), there are different 2-subsets Ai

and A′
i of Ii such that CAi

∩Lki ⊆ CA∩Lk and CA′

i
∩Lki ⊆ Lki−CA. As A

′′
i = Ai△A′

i

is the third 2-subset of Ii, it follows, by Lemma 3.12, that

CA′′

i
= CAi

△ CA′

i
= (Ai △ A′

i) ∪ (CAi
∩ Lki) ∪ (CA′

i
∩ Lki).

We arrive at a contradiction to Lemma 4.11(iii) applied to A′′
i and A. 2

Lemma 4.13 If i ∈ [n], then |Xi| ≥ 3.

Proof. By Lemma 3.6, when |Xi| ≤ 2, then |Xi| = 2 and CA′ = A′ ∪ Xi, for every
A′ ∈

(
Ii
2

)
, a contradiction because CA1

△ CA2
= A3, when

(
Ii
2

)
= {A1, A2, A3}. 2

Lemma 4.14 If {i, j} is a 2-subset of [n] such that ki = kj, then, for Ai ∈
(
Ii
2

)
and

Aj ∈
(
Ij
2

)
, CAi

∩ CAj
= ∅ or CAi

∩ Lki ⊆ CAj
∩ Lki or CAj

∩ Lki ⊆ CAi
∩ Lki.

Proof. Suppose that CAi
∩ CAj

6= ∅, say a ∈ CAi
∩ CAj

. By Lemmas 4.12 and 4.13,
|Lki | ≥ 4. We can choose k ∈ [3] such that k 6= ki and Lk ∪Lki is a circuit of M with
8 elements. Consider the following cycle of M :

D = (CAi
△ CAj

)△ (Lk ∪ Lki) = Ai ∪ Aj ∪ Lk ∪ [Lki − (CAi
△ CAj

)].
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u v w

u1 u2 u3 un

. . .

a1
b1
c1 a2

b2
c2 a3

b3 c3 an
bn cn

α β

Figure 2: The graph G isomorphic to K ′′
3,n.

There is b ∈ Lki − (CAi
∪ CAj

) because, by Lemmas 4.12 and 4.13, Xi and Xj are
contained in the unique set in {CA ∩ Lki , Lki − CA}, where A ∈ A′

F , with at least
3 elements. (Choose b in the other set.) As {a, b} is a 2-subset of Lki − (CAi

△
CAj

), it follows that |D| ≥ 9 and D is not a circuit of M . The result follows from
Lemma 3.9(ii) applied to {Ai, Aj}. 2

Lemma 4.15 If A ∈ A′
F , then |L1| = 5, u = 3, ki = 1, for every i ∈ [n], and there is

a partition {Y1, Y2} of CA ∩ L1 such that we can label the elements of Y1, Y2, Ik, for
k ∈ [n], by respectively {α, α′}, {β, β′}, {ak, bk, ck} such that M |(Y1∪Y2∪I1∪I2∪· · ·∪
In)/{α

′, β′} = M(G), where G is the graph such that v(G) = {u, v, w, u1, u2, . . . , un}
and E(G) = {α, β, a1, a2, . . . , an, b1, b2, . . . , bn, c1, c2, . . . , cn} with the incidences α =
uv, β = vw, ak = uku, bk = ukv, ck = ukw, for k ∈ [n] (see Figure 2). Moreover,
{α, α′} and {β, β′} are series classes of M |(Y1 ∪ Y2 ∪ I1 ∪ I2 ∪ · · · ∪ In).

Proof. There is a 2-subset {i, j} of [n] such that ki = kj because, by (4.12), n ≥ 4 and
{k1, k2, . . . , kn} ⊆ [3]. First, we establish the existence of X ∈ {CA ∩ Lki , Lki − CA}
such that

Xi ∪Xj ⊆ X and 3 ≤ min{|Xi|, |Xj|} and |X| ≤ 4. (4.27)

By Lemma 4.12, there isX ∈ {CA∩Lki , Lki−CA} such thatXi ⊆ X. By Lemma 4.13,
|X| ≥ |Xi| ≥ 3. So |Lki−X| ≤ 2. By Lemmas 4.12 and 4.13, Xj ⊆ X, since |Xj| ≥ 3.
Moreover, |X| ≤ 4. Hence (4.27) follows. Set

{Y1, Y2, Y3} = {CA′ ∩ Lki : A
′ ∈

(
Ii
2

)
} and {Z1, Z2, Z3} = {CA′ ∩ Lki : A

′ ∈
(
Ij
2

)
}.

Next, we prove that

Xi = Xj = X, |X| = 4, ki = 1, |L1| = 5 and u = 3. (4.28)

First, we show that |Xi| = |Xj| = 4. Assume that |Xi| = 3 or |Xj| = 3, say |Xi| = 3.
In this case,

{Y1, Y2, Y3} =

(
Xi

2

)
.

As |Xi| ≥ 3, |Xj| ≥ 3 and 4 ≥ |Xi ∪ Xj|, it follows that |Xi ∩ Xj| ≥ 2. Choose
a 2-subset {a, b} of Xi ∩ Xj . Thus {a, b} = Yr, for some r ∈ [3], say r = 1, since
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{Y1, Y2, Y3} =
(
Xi

2

)
. As Z1 △ Z2 △ Z3 = ∅, it follows that a ∈ Zs ∩ Zt, for a 2-subset

{s, t} of [3], say s = 1, t = 2. By Lemma 4.14, Y1 ⊆ Z1 and Y1 ⊆ Z2 because
|Y1| = 2 and min{|Z1|, |Z2|} ≥ 2. Thus Z3 ∩ Y1 = ∅. As |Y1 ∪ Z3| ≥ 4, it follows
that Y1 ∪ Z3 = X and |Z3| = 2. Note that |Y2 ∩ Y1| = |Y2 ∩ Z3| = 1. This is a
contradiction to Lemma 4.14 because Y2 ∩ Z3 6= ∅, Z3 6⊆ Y2 and Y2 6⊆ Z3. Therefore
|Xi| = |Xj| = |X| = 4. By (4.27), Xi = Xj = X = CA∩Lki and so ki = 1. Moreover,
|L1| = 5 and u = 3. Thus (4.28) holds.

Now, we establish that

if Z ∈ {Y1, Y2, Y3, Z1, Z2, Z3}, then |Z| ∈ {2, 4}. (4.29)

Assume that (4.29) fails. There is Z ∈ {Y1, Y2, Y3, Z1, Z2, Z3} such that |Z| 6∈ {2, 4}.
As 2 ≤ |Z| ≤ 4, it follows that |Z| = 3, say |Y1| = 3. For each r ∈ [3], Y1 ∩ Zr 6= ∅
since |Zr| ≥ 2, |Y1| = 3 and |Zr∪Y1| ≤ |X| = 4. By Lemma 4.14, Zr ⊆ Y1 or Y1 ⊆ Zr,
for each r ∈ [3]. Hence there is a 2-subset {s, t} of [3] such that

(a) Zs ⊆ Y1 and Zt ⊆ Y1; or

(b) Y1 ⊆ Zs and Y1 ⊆ Zt.

If (a) happens, then Xj = Zs ∪ Zt ⊆ Y1 $ X, a contradiction to (4.28). If (b)
happens, then Zs △ Zt ⊆ Xj − Y1 and so |Zs △ Zt| ≤ 1, a contradiction because
Zs △ Zt ∈ {Z1, Z2, Z3}. Hence (4.29) follows.

In this paragraph, we show that

X ∈ {Y1, Y2, Y3} ∩ {Z1, Z2, Z3}. (4.30)

If (4.30) fails, then, by symmetry, we may assume that X 6∈ {Y1, Y2, Y3}. By (4.29),
|Y1| = |Y2| = |Y3| = 2. Thus Xi = Y1 ∪ Y2 has 3 elements because Y3 = Y1 △ Y2, a
contradiction to (4.28). We have (4.30).

Finally, we show that,

when Y3 = Z3 = X, then {Y1, Y2} = {Z1, Z2} is a partition of X. (4.31)

By (4.30), we may assume that Y3 = Z3 = X. By (4.29), |Y1| = |Y2| = |Z1| = |Z2| =
2. As X = Y1 ∪ Y2 = Z1 ∪ Z2 and |X| = 4, it follows that {Y1, Y2} and {Z1, Z2} are
partitions of X. By Lemma 4.14, {Y1, Y2} = {Z1, Z2}. Thus (4.31) follows.

By (4.28), L is a (5, 3, 3)-theta set of M . As |L2| = |L3| = 3, it follows, by
Lemmas 4.12 and 4.13, that k1 = k2 = · · · = kn = 1. By (4.31), we can label
the elements of Ik, for k ∈ [n], by ak, bk, ck such that {ak, bk} ∪ Y1, {bk, ck} ∪ Y2

and {ak, ck} ∪ Y1 ∪ Y2 are circuits of M . These circuits span the circuit space of
N = M |(Y1 ∪ Y2 ∪ I1 ∪ I2 ∪ · · · ∪ In). Note that Y1 and Y2 are series classes of N .
Moreover, {ak, bk, α}, {bk, ck, β}, {ak, ck, α, β}, for k ∈ [n], span the circuit space of
both N/{α′, β′} and M(G). Therefore N/{α′, β′} = M(G). 2

Lemma 4.16 A′
K = ∅.
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Proof. Assume that A′ ∈ A′
K . By Lemma 3.11, |A′| = 1 and Li, for some i ∈ {2, 3}

is a series class of M |(L ∪ A′), say i = 3. Let Y1, Y2, a1, b1 and c1 be as defined in
Lemma 4.15. First, we show that |CA′ ∩ Yj| ∈ {0, 2}, for every j ∈ [2]. Assume that
|CA′ ∩ Yj| = 1, say j = 1. By Lemma 3.11(iv) applied to A′ and {a1, b1}, we have
that (a) happens because |CA′ ∩ Y1| = |Y1 − CA′ | = 1. Thus C{a1,b1} = {a1, b1} ∪ L1,
a contradiction. Therefore {|CA′ ∩ Y1|, |CA′ ∩ Y2|} ⊆ {0, 2}. Next, we establish that
|CA′∩(Y1∪Y2)| ∈ {0, 4}. If |CA′∩(Y1∪Y2)| = 2, then, by Lemma 3.11(iv) applied to A′

and {a1, c1}, we have that (a) occurs since |CA′ ∩ (Y1 ∪ Y2)| = |(Y1 ∪ Y2)− CA′ | = 2.
Thus C{a1,c1} = {a1, c1} ∪ L1; a contradiction. Hence |CA′ ∩ (Y1 ∪ Y2)| ∈ {0, 4}.
Replacing CA′ by CA′ △ (L1 ∪ L2), when |CA′ ∩ (Y1 ∪ Y2)| = 4, we may assume that
|CA′ ∩ (Y1 ∪ Y2)| = 0. Therefore x ∈ CA′ , where {x} = L1 − (Y1 ∪ Y2). Consider the
following circuit of M |(L ∪ A′):

C = CA′ △ (L1 ∪ L3) = A′ ∪ (L1 − x) ∪ (L2 ∩ CA′) ∪ L3.

Hence |C| = 8 + |L2 ∩ CA′ |, a contradiction because L2 ∩ CA′ 6= ∅. 2

By Lemma 4.10, |A′| = 1, for every A′ ∈ A′
F . Let α1, α2, . . . , αm be pairwise

different elements of M , with m ≥ 1, such that A′
F = {{α1}, {α2}, . . . , {αm}}.

Lemma 4.17 If i ∈ [m], then there are 2-subsets Wi and W ′
i of L2 and L3 respec-

tively such that {x, αi}∪Wi ∪W ′
i is a circuit of M , where {x} = L1 − (Y1 ∪ Y2). (Y1

and Y2 are defined in Lemma 4.15.)

Proof. If A = {αi}, then, by Lemmas 4.4 and 4.15, we can choose CA such that
CA = A∪ (Y1∪Y2)∪Wi∪ di, where Wi is a 2-subset of L2 and di ∈ L3. Consider the
circuit C = CA △ (L1 ∪ L3) = {x, αi} ∪Wi ∪W ′

i , where W ′
i = L3 − di. The result

follows. 2

Lemma 4.18 If {i, j} is a 2-subset of [m], then

(a) Wi = Wj and W ′
i 6= W ′

j; or

(b) Wi 6= Wj and W ′
i = W ′

j.

Proof. By Lemma 4.17,

C = ({x, αi} ∪Wi ∪W ′
i )△ ({x, αj} ∪Wj ∪W ′

j) = {αi, αj} ∪ (Wi △Wj)∪ (W ′
i △W ′

j)

is a cycle of M . Observe that {|Wi △ Wj|, |W
′
i △ W ′

j |} ⊆ {0, 2} because, by
Lemma 4.15, |L2| = |L3| = 3. If |Wi △Wj| = |W ′

i △W ′
j | = 0, then C = {αi, αj}; a

contradiction because M is 3-connected. Thus 2 ∈ {|Wi△Wj|, |W
′
i △W ′

j |}. If 0 also
belongs to this set, then (a) or (b) holds. Assume that 0 does not belong it, that is,
|Wi △Wj| = |W ′

i △W ′
j | = 2. Consider the cycle D of M :

D = C △ (L1 ∪ L3) = {αi, αj} ∪ L1 ∪ (Wi △Wj) ∪ d,
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where {d} = L3 − (W ′
i △ W ′

j). Note that |D| = 10. There are pairwise disjoint
circuits D1, D2, . . . , Dl of M , for l ≥ 2, such that D = D1 ∪D2 ∪ · · · ∪Dl. Note that
C(M |L) ∩ {D1, D2, . . . , Dl} = ∅. Thus Dk ∩ {αi, αj} 6= ∅, for every k ∈ [l]. Hence
l = 2. We may assume that αi ∈ D1 and αj ∈ D2. Observe that d ∈ D1 or d ∈ D2,
say d ∈ D1. Therefore αj ∈ D2 ⊆ L1 ∪ L2 ∪ αj , a contradiction since {αj} ∈ A′

F . 2

Lemma 4.19 m ≤ 3. Moreover,

(a) W1 = W2 = · · · = Wm and W ′
1,W

′
2, . . . ,W

′
m are pairwise different 2-subsets of

L3; or

(b) W ′
1 = W ′

2 = · · · = W ′
m and W1,W2, . . . ,Wm are pairwise different 2-subsets of

L2.

Proof. If m = 1, then the result follows. Assume that m ≥ 2. By Lemma 4.18,
permuting L2 with L3, when necessary, we may assume that

W1 = W2 and W ′
1 6= W ′

2. (4.32)

Choose j ∈ [m] − {1, 2}. (If m = 2, then the result follows.) First, we show that
Wj = W1 = W2. If Wj 6= W1 = W2, then, by Lemma 4.18, W ′

j = W ′
1 and W ′

j = W ′
2,

a contradiction to (4.32). Thus Wj = W1 = W2. As j is any element of [m]− {1, 2},
it follows that W1 = W2 = · · · = Wm. By Lemma 4.18, W ′

1,W
′
2, . . . ,W

′
m are pairwise

different 2-subsets of L3. We have (a). Hencem ≤ 3 since L3 contains only 3 different
2-subsets. 2

By symmetry, we may assume that Lemma 4.19(a) holds. By Theorem 2.1, M has

an L-arc Ã such that Ã 6→ W1 and Ã 6→ L−W1. By Lemma 4.16, Ã 6∈ A′
K . Note that

Ã 6∈ A′
F , since we are assuming that Lemma 4.19(a) holds. Thus Ã ∈ A1 ∪A2 ∪A3.

Hence Ã ∈ A2. By Lemma 4.15, |Ã| = 1 and CÃ = Ã ∪W , where W ⊆ L2, |W | = 2
and |W ∩W1| = 1. Consider, for A = {α1}, the cycle of M :

C = CA △ CÃ = A ∪ Ã ∪ (L1 − {x}) ∪ (W △W1) ∪ (CA ∩ L3).

Note that |C| = 9. By Lemma 3.7, C is a circuit of M . With this contradiction we
finish the proof of Theorem 4.1.

5 Proof of Theorem 3.3

We divide the proof of Theorem 3.3 into a sequence of lemmas. Assume that Theo-
rem 3.3(i) fails, that is, M has a theta set L such that |L| ≥ 11. By Theorem 4.1,
L is a (5, 3, 3)-theta set. When {L1, L2, L3} is the canonical partition of L in M , we
may assume that |L1| = 5 and |L2| = |L3| = 3. For i ∈ [3], define A,Ai,A

′,A′
K and

A′
F as we did in Section 2. By Theorem 4.1, A′

F = ∅. By Lemma 3.4, ∅ 6= A′ = A′
K .
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By Lemma 3.11(i), |A| = 1, for every A ∈ A′. For A ∈ A, define CA as we did in
Section 2. We fix more notation. For i ∈ {2, 3}, set

V = {a ∈ E(M)− L : {a} ∈ A′} and

Vi = {a ∈ V : {a} → L1 ∪ Li}.

By Lemma 3.11(ii), {V2, V3} is a partition of V .

Lemma 5.1 If a ∈ Vi, for i ∈ {2, 3}, then there is a partition {Za,Wa} of L1, with
|Za| = 2 and |Wa| = 3, a partition {Xa, Ya} of Li, with |Xa| = 1 and |Ya| = 2, such
that a ∪ Xa ∪ Za and a ∪ Ya ∪ Wa are circuits of M . (These circuits are the two
options for C{a}.)

For a ∈ V , we use the sets Xa, Ya, Za and Wa and theirs properties establish in
Lemma 5.1 along this section without referring to this lemma.

Proof. Replacing C{a} by C{a} △ (L1 ∪ Li), when necessary, we may assume that
|C{a} ∩ L1| > |L1 − C{a}|. Set Wa = C{a} ∩ L1, Za = L1 − C{a}, Ya = C{a} ∩ Li and
Xa = Li − C{a}. We have just chosen C{a} such that |Wa| > |Za|. Hence |Wa| ≥ 3.
If j satisfies {i, j} = {2, 3}, then, by Lemma 3.11(iii),

D1 = C{a}△(L1∪Lj) = a∪Ya∪Za∪Lj and D2 = C{a}△(Li∪Lj) = a∪Xa∪Wa∪Lj

are circuits of M satisfying |D1| = |D2| = 8. Thus |Ya|+ |Za| = |Xa|+ |Wa| = 4. As
∅ 6∈ {Xa, Ya, Za,Wa} because {a} 6→ L1 and {a} 6→ Li, it follows that 3 ≤ |Wa| =
4−|Xa| ≤ 3. Therefore |Wa| = 3 and |Xa| = 1. Consequently |Za| = |L1|− |Wa| = 2
and |Ya| = |Li| − |Xa| = 2. 2

Lemma 5.2 For i ∈ {2, 3}, Vi 6= ∅.

Proof. By symmetry, we may assume i = 3. By Theorem 2.1, there is an L-arc A
such that A 6→ L1∪L2 and A 6→ L3 because {L1∪L2, L3} is a 2-separation for M |L.
Thus A ∈ A′ = A′

K . By Lemma 3.11(i)(ii), |A| = 1, say A = {a}, and M |(L ∪ A) is
a subdivision of M(K4) with A → L1 ∪L2 or A → L1 ∪L3. Hence A → L1 ∪L3 and
so a ∈ V3. 2

Lemma 5.3 If A ∈ Ai and a ∈ Vi, for i ∈ {2, 3}, satisfy Xa ⊆ CA, then CA = A∪Li.

Proof. Suppose that CA = A ∪ X, for X ⊆ Li. Take C{a} = a ∪ Xa ∪ Za. If
X = Li, then the result follows. Assume that X $ Li. By Lemma 3.6, |A| ≤ |X| ≤
|Li|−1 ≤ 2. Thus |X| = 2 because every parallel class of M is trivial. By hypothesis,
Xa ⊆ X. Set S2 = (C{a} ∩ Li) ∩ CA = Xa and S3 = (Li − C{a}) ∩ CA = X −Xa. As
|S2| = |S3| = 1, it follows, by Lemma 3.11(iv), that Lemma 3.11(iv)(a) holds. Thus
CA = A ∪ Li, a contradiction. The result follows. 2
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Lemma 5.4 Suppose that N is a binary matroid. Let {X, Y } be an exact 2-separ-
ation for N |(X∪Y ). Assume that N |(X∪Y ) is connected. If A is an (X∪Y )-arc of N
such that A 6→ X and A 6→ Y and C is a circuit of M such that A ⊆ C ⊆ A∪X∪Y ,
then C ∩X 6= ∅, X − C 6= ∅, Y − C 6= ∅ and C ∩ Y 6= ∅.

Proof. As A 6→ X, it follows that C∩Y 6= ∅. Similarly, C∩X 6= ∅. The result follows
provided X − C 6= ∅ and Y − C 6= ∅, say X − C 6= ∅. Assume that X − C = ∅.
Hence X $ C because C ∩ Y 6= ∅. Thus X is independent in N . Let C ′ be a
circuit of N |(X ∪ Y ) such that C ′ ∩ X 6= ∅ and C ′ ∩ Y 6= ∅. As X is independent
in N , it follows that X ⊆ C ′. Consider the cycle D = C △ C ′ of M . Note that
A ⊆ D ⊆ Y ∪ A. There is a circuit D′ of N such that A ⊆ D′ ⊆ D because A is a
series class of N |(X ∪Y ∪A). Hence A → Y , a contradiction. Therefore X −C 6= ∅.

2

Lemma 5.5 For i ∈ {2, 3}, there is a 2-subset {a, b} of Vi such that Xa 6= Xb.

Proof. By Lemma 5.2, there is a ∈ Vi. Observe that {Ya, (L − Ya) ∪ a} is a 2-
separation for M |(L ∪ a). By Theorem 2.1, there is an (L ∪ a)-arc A of M such
that A 6→ Ya and A 6→ (L − Ya) ∪ a. As L spans a in M , it follows that A is an
L-arc of M . Consider CA. By Lemma 5.4, CA ∩ Ya 6= ∅ and Ya − CA 6= ∅. Hence
|CA ∩ Ya| = |Ya − CA| = 1. We have two cases to deal with: A ∈ A′ and A 6∈ A′. If
A ∈ A′ = A′

K , say A = {b}, then b ∈ Vi and

Yb =

{
CA ∩ Li, when |CA ∩ Li| = 2;

Li − CA, when |CA ∩ Li| = 1.

If Yb = CA ∩ Li, then Xb = Li − CA ⊇ Ya − CA 6= ∅ and so Xb = Ya − CA. In
particular, Xa ∩ Xb = ∅ because Xa ∩ Ya = ∅. Hence Xa 6= Xb. If Yb = Li − CA,
then Xb = CA ∩ Li ⊇ CA ∩ Ya 6= ∅ and so Xb = Ya ∩CA. Again, Xa ∩Xb = ∅ and so
Xa 6= Xb. When A ∈ A′, the result follows. Assume that A 6∈ A′. Therefore A ∈ Aj,
for some j ∈ [3]. Note that j = i since |CA ∩ Ya| = |Ya − CA| = 1. If CA = A ∪X,
for X $ Li, then, by Lemma 3.6, |X| ≥ 2 and so |X| = 2. Thus Xa ⊆ X ⊆ CA, a
contradiction to Lemma 5.3. 2

Lemma 5.6 A2 ∪ A3 ⊆ A1.

Proof. If A ∈ Ai −A1, for some i ∈ {2, 3}, then CA = A ∪X, for some X $ Li. By
Lemma 3.6, |X| = 2. By Lemma 5.5, X contains Xa, for some a ∈ Vi, a contradiction
to Lemma 5.3. 2

Lemma 5.7 If {a, a′} is a 2-subset of V with Xa 6= Xa′, then Za ∩ Za′ 6= ∅.

Proof. Suppose that Za ∩ Za′ = ∅. If b ∈ L1 − (Za ∪ Za′), then {{b}, Za, Za′} is a
partition of L1. We deal with the two cases simultaneously: {|{a, a′} ∩ V2|, |{a, a

′} ∩
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(A)
Xa Ya′

Ya Xa′

{a}

{a′}
{b}

Za′

Za

(B)
Xa

Xa′

{a}

{a′}

{b}

Za′

Za

L3Ya ∩ Ya′

Figure 3: The two possibilities for the graph H. In (A), when a ∈ V2 and
a′ ∈ V3. In (B), when {a, a′} ⊆ V2.

V3|} can be equal to {1} or {0, 2}, say a ∈ V2 and a′ ∈ V3; or {a, a
′} ⊆ V2. In both

cases the circuit space of N = M |(L ∪ {a, a′}) is spanned by

L1 ∪ L2, L1 ∪ L3, a ∪Xa ∪ Za, a
′ ∪Xa′ ∪ Za′ . (5.1)

In Figure 3, H is a graph such that E(H) = SC(N). Let G be a subdivision of H
such that each edge S of H is replaced by a path of length |S| whose edges are labeled
by the elements of S. Note that the circuits displayed in (5.1) span the circuit space
of M(G). Therefore M(G) = M |(L ∪ {a, a′}). When a ∈ V2 and a′ ∈ V3,

(a ∪ Ya ∪Wa)△ (a′ ∪ Ya′ ∪Wa′) = {a, a′} ∪ Za ∪ Za′ ∪ Ya ∪ Ya′

is a circuit of M with 10 elements, a contradiction. When {a, a′} ⊆ V2,

(L2 ∪ L3)△ (a ∪Xa ∪ Za)△ (a′ ∪Xa′ ∪ Za′) = {a, a′} ∪ Za ∪ Za′ ∪ (Ya ∩ Ya′) ∪ L3

is a circuit of M with 10 elements, a contradiction. 2

Lemma 5.8 For i ∈ {2, 3}, there is a connected component Ni of M/L1 such that
E(Ni) = Li ∪ Vi, Li is a triangle of Ni, each element of Vi is in parallel with some
element of Li and Ni has at least two non-trivial parallel classes.

Proof. By symmetry, we may assume i = 2. The set of L-arcs of M\V2 is A−A′
2 =

A′
3 ∪ A1, since, by Lemma 5.6, A2 ∪ A3 ⊆ A1. Therefore A → L1 ∪ L3, for every

A ∈ A−A′
2. By Theorem 2.1, M\V2 has a 2-separation {X, Y } such that X∩L = L2

and Y ∩ L = L1 ∪ L3. Moreover, by Theorem 2.2, we may take

Y = (L1 ∪ L3) ∪
(⋃

{A : A ∈ A−A′
2}
)

and X = L2. Thus L2 is a series class of M\V2. As L2 is a circuit of (M\V2)/L1,
it follows that L2 is the ground set of a connected component H of (M\V2)/L1. By
Lemma 5.1, for each a ∈ V2, a∪Xa∪Za is a circuit of M . Therefore a∪Xa is circuit
of M/L1. As |a ∪ Xa| = 2 and Xa ⊆ L2, say Xa = {xa}, it follows that, in M/L1,



M. LEMOS/AUSTRALAS. J. COMBIN. 92 (3) (2025), 320–356 349

a is in parallel with xa ∈ L2. If N2 is the connected component of M/L1 satisfying
L2 ⊆ E(N2), then V2 ⊆ E(N2) and N2\V2 = H. Thus E(N2) = L2 ∪ V2. Moreover,
when a ∈ V2, a∪xa is contained in a non-trivial parallel class of N2. By Lemma 5.5,
N2 has at least two non-trivial parallel classes. 2

Now, we refine Lemma 5.8. Let C2
3 be the unique connected matroid over

{1, 2, 3, 4, 5, 6} having {1, 2}, {3, 4} and {5, 6} as parallel classes.

Lemma 5.9 If {a, a′} is a 2-subset of Vi, for i ∈ {2, 3}, then Za = Za′. Moreover,
Ni is isomorphic to C2

3 or C2
3\6.

Proof. First, we establish that
Za = Za′ . (5.2)

Assume that i = 2. Observe that L′ = (L−Xa)∪ a is a (5, 3, 3)-theta set of M with
canonical partition {L3∪Za,Wa, a∪Ya}. Applying Lemma 5.8 to L′, we conclude that
M/(L3 ∪Za) has rank-2 connected components H2 and H3 having Wa and a∪ Ya as
triangles respectively. As [M/(L3 ∪ Za)]/Wa = (M/L1)/L3, it follows that H3 = N2

because a ∪ Ya ⊆ L2 ∪ V2 = E(N2). By Lemma 5.8, there is b ∈ L2 such that {a′, b}
is a circuit of H3. Let C be a circuit of M such that C − (L3 ∪ Za) = {a′, b}. As
C ⊆ L∪a′ and C∩L2 = {b}, it follows that C = {a′, b}∪Za′ or C = {a′, b}∪Wa′∪L3.
Hence C = {a′, b} ∪ Za′ because |L1 ∩ (L3 ∪ Za)| = 2 and |Wa′ | = 3. Therefore
Za′ ⊆ (L3 ∪ Za) ∩ L1 = Za and so Za = Za′ . We have (5.2). Now, we show that
every parallel class of N2 has at most two elements. Assume that P is a parallel
class of N2 such that |P | ≥ 3. Choose a 2-subset {a1, a2} of P − L2. Observe that
Xa1 = Xa2 = {x}, where x ∈ L2 ∩ P . By (5.2), Za1 = Za2 . Hence

(a1 ∪Xa1 ∪ Za1)△ (a2 ∪Xa2 ∪ Za2) = {a1, a2}

is a circuit of M , a contradiction. Thus every parallel class of N2 has at most two
elements. The result follows from Lemma 5.8. 2

Lemma 5.10 If A ∈ A1 and |A| = 3, then

(i) CA = A ∪ L1; or

(ii) CA = A ∪X, with X ⊆ L1 and |X| = 3.

Moreover, when (ii) happens, X = Wa = Wa′, for every a ∈ V2 and a′ ∈ V3.

Proof. There is X ⊆ L1 such that CA = A ∪ X. If X = L1, then (i) happens.
Assume that X $ L1. By Lemma 3.6, |A| ≤ |X| < |L1| = 5. Thus X ∈ {3, 4}.
If |X| = 4, then L1 ∪ L2 ∪ A is a (4, 4, 3)-theta set of M with canonical partition
{X, (L1 ∪ L2) − X,A}, a contradiction to Theorem 4.1. Hence |X| = 3. We have
(ii). If X = Wa = Wa′ , then the result follows. By symmetry, we may assume that
X 6= Wa. Set S2 = [(a ∪Xa ∪ Za) ∩ L1] ∩ CA and S3 = [L1 − (a ∪Xa ∪ Za)] ∩ CA.
Note that S2 = Za ∩ X 6= ∅ and S3 = Wa ∩ X 6= ∅. As {|S2|, |S3|} = {1, 2},
since |S2|+ |S3| = |X|, it follows that Lemma 3.11(iv)(b)(c) cannot happen because
|A| = 3. Hence Lemma 3.11(iv)(a) holds and CA = A ∪ L1, a contradiction. 2
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Lemma 5.11 If N is a connected component of M/L1, then

(i) r(N) = 2 and N is isomorphic to C2
2 or C2

3\6; or

(ii) r(N) = 1 and N is isomorphic to U1,|E(N)|; or

(iii) r(N) = 0 and N is isomorphic to U0,1.

Proof. If N = N2 or N = N3, then, by Lemma 5.9, (i) follows. Assume that
N 6∈ {N2, N3}. If

A′′ = {A ∈ A : A ∩ [E(N2) ∪ E(N3)] = ∅},

then, by Lemma 5.6, A′′ ⊆ A1. As every theta set of M has at most 11 elements, it
follows that |A| ≤ 3, for every A ∈ A′′. If |A| = 3, then, by Lemma 5.10, we have
two possibilities:

(a) CA = A ∪ L1. In this case, by Lemma 5.9, when applied to L′ = L1 ∪ L2 ∪ A
whose canonical partition is {L1, L2, A}, M/L1 has connected component N
such that A ⊆ E(N) and N is isomorphic to C2

2 or C2
3\6. We have (i).

(b) CA = A∪Wa, for a ∈ V . Observe that L′ = L1∪L2∪A is a theta set of M with
canonical partition {L2∪Za,Wa, A}. By Lemma 5.9 applied to L′, M/(L2∪Z2)
has connected components N and N ′ such that A ⊆ E(N),Wa ⊆ E(N ′) and N
and N ′ are isomorphic to C2

3 or C2
3\6. If H is the connected component ofM/L1

that contains A, then H 6∈ {N2, N3}. Note that H is a connected component
of M/[L1 ∪E(N2)]. Thus H is a connected component of M/(L1 ∪L2) because
E(N2)−L2 is a set of loops of this matroid. As M/(L1∪L2) = M/(L2∪Za)/Wa

and Wa ⊆ E(N ′), it follows that H = N . We have (i).

Now, let K be a connected component of M/L1 such that every L-arc A of M
satisfying A ⊆ E(K) has cardinality at most 2. If |A| = 1, for some A ∈ A′′ such
that A ⊆ E(K), then r(K) = 0 and (iii) follows. Assume that |A| = 2, for every
A ∈ A′′ such that A ⊆ E(K). By Lemma 2.3, r(K) = 1 and (ii) follows. 2

Lemma 5.12 If A ∈ A1 and a ∈ V , then CA ⊇ Za or CA ⊇ Wa or Wa ⊇ CA ∩ L1.

Proof. Assume this result fails. If CA = A ∪ X, for X ⊆ L1, then |X ∩ Za| =
|Za −X| = 1 and Wa −X 6= ∅. By Lemma 3.6, |A| ≤ |X| and so |X| ≥ 2 because
M is simple. Set S1 = Za − X,S2 = Za ∩ X,S3 = Wa ∩ X and S4 = Wa − X.
Note that ∅ 6∈ {S1, S2, S3, S4}. We have a contradiction to Lemma 3.11(iv) applied
to Ca = a ∪Xa ∪ Za and CA. 2

Lemma 5.13 If a ∈ V2 and a′ ∈ V3, then Za = Za′.
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Proof. Note that L′ = (L − Xa) ∪ a is a theta-set of M with canonical partition
{L3 ∪ Za, (L2 − Xa) ∪ a,Wa}. By Lemma 5.9 applied to L′, there is a connected
component N1 of M/(L3∪Za) such that Wa is a circuit of N1 and N1 is isomorphic to
C2

3 or C2
3\6. Let {b, b

′} and {xb, xb′} be 2-subsets of E(N1)−Wa and Wa respectively
such that {b, xb} and {b′, xb′} are parallel classes of N1. By Lemma 5.9 applied to L′,
there is a 2-subset X of L3 ∪ Za such that {b, xb} ∪X and {b′, xb′} ∪X are circuits
of M . We have three possibilities for X:

(i) IfX ⊆ L3, then b∪X and b′∪X are cycles ofM/L1. As L3 is a triangle ofM/L1,
it follows that b∪X and b′∪X are also triangles ofM/L1. If {b

′′} = L3−X, then
{b, b′, b′′} is contained in a parallel class of N3; a contradiction to Lemma 5.9.

(ii) If |X ∩ L3| = 1, say b′′ ∈ X ∩ L3, then {b, b′′} and {b′, b′′} are cycles of M/L1.
Similarly, we conclude that {b, b′, b′′} is contained in a parallel class of N3.
Again, we arrive at a contradiction to Lemma 5.9. Thus we must have (iii).

(iii) If X ∩ L3 = ∅, then X = Za.

Similarly, we conclude that X = Za′ . The result follows. 2

By Lemmas 5.9 and 5.13, for a 2-subset {a, a′} of V , we have Za = Za′ and
so Wa = L1 − Za = L1 − Za′ = Wa′ . Therefore the connected component N1

of M/(L3 ∪ Za) that contains Wa does not depend on a ∈ V2. By the proof of
Lemma 5.13, N1 is isomorphic to C2

3 or C2
3\6.

Lemma 5.14 Let K be a connected component of M/L1 such that r(K) = 1. If
Za = {x, y}, for a ∈ V2, then:

(i) If I is a 2-subset of E(K), then I ∈ A1 and CI ∩ L1 ∈ {Za,Wa, L1 − x, L1 −
y, L1}.

(ii) If I is a 3-subset of E(K) and
(
I

2

)
= {I1, I2, I3}, then XI = {CI1 ∩ L1, CI2 ∩

L1, CI3 ∩ L1} is equal to {Za,Wa, L1} or {Za, L1 − x, L1 − y}.

(iii) |E(K)| ∈ {3, 4} and, when |E(K)| = 4, E(K) is a circuit-cocircuit of M .

(iv) If I and J are 3-subsets of E(K), then XI = XJ . (We denote this set by XK.)

Proof. (i) By Lemma 5.6, I ∈ A1. There is X ⊆ L1 such that CI = I ∪ X. In
M/(L3 ∪ Za), CI − (L3 ∪ Za) = I ∪ (X − Za) is a union of pairwise disjoint circuits.
As X − Za ⊆ Wa ⊆ E(N1), where N1 is the connected component of M/(L3 ∪ Za)
such that Wa ⊆ E(N1), it follows that X − Za = ∅ or X − Za = Wa because Wa

is a triangle of N1. If X − Za = ∅, then X = Za, since |X| ≥ 2, by Lemma 3.6. If
X − Za = Wa, then X ∈ {Wa, L1 − x, L1 − y, L1}.

(ii) If L1−x and L1−y do not belong to XI , then XI = {Za,Wa, L1} and (ii) follows.
Assume that L1−x ∈ XI , say. Observe thatWa and L1 do not belong to XI otherwise
(L1−x)△Wa = {y} or (L1−x)△L1 = {x} belong to XI , because CI1 △CI2 = CI3 .
(That is, XI is closed under symmetric differences.) By (i), XI = {Za, L1−x, L1−y}.
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(iii) Suppose that I = {a, b, c} is a 3-subset of E(K). By (iii), L1 or L1 − x belongs
to XI . Suppose that C{a,b} = {a, b}∪L1, when L1 ∈ XI , or C{a,b} = {a, b}∪ (L1−x),
when L1−x ∈ XI . Assume that d ∈ E(K)−I. Set J = {a, b, d}. Note that L1 ∈ XJ ,
when L1 ∈ XI , and L1 − x ∈ XJ , when L1 − x ∈ XI . By (ii), XI = XJ . There is a
2-subset {α, β} of J such that L1 ∩ C{α,β} = L1 ∩ C{a,c} ∈ XI = XJ . Hence

c ∈ C{α,β} △ C{a,c} = {α, β} △ {a, c} ⊆ I ∪ J = I ∪ d

is a cycle of M contained in E(K). As M is 3-connected, it follows that {α, β} ∩
{a, c} = ∅. Therefore I ∪d is a circuit of M . Assume that d′ ∈ E(K)− (I ∪d). Thus
I ∪ d′ is a circuit of M ; a contradiction because (I ∪ d)△ (I ∪ d′) = {d, d′} is a cycle
of M .

(iv) If |E(K)| = 3, then the result follows. Assume that |E(K)| = 4. By (iii),
E(K) is a circuit of M . If {X, Y } is a partition of E(K) with |X| = |Y | = 2, then
E(K)△ CX △ CY = L1 ∩ (CX △ CY ) is a union of pairwise disjoint circuits of M .
As L1 ∩ (CX △CY ) is independent in M , it follows that L1 ∩ (CX △CY ) = ∅ and so
CX ∩ L1 = CY ∩ L1. The result follows from (ii). 2

Lemma 5.15 Suppose that Za = {x, y}, for a ∈ V2. If K is a connected component
of M/L1 such that r(K) = 1 and XK = {Za, L1 − x, L1 − y}, then,

(i) K is unique; and

(ii) M does not have an element z such that (L1−x)∪ z or (L1−y)∪ z is a circuit
of M .

Proof. We prove (i) and (ii) simultaneously. Assume that (i) or (ii) fails. First, we
choose A′′ ∈ A1. We have two possibilities. When (ii) fails, say (L1−x)∪z is a circuit
of M , set A′′ = {z} and CA′′ = z ∪ (L1 − x). When (i) fails, choose a 2-subset A′′ of
E(K ′), where K ′ is a connected component of M/L1 such that K ′ 6= K, r(K ′) = 1
and XK = XK′ , satisfying CA′′ = A′′ ∪ (L1 − x). Next, we choose a 2-subset A of
E(K) such that CA = A ∪ (L1 − y). Note that {A,A′′} is an apart pair of L-arcs of
M . Hence A and A′′ are series classes of M |(L ∪ A ∪ A′′). Consider

C = CA △ CA′′ △ (L1 ∪ L3) = A ∪ A′′ ∪Wa ∪ L3.

As |C| ≥ 9, it follows that C is the union of pairwise disjoint circuits C1, C2, . . . , Cn of
M , for n ≥ 2. Observe that ∅ 6∈ {C1−L,C2−L, . . . , Cn−L} because C∩L = Wa∪L3

is independent in M . Thus n = 2. Also, we may assume that A ⊆ C1 and A′′ ⊆ C2.
As L3 is a series class of M(A ∪ A′′ ∪ L), it follows that

(a) L3 ⊆ C1 and A′′ ⊆ C2 ⊆ A′′ ∪ Wa ⊆ A′′ ∪ L1; a contradiction because CA′′ is
unique; or

(b) L3 ⊆ C2 and A ⊆ C1 ⊆ A∪Wa ⊆ A∪L1; a contradiction because CA is unique.

The result follows. 2
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LetN2, N3, N4, . . . , Nl be the connected components ofM/L1 such that r(Ni) = 2,
for every i ∈ [l], i 6= 1. (In Lemma 5.8, we have defined N2 and N3 satisfying L2 ⊆
E(N2) and L3 ⊆ E(N3).) Let Kl+1, Kl+2, . . . , Kn−1 be the connected components of
M/L1 such that, for each i ∈ [n− 1]− [l], r(Ki) = 1 and XKi

= {Za,Wa, L1}, where
a ∈ V . By Lemmas 5.11 and 5.15, we have two cases:

(a) The other connected components of M/L1 have rank equal to 0; or

(b) M/L1 has a connected component K ′ such that r(K ′) = 1 and XK′ = {Za, L1−
x, L1 − y}, where Za = {x, y}, and the other connected components of M/L1

have rank equal to 0.

Remember that N1 is the connected component of M/(Z3 ∪ Za), for a ∈ V2, such
that Wa ⊆ E(N1).

We are going to decompose M . We may need to add elements α, β, γ to M to
obtain a matroid M ′.

(a) If α ∪ Za is a triangle of M , for some α ∈ E(M), then set Mα = M . If Za

is not contained in a triangle of M , then let Mα be the binary matroid over
E(M) ∪ α, where α is a new element, whose circuit space is spanned by C(M)
and Za ∪ α.

(b) If β ∪Wa is a circuit of Mα, for some β ∈ E(Mα), then set Mβ = Mα. If Wa is
not contained in a 4-element circuit of Mα, then let Mβ be the binary matroid
over E(Mα) ∪ β, where β is a new element, whose circuit space is spanned by
C(Mα) and Wa ∪ β.

(c) If {α, β, γ} is a triangle of Mβ, for some γ ∈ E(Mβ), then set M ′ = Mβ. If
{α, β} is not contained in a triangle of Mβ, then let M ′ be the binary matroid
over E(Mβ) ∪ γ, where γ is a new element, whose circuit space is spanned by
C(Mβ) and {α, β, γ}.

We can resume this construction as follows. Let M ′ be a binary matroid such that
E(M) ⊆ E(M ′), M ′|E(M) = M , r(M ′) = r(M), M ′ has a triangle {α, β, γ} such
that α ∪ Za and β ∪Wa are circuits of M and |E(M ′)| is minimum. (We denote M ′

by M〈L〉 when we need to emphasize the dependence on L.)

Observe that M ′ is 3-connected and E(M ′) = E(M)∪{α, β, γ}. The next lemma
is probability known and its proof is very simple.

Lemma 5.16 For a matroid N and X ⊆ E(N), let H be a connected component
of N/X. If Y ⊆ X and (N/Y )|E(H) = (N/X)|E(H), then H is a connected
component of N/Y .

Proof. As (N/Y )|E(H) = (N/X)|E(H), it follows that E(H) is contained in a
connected component of K of N/Y . If E(K) = E(H), then K = (N/Y )|E(H) =
(N/X)|E(H) = H and the result follows. Assume that E(K)−E(H) 6= ∅. Let C be
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a circuit of N/Y such that C ∩ E(H) 6= ∅ and C − E(H) 6= ∅. Hence C − (X − Y )
contains a circuit D of (N/Y )/(X − Y ) = N/X such that D ∩ E(H) 6= ∅. Thus
D ⊆ E(H). As (N/Y )|E(H) = (N/X)|E(H), it follows that D is a circuit of N/Y
properly contained in C, a contradiction. 2

Lemma 5.17 If i ∈ [l], then Mi = M ′|[E(Ni) ∪ {α, β, γ}] is

(i) a 4-legged spike having tip α, when |E(Ni)| = 6; or

(ii) a matroid obtained from a 4-legged spike having tip α by deleting an element
outside the leg {α, β, γ}, when |E(Ni)| = 5.

Moreover, N1, N2, N3, . . . , Nl are connected components of M ′/{α, β, γ}.

Proof. First, we show this result for i = 2; i = 3; and i = 1 (in this sequence). Then
to a general i.

Assume that i = 2. Suppose that L2 = {a2, b2, c2}. By Lemma 5.9, we may assume
that {a2, a

′
2} and {b2, b

′
2} are non-trivial parallel classes of N2 and, when N2

∼= C2
3 , let

{c2, c
′
2} be the third parallel class of it. By Lemma 5.9, {a2, a

′
2}∪Za is a circuit of M ,

for every a ∈ V . As α∪Za is a circuit ofM
′, it follows that (α∪Za)△({a2, a

′
2}∪Za) =

{a2, a
′
2, α} is a triangle of M2. Similarly, {b2, b

′
2, α} and, when c′2 exists, {c2, c

′
2, α}

are triangles of M2. Note that {γ, a2, b2, c2} = (L1 ∪ L2) △ (L1 ∪ γ) is a circuit of
M2. As α, β, γ are loops of M ′/L1 and

(M ′/L1)|E(N2) = (M ′/[L1 ∪ {α, β, γ}])|E(N2) = (M ′/{α, β, γ})|E(N2), (5.3)

it follows that the circuit space of M2 is spanned by

{α, β, γ}, {a2, a
′
2, α}, {b2, b

′
2, α}, {γ, a2, b2, c2} and, when c′2 exists, {c2, c

′
2, α}

because r(M2) = r({α, β, γ}) + r(M2/{α, β, γ}) = 2 + r(N2) = 4. By (5.3) and
Lemma 5.16, we conclude that N2 is a connected component of M ′/{α, β, γ}. The
result follows in this case.

Assume that i = 3. By Lemma 5.13, when a′ ∈ V3, then Za = Za′ . We conclude the
result in this case permuting L2 with L3 and using the previous case.

Assume that i = 1. Consider the theta set L′ = (L − Xa) ∪ a, for a ∈ V2, whose
canonical partition is {L3 ∪ Za,Wa, (L2 − Xa) ∪ a}. Note that N1 and N2 are the
connected components of M/(L3 ∪ Za). In M ′, the sets γ ∪ L3, β ∪ Wa, α ∪ Za are
circuits. For the theta set L′, the roles of β and γ commutes. But α have the same
role. (Note that M〈L′〉 is obtained from M〈L〉 by permuting γ with β.) By the
previous paragraph, applied to L′ and N1, we obtain the result in this case.

Now, assume that i ≥ 4. By Lemma 5.10, we have two cases to deal with. There is
an L-arc A of M such that |A| = 3, A ⊆ E(Ni) and

(1) CA = A ∪ L1. In this case L′ = L1 ∪ L2 ∪ A is a theta set of M with canonical
partition {L1, L2, A}. The result follows in this case because A takes the place
of L3.
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(2) CA = A∪Wa. In this case, L′ = L1∪L3∪A is a theta set of M whose canonical
partition is {L3 ∪ Za,Wa, A} and L3 ∪ Za takes the place of L1. The result
follows from the case i = 1 because A takes the place of (L2 −Xa) ∪ a.

2

Lemma 5.18 If i ∈ [n− 1]− [l], then Mi = M ′|[E(Ki)∪ {α, β, γ}] is isomorphic to
M(K4) or F7. Moreover, Ki is a connected component of M ′/{α, β, γ}.

Proof. Let Ii be a 3-subset of E(Ki), say Ii = {ai, bi, ci}. We may assume that

C{ai,bi} = {ai, bi} ∪ Za, C{ai,ci} = {ai, ci} ∪Wa, C{bi,ci} = {bi, ci} ∪ L1.

Thus {ai, bi, α}, {ai, ci, β} and {bi, ci, γ} are triangles of Mi. If |E(Mi)| = 6, then
these triangles spans the circuit space of Mi. That is, Mi is isomorphic to M(K4). If
|E(Mi)| = 7, then those triangles together with E(Ki) spans the circuit space of Mi.
In this case, Mi is isomorphic to F7. By Lemma 5.16, Ki is a connected component
of M ′/{α, β, γ} because E(Ki) is contained in a parallel class of M ′/{α, β, γ}. 2

Let Mn = M ′\[E(N1)∪E(N2)∪· · ·∪E(Nl)∪E(Kl+1)∪E(Kl+2)∪· · ·∪E(Kn−1)].
To finish the proof of Theorem 3.3, we need to analyse Mn. By Lemma 5.15, we have
two cases to deal with:

Case 1. Each connected component of M/L1 different from N2, N3, . . . , Nl, Kl+1,
Kl+2, . . . , Kn−1 has rank 0.

Note that Za ∪ {α, β, γ} ⊆ E(Mn), when a ∈ V . If b ∈ E(Mn)− (Za ∪ {α, β, γ}),
then b is a loop of M/L1. Assume that b ∪ X, for X ⊆ L1, is a circuit of M . As
(b ∪X)− (Za ∪ L3), for a ∈ V2, is a cycle of M/(Za ∪ L3) and b 6∈ E(N1), it follows
that X ∩ Wa = ∅ or X ⊇ Wa. If X = Za, then {α, b} = (b ∪ Za) △ (α ∪ Za) is a
circuit of M ′, a contradiction. If X = Wa or X = L1, then, similarly, {β, b} or {γ, b}
is a circuit of M ′ respectively, a contradiction. Thus X ∈ {L1 − x, L1 − y}, where
Za = {x, y}. (If X = L1 − x, then [b ∪ (L1 − x)]△ [γ ∪ L1] = {b, γ, x} is a triangle
of Mn. Hence {b, γ, x} or {b, γ, y} is a triangle of Mn.) As Za is not a cocircuit of
M , at least one of these two possibilities for b must exist. Thus Mn is isomorphic to
M(K4) or F7. Theorem 3.3 follows in this case with m = l.

Case 2. M/L1 has a connected component K such that r(K) = 1 and XK =
{Za, L1 − x, L1 − y}, where Za = {x, y}, for a ∈ V .

Suppose that b ∈ E(Mn)− [E(K)∪Za∪{α, β, γ}]. Note that b is a loop of M/L1.
Similarly to the previous case, b∪X is a circuit of M , for some X ∈ {L1−x, L1−y},
a contradiction to Lemma 5.15(ii). Therefore E(Mn) = E(K) ∪ Za ∪ {α, β, γ}. Let
{an, bn, cn} be a 3-subset of E(K). Suppose that {an, bn} ∪ Za, {an, cn} ∪ (L1 − x),
{bn, cn}∪(L1−y) are circuits of M . Note that {an, bn, α}, {an, cn, β, y}, {bn, cn, β, x},
{α, β, γ}, {x, y, α} are circuits of M . If |E(K)| = 4, say dn ∈ E(K) − {an, bn, cn},
then the circuit space of Mn is spanned by

{α, β, γ}, {α, x, y}, {α, an, bn}, {α, cn, dn} and {an, cn, y, β}.
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andMn is isomorphic to a 4-leged spike. (Note that {α, cn, dn} = {α, an, bn}△E(K).)
If |E(K)| = 3, then Mn is obtained from the 4-legged spike described above removing
dn. Therefore Theorem 3.3 also follows in this case with m = l + 1.
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