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Abstract

This is the second paper in a sequence of three that describe the 3-
connected binary matroids with circumference 8. A matroid M is said to
be bent provided it has a maximum size circuit C' such that M/C has a
connected component with rank exceeding 1. In this paper, we describe
the bent 3-connected binary matroids with circumference 8.

1 Introduction

We assume familiarity with matroid theory. The notation and terminology used in
this article follow Oxley [9]. For a positive integer n, we use [n] to denote the set
{1,2,...,n}. Let SC(M) be the family of series classes of a matroid M.

There are many sharp extremal results in matroid theory whose bounds depend
on the circumference. When one of these bounds is used to prove a theorem, it may
imply that a counter-example to it must have small circumference. It is likely that
the knowledge of all matroids with small circumference may simplify the proof of such
a result. This was the motivation to construct the 3-connected binary matroids with
circumference at most 7 and large rank by Cordovil, Maia Jr. and Lemos [2]. In this
paper, we continue to construct all 3-connected binary matroids with circumference 8
and large rank. We hope to apply our results together with the main result of Lemos
and Oxley [8] to describe the 3-connected binary matroids with no odd circuit with
size exceeding 7, extending the main result of Chun, Oxley and Wetzler [1].

Lemos and Oxley [7] establish that 6 is a sharp lower bound for the circumference
of a 3-connected matroid with large rank. Cordovil and Lemos [3] constructed the
3-connected matroids with circumference 6 and large rank. These matroids can be
described using a natural generalization of book for non-binary maroids.

A binary matroid M is said to be a book having pages My, My, ..., M,, for n > 2,
and r-spine T, for r > 2, provided:
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(i) My, My, ..., M, are binary matroids; and

(i) T = E(Ml) NE(My)N---NE(M,); and

(i) E(M;) —T, E(Mg) T,...,E(M,)—T are pairwise disjoint sets; and
)
)

[

(iv) My|T = Ms|T =--- = Mn|T = K is isomorphic to PG(r — 1,2); and
(v) M = Pg (M17 Mg, ..., M,), that is, the circuit space of M is spanned by C(M;)U
C(My)U---UC(M,).

The main results of Cordovil, Maia Jr. and Lemos [2] can be stated using the concept
of book proposed by Chun, Oxley and Wetzler [1] (see Lemos [4]). We need books
having a 3-spine in [4].

For an integer k exceeding 3, we denote by Z; the rank-k£ binary spike. There
is just one element of Z; belonging to k triangles. This element is called the tip of
Zy. All matroids obtained from Zj by deleting an element other than the tip are
isomorphic. When k = 4, such a matroid is isomorphic to Sg. The tip of Sy is its
unique element belonging to three triangles. Remember that a matroid M is said to
be bent provided it has a maximum size circuit C' such that M/C has a connected
component with rank exceeding 1. Now, we state the main result of this paper:

Theorem 1.1 Let M be a bent 3-connected binary matroid with circumference 8. If
r(M) > 14, then there is a book M' with pages My, Ms, ..., M, and 2-spine T such
that, for a fizred e €T, M; is isomorphic to a matroid belonging to {Zy, Ss, F7, M(K,)}
and, when r(M;) = 4, e is the tip of M;, for each i € [n], and M = M'\T", for some
T' CT. Moreover, m = |{i € [n] : 7(M;) =4}| >3 and m +n > 12.

In Theorem 1.1, the circumference of M’ is 8 provided m > 2 and n > 3. We
need m > 3 to guaranty that M is bent. The condition m +n > 12 follows from
r(M) > 14.

Let M be a book having pages My, My, M3 and 2-spine T' = {e, f,g}. Assume
that My, M, and M3 are isomorphic to Z4 having e, e and f as tips respectively. For
i € {1,2,3}, M; has a circuit C; such that |C;| = 4,|C;NT| =1 and C; NT can
be chosen to be any element of T" other than the tip of M;. We can choose C, Cs
and C3 such that g € C1, f € Cy and e € (5. Note that C = C; ACo A C3 AT is
a 9-element circuit of M. This example justify the condition imposed on all pages
with rank-4 in Theorem 1.1 to have the same tip.

Now, we describe the main result of Lemos [4]. Let M be an unbent 3-connected
binary matroid having circumference 8. We say that M is crossing when M has an 8-

element circuit C, sets X and Y contained in different rank-1 connected components
of M/C such that | X| = |Y|=2and M|(CUX UY) is a subdivision of M (K}).

Theorem 1.2 Let M be an unbent crossing 3-connected binary matroid with cir-
cumference 8. If r(M) > 11, then

(i) M is a 3-connected rank-preserving restriction of M", where M" is a book
with pages My, My, ..., My, fort = r(M) — 3, and 3-spine F' such that M; is
isomorphic to PG(3,2), for every i € [t]; or
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(1)) M = M"\T', where T" C T and M" is a book with pages My, My, ..., M, for
t =r(M)—>5, and 2-spine T such that, for each i € [t]| — {1}, M; is isomorphic
to K(Ky) or F; and My is a 3-connected binary matroid satisfying:

(A) M has a circuit D such that |D| =6 and |DNT| = 2; and
(B) the simplification of My/T is isomorphic to F¥ or AG(3,2).

If M" is the book described in Theorem 1.2(i), then M” is internally 4-connected
and M"\ F is 4-connected. Both M" and M"\ F have circumference equal to 8. Note
that M"\F has a rank-preserving restriction isomorphic to M (Ky,;).

Every matroid described in the conclusion of Theorem 1.1 is a bent 3-connected
binary matroid with circumference 8. To restrict the matroids described in The-
orem 1.2(i) so that they are contained in the class of unbent crossing 3-connected
binary matroids with circumference 8 would produce a cumbersome statement. In
Lemos [4], we state the condition. Moreover, we establish that any matroid described
in Theorem 1.2(i) has circumference at most 8. We also prove that, when M” satisfies
Theorem 1.2(ii), the circumference of both M” and M"\T are 8.

The next results about the circuit space of a binary matroid M are used without
reference along this paper:

(i) A cycle of M is an union of pairwise disjoint circuits of M.
(ii) The symmetric difference of circuits of M is a cycle of M.

(iii) The circuit space of M is spanned by the circuits of M and it has dimension
equal to 7*(M).

2 Seymour’s Arcs Theorem

A result of Seymour [10] that gives conditions to extend a k-separation of a restriction
to the whole matroid will be fundamental in this paper. To state this result, we need
to give more definitions. Let M be a matroid. For ' C E(M), an F-arc (see Section
3 of [10]) is a minimal non-empty subset A of E(M) — F such that there exists a
circuit C of M with C — F = A and CNF # (. Such a circuit C is called an
F-fundamental for A. Let A be an F-arc and P C F. Then A — P if there is an
F-fundamental for A contained in AU P. Thus A 4 P denotes that there is no such
F-fundamental. Note that A is an F-arc if and only if A € C(M/F) —C(M).

Theorem 2.1 ((3.8) of Seymour [10]) Let M be a matroid on S, let Z C S, and
let (Py, P») be a partition of Z. Then either there is a Z-arc A such that A 4
Py, A 4 Py, or there is a partition (X1, X2) of S such that X;NZ = Pi(i = 1,2) and

r(Xy) +r(Xe) —r(S) =r(P) +r(P) —r(Z).

The proof of Theorem 2.1 can be adapted to establish that:
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Theorem 2.2 Let M be a matroid on S, let Z C S, and let (Py, P2) be a partition
of Z. If A — Py or A — P, for each Z-arc A, and

P, :U{A:A CS—Z and Ais a Z-arc such that A — Pa}
then, when Xo = Py U Py and X1 = S — X,

r(X1) +r(Xs) —r(S) =r(P) +r(P) —r(2).
The next result is Lemma 2.2 of Lemos [4].

Lemma 2.3 Let M be a connected matroid. Suppose that M|F is connected, for
0#FS EM). If |A| <2, for every F-arc A, then every connected component of
M/F has rank equal to 0 or 1.

3 Basic results about theta sets and their arcs

We say that L is a theta set of a matroid M provided L C E(M) and M|L is a
subdivision of U; 3. When Lj, Ly and Lj are the series classes of M|L, {Ly, Lo, L3}
is said to be the canonical partition of L in M. If |Li| = a,|Ls| = b and |L3| = ¢,
then L is said to be an (a,b,c)-theta set of M. The next two results are respectively
Lemmas 2.3 and 2.4 of Lemos [4].

Lemma 3.1 Let M be a matroid with circumference 8. If L is a theta set of M,
then |L| < 12. Moreover, when |L| € {11,12}, L is an (a,b, c)-theta set of M, where
(a,b,c) € {(4,4,4),(4,4,3),(5,3,3)}.

Lemma 3.2 If M is a matroid with circumference 8, then the following statements
are equivalent:

(i) M is unbent.
(ii) Every theta set of M has at most 10 elements.

Now, we establish that Theorem 1.1 is equivalent to:

Theorem 3.3 Let M be a 3-connected binary matroid with circumference 8. If
r(M) > 14, then

(i) |L| <10, for every theta set L of M; or

(ii) there is a book M' with pages My, My, ..., M, and 2-spine T such that, for a
fixzed e € T, M; is isomorphic to a matroid belonging to {Zy, Ss, F7, M(K,)}
and, when r(M;) = 4, e is the tip of M;, for each i € [n|, and M = M'\T",
for some T" C T. Moreover, if m = |{i € [n] : 7(M;) = 4}|, then m > 3 and
m+n > 12.
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Lemma 3.2 implies that Theorem 3.3(i) holds if and only if M is unbent. Hence
Theorem 3.3(ii) is the description of bent 3-connected binary matroid with circum-
ference 8. But it is just the conclusion of Theorem 1.1.

When Theorem 3.3(i) holds, we conclude that M/C has only rank-0 or rank-1
connected components, when C' is a circuit of M such that |[C| = 8. In [4, 5], we
analyse how these small connected components attach to C' to obtain the others
3-connected binary matroids having circumference 8.

Now, we fix some notation that we use along this section and in the next two.
Let {Ly, Ly, L3} be the canonical partition of a theta set L of a binary matroid M.
We assume that |Li| > |Lo| > |Ls|. We define, for i € [3],

A = {ACEM)—L:Aisan L-arc of M},
A = {Ae A:A— L;} and
A/ - A— (./41 U.AQUA:}).

(Note that A, A; and A’ depend on M, L, Ly, Ly and Ls. We do not emphasize these
dependencies to avoid a cumbersome notation. Consequently, when we use any of
these subsets of L-arcs of M, it is implicit that M is the binary matroid, L is the
theta set and its canonical partition is {L;, Ls, L3}.)

Lemma 3.4 If M is 3-connected, then A" # ().

Proof. Suppose that A" = (). Therefore A = A; UA;UA3. Consider the 2-separation
{L1,Ly U Ls} of M|L. As A — L; or A — Ly U Lg, for every A € A, it follows,
by Theorem 2.1, that M has a 2-separation {X,Y} such that X N L = L; and
Y NL = LyU Ls, a contradiction. Hence A’ # 0. O

Lemma 3.5 If A € A', then the cosimplification of M|(L U A) is isomorphic to
M(Ky) or FZ. Moreover, when co(M|(LU A)) =2 M(Ky), there is i € [3] such that
L; is a series class of M|(L U A).

Proof. Observe that r*(M|(L U A)) = 3. If C' is a circuit of M such that A C C' C
LU A, then the circuit space of M|(LU A) is spanned by L; U Ly, L1 U L and C. To
conclude the proof, we need to establish that any pair of circuits of M|(LU A) meet,
since M|(L U A) is coloopless. Suppose that D and D’ are circuits of M|(L U A)
such that DN D’ = (). As A is a series class of M|(L U A), we may assume that
AND =0, that is, D = L; U L;, for a 2-subset {7, j} of [3]. Thus A C D' C AU Ly,
where {7, j,k} = [3]. We arrive at a contradiction because A /4 L. Therefore any
two circuits of M meet. Consequently M|(LU A) has 6 or 7 series classes. Moreover,
when it has 6 series classes one must be L;, for some i € [3]. The result follows. O

Lemma 3.5 suggests the following partition for A’:

I

Ay = {AeA:co(M|(LUA))
Ay = {Ae A :co(M|(LUA))

2as
M(K4)}.

12
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Now, we define a circuit C'4 of M, for each A € A, such that A C C4 C LU A. We
use this notation along this section and in the next two. We have three cases to deal
with:

(i) When A € A%, let C be a circuit of M such that A C C C LU A. We use Cy
to denote any circuit of M belonging to

{C,CA(L1ULy),CA(LyULs),CA(LyU L3)}.
At a given proof, we may need to choose C4 conveniently.

(ii) When A € A, let L; be the series class of M|(LU A), for i € [3]. Let C be a
circuit of M such that A C C C (L—L;)UA. We use C4 to denote any circuit
of M belonging to {C,C A (L — L;)}. Note that M|(L U A) contains another
two circuits containing A. These circuits are “too big” to be called C4 because
they also contain L;. We consider these circuits in Lemma 3.11.

(iii) When A € A;, for some ¢ € [3], let C4 be the unique circuit of M contained in
AUL;. If {i,j,k} = [3], then C = Cy A (L; UL;) and D = Cy A (L; U Ly)
are the other circuits of M|(L U A) that contain A. When, C4y = AU L;, then
C=AULjand D =AULy. Thatis, A€ A; NAyNAs. When we view A as
an element of A; or Ay, C4 becomes C or D respectively. In this case C4 also
depends on i. We do not need to emphasize this dependence because it will be
clear from the context which C'y we are talking about in this very special case.

Lemma 3.6 If A € Ay, for k € [3], then
(i) |A] < |CanN Ly|; or
(11) M has a theta set L' such that |L'| > |L|.

Proof. Suppose that |C4 N Lg| < |A|. Observe that r*(M|(L U A)) = 3. Hence
Ca, Ly U Ly and Ly U Ly span the circuit space of M|(L U A). Thus C4 N Ly is
a series class of M|(L U A). If L' = (LUA) — (Ca N Lg), then r*(M|L") = 2
since M|L' = [M|(L U A)]\(Ca N Lg). Observe that L' is a theta set of M because
CaA(LyUL;),Cy AN (L UL;) and L; U Ly, for {7, j, k} = [3], are pairwise different
circuits of M|L’. Note that

I = [LUA| = [Ca 1 L] = L]+ (4] = [Ca 1 L)
and so |L'| > |L|. We have (ii). O

Let A and A" be L-arcs of M. We say that {A, A’} is an apart pair of L-arcs of
M provided ANA" =0 and (M/L)|(AUA") = [(M/L)|A] & [(M/L)|A’]. Note that a
pair of L-arcs {A, A’} of M is apart if and only if A and A’ are different series classes
of M|(LUAUA).
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Lemma 3.7 Let {A, A’} be an apart pair of L-arcs of M. If A € Ay, for some
ke 3], and A" € A, then CxNCy =0 or Cy N Cy is a circuit of M.

Proof. Let {i,j} be a 2-subset of [3] such that {i,j, k} = [3]. Consider
C=C4 ANCy = AUA U [(CA ACA/) ﬂLk] U [CA/ N (LZ ULj)]. (31)

If C is not a circuit of M, then, for n > 2, there are pairwise disjoint circuits
C1,Cy,...,C, of M[(LUAU A’) such that C =C,UCyU---UC,. By (3.1),

CQLZ‘:CA/QLZ';LZ-andCﬁLj:CA/ﬂLj;Lj, (32)

and so C(M|L) N {C4,Cy,...,C,} = 0. Hence each C; contains a series class of
M|(LUAUA’) avoiding L. These series classes are A and A’. Thus n = 2. We may
assume that A C C} and A’ C Cy. Therefore C; = C4 because, by (3.2), L; € C4
and L; ¢ C. Consequently Cy N Cy = 0. O

Lemma 3.8 Suppose that A" € Alx and A € Ay, for some k € [3]. If AUA is a
theta set of M/L, then Cq A Car is a circuit of M.

Proof. Observe that AN A" # () because AU A’ is a theta set of M/L. It Cy A Cy is
not a circuit of M, then, for n > 2, there are pairwise disjoint circuits C4,Cl, ..., C,
of M|(LUAUA’) such that C = C;UCyU---UC,. Note that C((M/L)|(AUA")) =
{A, AV AN A}, since AU A’ is a theta set of M/L. There is ¢ € [n] such that
C;i—L=ANA sayi =1 As (Ca ACux)— (AN A) C L, it follows that
{Cy,...,C,} CC(M|L). We arrive at a contradiction because L; — (Cy A Cy/) =
L; — Ca # 0 for every j € [3] such that j # k. O

Lemma 3.9 Let {A, A’} be a 2-subset of Ay, for some k € [3]. If {A, A’} is an
apart pair of L-arcs of M, then

(i) (Ca AN Cy) A (LU Ly) is a circuit of M, for i € [3] such that i # k; or
(1)) CanNLy CCxuN L or CayNLy CChN Ly.
Proof. For i € [3] satisfying i # k, consider
C=(CaACy)A(L;ULy)=AUA UL, — (Ca A Cy)]U L. (3.3)
If (CaACa)NLp=0,then CyN Ly =Ca N L and (ii) follows. Assume that
(Ca A Ca)N Ly, # 0. (3.4)

By (3.3) and (3.4),
C(M|L)nC(M|C) = 0. (3.5)

If C is a circuit of M, then (i) follows. Suppose that C' is not a circuit of M. For
n > 2, there are pairwise disjoint circuits Cy,Cy, ..., C, of M|(LUAU A") such that



M. LEMOS / AUSTRALAS. J. COMBIN. 92 (3) (2025), 320-356 327

C=CUCyU---UC,. By (3.5),C; — L # 0, for every j € [n]. As A and A’ are the
unique series classes of M|(LUAU A’) avoiding L, it follows that n =2, A C C; and
A C Cs, say. By (33), C € {CA, (OFWAN (LZ ULk)} and Cy € {CA/, (OFYIVAN (LZ ULk)}
As L; C[Cy A (L U L) N [Car A (L; U Ly)], it follows that Cy = Cy or Cy = Cay,
say C; = Cy. By (3.3),

CA:AU[CAﬁLk]QAU[Lk—(CAACA/)]

and so CA N Lk Q Lk — (CA A OA/). Thus (CA — CA/) N Lk = @, that iS, CA N Lk Q
C4 N L. We have (ii). O

Lemma 3.10 Suppose that M has circumference 8 and
11 <|L| =max{|L| : L' is a theta set of M}. (3.6)
If A e A, then
(i) |Al <2; and
(ii) if |A| =2, then |L| = 12 and every series class of M|(L U A) has size 2.

Proof. By Lemma 3.1, Lis a (4,4,4)- or (4,4, 3)- or (5, 3, 3)-theta set of M. Replacing
Ca by Cq A (Ly U L3), when necessary, we may assume
|Can L > 2. (3.7)
Replacing Cy by C4 A (L1 U L), when necessary, we may suppose
|CaN (LU Ly)| > 4. (3.8)
By (3.7) and (3.8),
8 > |Cal = |A| 4+ |CaN (L1 U Ly)| + |Can Ls| > |A| + 6. (3.9)

Hence |A| < 2 and so (i) follows. Suppose that |A| = 2. We must have equality
in (3.7), (3.8) and (3.9). Now, we establish that |Ls| = 4. If |Ls| # 4, then |L3| = 3.
By the equality in (3.7), we have that |L3 —C4| = 1. Remember that L; ULy, LU L3
and C4 span the circuit space of M|(L U A). Therefore

SC(M|(LUA))={A, L1iNCy, L1 —Ca,LonNCy, Ly — Ca, L3N Ca, Ly — Ca}.

As Ly —Cy € SC(M|(LUA)),|Ls — Ca| =1 and r*([M[(LUA)\(Ls —Ca)) =2, it
follows that L' = (LUA)—(Ls—C}) is a theta set of M. We arrive at a contradiction
to (3.6) since

|L'| = |LUA| — |Ly — Ca| = |L| + |A| — |Ls — Ca| > |L|.

Hence |Ls| = 4 and so L is a (4,4, 4)-theta set of M. In particular, |L| = 12. By the
equality of (3.7), we have that |C4 N L3| = |Ls — C4| = 2. We conclude that any
element of SC(M|(L U A)) has size 2, since, by symmetry, any L; can be chosen to
be Ls. We have (ii). O
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Lemma 3.11 Suppose that M has circumference 8 and that |L| > 11. If A € Al,
then

(i) |Al =1; and
(ii) there is i € [3] such that L; is a series class of M|(L U A) and |L;| = 3; and

(111) there are circuits Dy and Dy of M|(L U A) such that |Dy| = |Ds| =8, AUL; =
D1NDy, D1 ADy = L—L; and Dy, Dy, Cx, Ca/\(L—L;) are the unique circuits
of M|(LU A) containing A; and

(iv) for A" € Ag, where k € [3] and k # i, set Sy = (Ca N L) — Cu, Sy =
(CA N Lk) NCy,S3 = (Lk — CA) NCy, Sy = (Lk — CA) —Cuy. If Sy # 0 and
Sz # (), then
(a) S1=S,=0 and Cy = A" U Ly, or
(b) Sy =0 and [Ss| + |A'] < [S,]; or
(c) Su =0 and |Sa| + [A'| < [55.
Proof. By Lemma 3.1, L is a (4,4,4)- or (4,4,3)- or (5,3,3)-theta set of M. By

Lemma 3.5, there is i € [3] such that L; is a series class of M|(LUA). If {i, j, k} = [3],
then, by definition, C4y C AU (L; U Ly). Consider the circuits of M|(L U A):

D1 = CA A (Lz U Lk) and D2 = CA JAN (Lz U LJ)
Note that Dy N Dy = AU L; and Dy A Dy = L; U Ly,. Hence

16 > |Dy| 4 |Ds| = 2|Dy N Dy| + |Dy AN Dy| =2|AU Ly| + |L; U Ly| =

3.10
= |L| + | Li| + 2|A| > 14 + 2|4] > 16. (3.10)

We must have equality along (3.10). Thus |A| = 1,|L;| = 3,|L| = 11 and |Dy| =
|Dy| = 8. Therefore (i), (ii) and (iii) follows.

Now, we establish (iv). Observe that
Ly U Ly, Ly U Ly, Cy and Cy span the circuit space of M|(LUAUA)  (3.11)

because *(M|(L U AU A")) = 4. In Figure 1, H is a graph such that E(H) =
SC(M|(LUAUA)). (To simplify the figure, we set S5 = C4NL; and S = L; —C4.)
Let G be a subdivision of H such that each edge S is replaced by a path of length
|S| whose edges are labelled by the elements of S. Note that the cycles of G whose
edge sets are displayed in (3.11) span the circuit space of M (G). Therefore M (G) =
M|(L UAU A/) By (111), Sl U SQ Q DQ and Sg U S4 Q Dl. NOW, we show that:

Dy A\ Cy s not a circuit of M or |Ss| 4 |A'] < ]S, (3.12)
Suppose that Dy A Cy is a circuit of M. Hence

8> |D2 A CA/| = ‘DQ — CA/| + ’C’A/ — D2| = ’DQ - SQ‘ + |CA/ — 5’2‘ =
= [|Daf = [Sal] + [|A] + [S5]] = 8+ (|:55] + | A" = |S2]).



M. LEMOS / AUSTRALAS. J. COMBIN. 92 (3) (2025), 320-356 329
(A) (B) (O (D) S
4 p
Figure 1: The graph H. In (A), when S; = Sy = (). In (B), when S; = 0 # S4.
In (C), when S # () = S4. In (D), when Sy # () # S.

Thus |Sa| > |S3| + |A’| and (3.12) holds. Now, we prove that
54 = @ or ’53‘ + ‘A/‘ < ’Sg‘ (313)

As M|(LUAUA") = M(G), it follows that Dy A Cy is not a circuit of M if and
only if Sy = (. Thus (3.13) follows from (3.12). By symmetry, when we repeat this
argument with D; in the place of Dy, we obtain that

Sl = @ or |SQ‘ + |A,| S ’53| (314)

When S; =Sy =0, Car = A/ US,US3 =AU Ly and (iv)(a) follows. Assume that
51 # @ or 54 7& (Z) By (313) and (314), 51 = @ or S4 = Q) If Sl = @, then, by (313),
we have (iv)(b). If Sy = (), then, by (3.14), we have (iv)(c). O

The proof of the next result is very simple. It gives a condition for a cycle to be
a circuit in a binary matroid. We state it because it covers a situation that occurs
many times in this paper.

Lemma 3.12 Suppose that C' is a cycle of a binary matroid N. If C'—F is an F-arc
of N and C N F is independent in N, for F C E(N), then C is a circuit of N.

Proof. Note that C' # () because C' — F' is an F-arc of N. If C' is not a circuit of
N, then there are pairwise disjoint circuits C4,Cs, ..., C, of N, for n > 2, such that
C=CUCyU---UC,. As A= C — F is contained in a series class of M|(F U C),
then A C Cj, for some i € [n], say i = 1. Thus Cy C C'N F, a contradiction to
hypothesis. a

4 Only (5,3,3)-theta sets

In this section, we establish the next result:
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Theorem 4.1 Let M be a 3-connected binary matroid having circumference 8. If
r(M) > 14 and L is a theta set of M satisfying |L| € {11,12}, then L is a (5,3, 3)-
theta set of M. Moreover, for each L-arc A of M, the matroid M|(LU A) is graphic.

We divide the proof of Theorem 4.1 into a sequence of lemmas. We set

Ly = {L'CE(M): L isa (4,4,4)-theta set of M},
Ly = {L'CE(M):L"is a (4,4,3)-theta set of M} and
L3 = {L'CEM): L isa (5,3,3)-theta set of M}.

By Lemma 3.1, L € £1 ULy U L3. Choose L and u € [3] such that L € £, and u is a
small as possible. (If u = 1, then L is a (4, 4, 4)-theta set of M. If u = 2, then L is a
(4,4, 3)-theta set of M and, by the choice of L and u, M does not have a theta set
with 12 elements. If u = 3, then L is a (5, 3, 3)-theta set of M and, by the choice of L
and u, every theta set of M with more than 10 elements is a (5, 3, 3)-theta set.) Let
{L1, Ly, L3} be the canonical partition of L. We assume that |L,| > |Ly| > |Ls|. For
i € [3], define A, A;, A, A} and A} as we did in the previous section. For A € A,
define Cy as we did in the previous section. Our goal is to show that u = 3 and
> = (. By the next result, we need to establish only that A% = 0.

Lemma 4.2 Ifu € {1,2}, then A% # 0.

Proof. If uw = 1, then, by Lemma 3.11(ii), A% = 0 because |Li| = |Lo| = |Ls| = 4.
Thus A% = A’. In this case, the result follows from Lemma 3.4. Assume that
u =2 and A = 0. By Lemma 3.11(ii), when A € A" = A, L3 is a series class of
M|(LU A), since |Li| = |Ls| = 4. Hence A — L; U Ly. Therefore, when A’ € A,
A" — L1 ULy or A — Lz depending on A’ € A1 U A, UA" or A’ € A3 respectively.
By Theorem 2.1, M has a 2-separation {X,Y} such that X N L = L; U Ly and
Y N L = Ls, a contradiction. O

Lemma 4.3 If A € A, then |A] < 3.

Proof. Suppose that |A] > 4. By Lemmas 3.10(i) and 3.11(i), A € A, for some
k € [3]. By Lemma 3.6 and the choice of L and u, 4 < |A| < |Cs N Ly| < |Lg|. Thus
|Li| € {4,5}. Reordering the L;’s, when necessary, we may assume that k = 1. If
|Ls| = 3, then L' = AUL; UL, is a theta set of M such that |L'| = |A|+|L1|+]|La| >
12 > |L|. We arrive at a contradiction to the choice of L and u. Thus |L3| = |A| = 4.
In particular, w = 1. Set Ly = A. As the circuit space of M|(L U L) is spanned
by Ly U Lo, L1 U Ly and Ly U Ly, it follows that M|(L U Ly4) is a subdivision of Uj 4
having Ly, Lo, Ly and L, as series classes. By Theorem 2.1, there is an (L U Ly)-arc
A’ of M such that A" A Ly U Ly and A" /4 L3 U Ly. Choose a circuit C' of M such
that A’ C C C AULU Ly and [ = |J| is minimum, where J = {i € [4] : CNL; # 0}.
Observe that J N {1,2} # 0, otherwise A" — L3 U L. Similarly, J N {3,4} # 0.
Assume that [ = 2, say J = {2,3}. Note that A’ is an L-arc of M such that
A" e Aj. We arrive at a contradiction to Lemma 3.11(ii). Therefore [ > 3. If i € J



M. LEMOS / AUSTRALAS. J. COMBIN. 92 (3) (2025), 320-356 331

and L; C C, then, by Lemma 3.12, for j € J — {i}, C A (L; U L;) is a circuit of M
contrary to the choice of C. Hence, for every i € J, 0 # C' N L; ;Cé L;. To simplify
the notation, we may suppose that {1,2,3} C J. By Lemma 3.12, we can replace C
by C'A (Ly U Lg), when necessary, to assume that

ICN (LU Ly)| >4 (4.1)
By Lemma 3.12, D = C' A (L3 U Ly) is a circuit of M such that
16 > |C| + |D| =2|C' N (L1 U Lg)| + | L3 U Ly| + 2|A"|.

We have a contradiction by (4.1). O

Lemma 4.4 If A € A%, then we can choose Cy such that
va € {(4,2,1),(3,3,1),(3,2,2),(2,3,2), (2,2,3), (2,2,2)}, (4.2)

where va = (|Ca N Ly],|Ca N La|, |Ca N Ls|).

Proof. We can choose C4 satisfying:

(i) |CanLy| > 2. (If |Ca N Ly| =1, then replace Cy by Ca A (L1 U Ls).)

(i) |CaN Lyl > 2 and, when |Lo| =4, [CanN(LaU Lg)| > 4. (If [CaN Ly| =1 or,
when |Lo| =4, |Cy N (La U L3)| < 3, then replace Cy by Cy A (Ly U L3).)

(iii) |Ca N Ls| > 2, when |Ly — Cys| > 2. (If |Ca N Ls| =1 and |L; — C4| > 2, then
replace Cy by Caq A (Ly U Ls).)

Now, we show that v, satisfies (4.2). By (i), we have three cases to deal with
(CaN Ly| € {2,3,4}.

If |Ca N Ly| =4, then, by (ii), |Ca N Lg| = 2 because |C4 N L3| > 1 and |Cy| < 8.
Thus va = (4,2, 1).

If |Cy N Ly| = 3, then, by (ii), we have two subcases to deal with |C'4 N Lso| € {2, 3}.
If |CanLy| = 3, then |CaN L3| = 1 because |C4] < 8. In this subcase, vq = (3,3, 1).
Assume that [Cq N Ly| = 2. If |C4 N Ls| > 2, then vy = (3,2,2). If [C4 N Ls| = 1,
then |CA N (LQ UL3)| =3 and, by (11)7 |L2| = 3. Thus |L1| =5 and |L1 - CA| Z 2, a
contradiction to (iii).

If |Ca N Ly =2, then, by (ii), |Ca N Lo| € {2,3}. As |Ly — Cy4| > 2, it follows,
by (iii), that |C4 N Ls| € {2,3}. Therefore v4 € {(2,3,2),(2,2,3),(2,2,2)} because
|Ca| < 8. 0

We improve Lemma 4.3 in a special case. Lemma 4.5 is central in this proof
because it implies that every connected component of M /L has rank equal to 0 or
1, when A% # 0.

Lemma 4.5 Suppose that A, # 0. If A € A, then |A| < 2.



M. LEMOS / AUSTRALAS. J. COMBIN. 92 (3) (2025), 320-356 332

Proof. Consider Ay = {A € A : |A| > 3}. Suppose that Ar # (. By Lemma 4.3,
|A| = 3, for every A € Ar. By Lemmas 3.10(i) and 3.11(i), when A € Ar, there is
k € [3] such that A € A;. That is, A7 C A; U Ay U A3. When A € Apr N Ay, for
k € [3], by Lemma 3.6, we have that |C'4 N Li| > |A| > 3.

Claim 1. If A" € A}, then |[A'| = 1.

Assume that |A’| > 2, for some A’ € A%. By Lemmas 3.10 and 3.11(i), |A’| = 2 and
u = 1. By Lemma 3.10(ii), |Ca N Ly| = 2, for every k € [3]. Choose A € Ap, say
Ae Ar N Ay, for k€ [3]. As |[CaN Lg| > 3,|Ca N Lg| =2 and |Lg| = 4, it follows
that (Ca N Ca) N Ly # 0. First, we show that

{A, A’} is not an apart pair of L-arcs of M. (4.3)
If (4.3) fails, then, by Lemma 3.7, C = C4 A Cy is a circuit of M. Therefore
8> |C| = |A| + |A[ +|Car N (L U Ly)| + [(Ca & Cur) N Ly,

where {1, j, k} = [3]. We arrive at a contradiction because |A| = 3,|A’| = 2 and, by
Lemma 3.10(ii), |Ca N (L; U L;)| = 4. Therefore (4.3) follows.

In M/L, A’ is contained in a parallel class P and A is a triangle. By (4.3), (M/L)|(AU
A') is connected. As M/L is binary, it follows that AN P # (). Next, we show that

ANA =0. (4.4)

Assume that AN A" # 0, say a € AN A" and A’ = {a,a’}. Hence AU A’ is a theta
set of M /L. Choose C4s such that

|(Ca A Car) N L] is maximum. (4.5)
By Lemma 3.8, C = Cy A Cy is a circuit of M. Thus
8> |C|=|AA A+ |CaN(L; UL+ [(Ca & Car) N Ly,
where {7, 7, k} = [3]. By Lemma 3.10(ii), |Ca N (L; U L;)| = 4. Hence 1 > |(C4 A
Cya) N Ly| because |[A A A'| = 3. Therefore Ca» N Ly, € Ca N Lg. Note that
D =Cy A (L; U Ly) is contrary to the choice of Cy done in (4.5), since

(DACA) NL,= (CA/ ﬂLk) U (Lk — CA)

has at least two elements. Thus (4.4) follows.

By (4.4), we may assume that « € PN A and A" = {a,d'} with a ¢ A’. In M/L,
A; = (A—a)Ua and Ay = (A—a)Ud’ are triangles. As Ay A Ay = A’ it follows that
A; or A, is not a triangle of M, say A;. Hence A; € Arp; a contradiction to (4.4)
applied to A;. Thus Claim 1 follows.

When A" € A, we can choose Cy as in Lemma 4.4. Now, we show that:
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Claim 2. If A" € A% and A € Ap N Ay, for some k € [3], then Cy NCa = 0 or
C’AﬂLkQCA/ﬂLk;Lk.

Assume that Cy N Cy # (. By Claim 1, |A’| = 1. Thus {A, A’} is an apart pair of
L-arcs of M. By Lemma 3.7, C' = Cy A Cy is a circuit of M. Thus

8> |Cl =|A| 4+ |A' |+ |(Ca & Car) N Ly| + |Car N (L; U L),

where {i,j,k} = [3]. As |A| 4+ |A| =4 and |Ca N (L; U L;)| > 3, it follows that
|(Ca & Cyr) N Lg| < 1. Note that Claim 2 follows unless |(Ca A Ca) N Lg| = 1 and
|(CaNLy)—(CaNLy)| = 1. We may assume this is the case. Hence |CaN(L;UL;)| =
3. By Lemma 4.4, {Z,j} = {2,3},/€ =1 and (‘CA/ N Ll‘, ‘CA/ N LQ‘, |CA/ N Lg‘) =
(4,2,1). Thus Cy = AU L;. Applying Lemma 3.7 to C4 and Car A (Ly U L3), we
conclude that

Cal[Ca A(LiUL)]=AUA U(CaNL)U(CaNLy)U (Ly —Ca)
is a circuit of M with 12 elements; a contradiction and Claim 2 follows.
Claim 3. If A € .AT, then |CA’ = 0.

By Claim 2, when A € Ay, for & € [3], then C4y N Ly & L;. By Lemma 3.6,
|CanLy| € {3,4}. If |CaNLg| = 3, then Claim 3 follows. Assume that |CxNL;| = 4.
Therefore k = 1,|L;| = 5,u =3 and L' = AU L; U Ly is a (4,4, 3)-theta set of M
with canonical partition {C4 N Ly, (L1 — C4) U Ly, A}. We have a contradiction to
the choice of L and u. Hence Claim 3 follows.

Claim 4. If {A, A"} C Ar N Ay and Cy N Ly, # Cam N Ly, for some k € [3], then
k=1, |L1‘ =5,u =3 and (CA U CA///) N Ly =Cyu N Ly, for every A’ € -A/F

By Claim 2, CinNL, C X € {Lk N CA/,Lk — OA/} and Cyv» NLy CY € {Lk N
Cu, Ly — Cy}, where A" € Ao As {L, N Cy, Ly — Ca} contains a unique element
with cardinality exceeding 2, it follows that X = Y. By Claim 3, |Cy N L| =
’CA/// ﬁLk’ =3. AsCyN Ly # CynN Ly, it follows that |(CAﬂLk) @) (CA/// ﬂLk)l > 4.
Hence X = (Ca U Cyn) N Ly has 4 elements and so k = 1;|L,| = 5;u = 3; and
CanNLy= (CA U CA///) N L.

Claim 5. Suppose that A € Ar N Ay, for k € [3]. There is an L-arc A” of M such
that
AH 74) OA N Lk and A” 7/—> L — CA. (46)

Moreover, when A” satisfies (4.6),
(i) A” € Ay;
(ii) {A, A"} is not an apart pair of L-arcs of M. In particular, |[A”| > 2;

(iii) £ = 1 and thereis A” € ArN.A; such that CyN Ly # CawN Ly and (C4aUC /)N
Ly = (CaUCym)N Ly = CaN Ly, for every A” € A% Moreover, A” — Cq N L.
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Observe that A” exists, by Theorem 2.1, since {C4 N Ly, L — C4} is a 2-separation
for M|L. Now, we prove (i).

First, suppose that A” € A’. By Claim 2 and (4.6), A” ¢ A% and so A" € Al..
Set 5] = (CA// N Lk) — (Cy, Sy = (CAN N Lk) NCy, S5 = (Lk — CA//) NCy and Sy =
(Lk—CA//)—CA. By (46), SQ ?é (Z) and Sg 7& Q) By Claim 3, 3= |CAﬂLk| = ’SQ|+|53|
and so {|S2f, ]93]} = {1,2}. As |A] = 3 and {|Sy],|Ss]} = {1,2}, it follows that
Lemma 3.11(iv)(a) holds. That is, S; = Sy = 0 and Cy = AU Ly, a contradiction to
Claim 2. Thus A” ¢ A’. There is [ € [3] such that A” € A;. By (4.6), | = k and (i)
follows.

Next, we establish (ii). Assume that {A, A”} is an apart pair of L-arcs of M. By (4.6)
and (i), all the sets S} = (Ca — Car) N Ly, So = (Car — Ca) N Ly, and S5 = (Cy N
Cyr) N Ly, are non-empty. Choose ¢ € [3],i # k, such that |L; U L;| = 8. (We can do
this because, by Claims 2 and 3, |Lg| > 4.) Note that A and A” are series classes of
N = M|(AUA"ULLUL;). Asr*(N) =3 and SC(N) = {A, A", 51, Sy, S5, 54}, where
Sy = (L; U L) — (51U Sy U S3), it follows that N is isomorphic to a subdivision of
M(Ky). Thus

C=CaANCan AN(L;UL,)=AUA"US3U S,
is a circuit of M. Hence
8> |C| = |A| + |A"] + |S3| + |Ss] > 6 + |A”| + |S3| + |Ss — Ly|.

So |A"| = |Ss] = 1 and |Sy| = |L;| = 3. As |LyUL;| =8, it follows that |Ly| = 5, that
is, k = 1 and u = 3. By Claim 3, |S1|+|53] = |CaNL4| = 3 and so |S;| = 2. Therefore
|So| = |L1| — (|S1] + |S3]) = 2, say Sy = {«, f}. By Claim 2, we may assume that
CyNLy=Ly—p, forsome A" € A. (If CyyNLy = Sy, then [Car A (Ly U L) ACyn
is a circuit of M, by Lemma 3.7, having at least 9 elements, a contradiction.) By
Claim 1, |4’ =1 and so A’ N (AU A”) = (). Note that L' = AU S; UA”" U Ly U L3
is a (5, 3,3)-theta set of M having canonical partition {L] = AU S3 U A", Lo, L3}.
If D=Cyq A (L1 ULg), then D is a circuit of M such that D — L' = A’U . As
B is a coloop of M|(L"U f3), it follows that A’ U S is an L’-arc of M. Observe that
DNLy =00 #DNLy=CxNLy G Lyand ) # DN Ly = L3 —Ca & Ls.
Hence M|(L' U A’ U ) is isomorphic to a subdivision of M (K}); a contradiction to
Lemma 3.11(i) applied to L' because A" U /3 is an L’-arc of M satisfying |A"U S| = 2.
Thus (ii) holds. Now, we establish (iii).

By (i) and (ii), A” € Ay and |A”| € {2,3}. If |A”| = 3, then, by (4.6), Ca N Ly #
Cur N Lg. Therefore (iii) follows from Claim 4 applied to A” = A”. Assume that
|A”] = 2. By (i), (M/L)|(AU A") is connected. In M/L, A is a triangle, A” is
contained in a parallel class P and PN A # (), say « € PN A. (Remember that
M/L is binary.) Set A” = {a,d'}. If a = a, then A” = AANA" = (A—a)Ud is
an L-arc of M because, by (4.6), (Ca — Carv) N Ly # 0 # (Car — Cy) N Ly and so
Ca AN Cun = A" U[(Ca A Cyr) N Lyl = Cam. Thus A” € Ar N Ag. Observe that
(iii) follows from Claim 2 since (C4x UC4r) N Ly = (Cy UCaw) N L. We may assume
that « ¢ A”. Set Ay = (A—a)Ua and Ay = (A —«a)Ud. Note that A; and A,
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are triangles of M /L. For i € [2], A; is a triangle of M or A; is an L-arc of M. We
define

o [An it acecu;
") Ca,, if A€ Ar
As A) AN Ay = A", it follows that A; ¢ C(M) or Ay & C(M), say Ay € C(M). There
is j € [3] such that A; € Ar N A;. By Claim 2, Cy, N L; G L;. Thus

{a,a} U (Ca, NL;)U(CaN L), whenj#k

Cy ACy, =
e {{a,a}uu%mLk>A<cAmLk>L when j = k

is a cycle of M. Hence {a,a} € A since {a} ¢ A and {a} ¢ A. By Lemma 3.12,
CaACYy, is acircuit of M and so CyACy, = Cfqay- By Lemma 3.11(i), j = k. Now,
we prove that CAlﬂLk % CAﬂLk. If CAlﬁLk = CAﬂLk, then OAACAI = AAAl =
{a,a}, a contradiction. Hence Cy,NLy # CaNLy. By Claim 4, k = 1,u = 3,|Ly| =5
and

(CaUCx)N Ly =Cyu N Ly, forevery A" € A (4.7)

We have two possibilities for Cy. If Cy = A,, then
CA1 A CQ == (A1 A Ag) U (CAI N Ll) == {a,a'} U (CAl N Ll)

Thus Car = {a,ad’} U (Cy, N Ly). Combining this with (4.7), we have (iii) taking
A" = A; in Claim 4. Assume that Cy = C4,. By (4.7) applied to As, we get

(C4UCH,)N Ly =Ca N Ly for every A" € Al (4.8)
By (4.7) and (4.8), we have that (Cs, N L) — Cy = (Ca, N Ly) — C4. Hence
CAl AN CA2 = {a,a’} U [(OAl N Ll) AN (CA2 N Ll)] - A" U (CA N Ll).

We arrive at a contradiction to (4.6) because, by Lemma 3.12, Cyr = Cy, A Cly,.
With this contradiction we conclude the proof of Claim 5.

Now, we finish the proof of Lemma 4.5 by arriving at a contradiction. By Claim 5(iii),
there are Ay, Ay € Ar N Ay, with Cy, N Ly # Ca, N Ly, such that

(CAl U CAQ) N Ly = Cy N Ly, for any A e A/F (49)
Moreover, u = 3 and |Li| = 5. By Theorem 2.1, there is an L-arc A” of M such that
A” 7L> CA/ N L1 and A” 7L> L — CA/, for A, € A/F (410)

We establish that A” cannot satisfy (4.6). If A” satisfies (4.6), for some A € Ar,
then, by Claim 5(iii), A” — Ca N Ly, a contradiction to (4.10). Thus A” cannot
satisfy (4.6), for every A € Ap. That is, A” — Cy, N Ly or A” — L — C}y,, where
i €[2]. As Cy, N Ly C Cy N Ly, it follows that A” — L — Cy,. There is a circuit C;
of M such that

A" CCy C(L—Cy)UA”. (4.11)
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By (4.9) and Claim 3, there are elements a; and as of M such that {a;} = (Cy4, —
CAQ)H(CA/ﬂLl) and {CLQ} = (CAQ—CAl)ﬂ(CA/ﬂLl). By (410) and (411), as_; € Cz
By (4.11), {ay1, a2} C C1ACy € L—(Cy,NCa,); a contradiction because L; is a series
class of M|L, C1;ACy is acycle of M|L and () # (C1AC)NLy € Li—(Ca,NCla,) ; L.
Therefore Ap = (). a

Our goal is to prove Theorem 4.1, that is, v = 3 and A% = (). By Lemma 4.2,
it is enough to establish that A = (. Assume that A% # 0. By Lemma 4.5,
|A| < 2, for every A € A. By Lemma 2.3, each connected component of M/L has
rank 0 or 1. Let Hy, Ha, ..., H, be the rank-1 connected components of M /L. Hence
r(M)=r(L)+r(M/L) = (|L| —2) +n. Thus

n=r(M)+2—|L| > 4. (4.12)

For i € [n], choose a; € E(H;). If B= (L —{a,f}) U{a1,a9,...,a,}, where o € Ly
and 5 € Lo, then B is a basis of M. As cly(B — a;) = E(M) — E(H;), it follows
that E(H;) is a cocircuit of M, for every i € [n]. Therefore r(E(H;)) > 3 because
M is 3-connected. For i € [n], there is an independent set I; of M such that |I;| = 3
and I; C E(H;). We use ();) to denote the family of 2-subsets of a set X. Note that

each element of (E(fi)) is an L-arc of M.

Lemma 4.6 If A’ € (121) NA and A e (12]) NAy, for k € [3] and {i,j} a 2-subset of
[n], then CaN Ly € {CA/ N Ly, Ly — CA/}.

Proof. By Lemmas 3.10 and 3.11(i), A" € A%, u = 1 and every element of SC(M|(LU
A")) has size 2. By Lemma 3.6, 2 = |A| < [Cx N Lg|. If CaNCx = 0, then
CAﬂLk g Lk—CA/. Thus CAﬂLk = Lk—CA/ since |Lk—CA/‘ = 2 and |CAﬂLk| Z 2.
Assume that Cy N Cy # 0. As {A, A’} is an apart pair of L-arcs of M, it follows,
by Lemma 3.7, that C'4 A C's/ is a circuit of M. Thus

8> Oy A Cur| = |A| + [A| +(Ca A Car) N Ly| + |Cur 0 (L — Ly)].

Therefore |(Ca A Ca) N Lg| = 0 because |A| = |A'| = 2 and |Ca N (L — Ly)| = 4.
Hence Cy N L, = Cy N Ly. ([

Lemma 4.7 If A, € (12) NA; and Ay € (12) N A, A1 # Ay, fori € [n] and

{j,k} C[3], then (121) C A, or (121) C A.

Proof. There are X; C L; and X, C Ly such that Cy, = AjUX; and Cy, = AyUX}.
By Lemma 3.6, | X;| > 2 and |X;| > 2. If Ay = A; A Ay, then (§) = {A;, 4y, A3}
First, we show that

j=kor X; =L, or Xj = L. (4.13)

Assume that j # k and X; G L; and X & Lj. By Lemma 3.12,

CA3 - CAI A CA2 - (Al A Ag) U (X] UXk) - Ag U (X] UXk)
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In this case, M|(L U A3) is a subdivison of M (K,). We arrive at a contradiction
to Lemma 3.11(i), since |A3| = 2. Thus (4.13) follows. If j = k, then A3 — L;
and (12) C A; since, by Lemma 3.12, Cy, = A3 U (X; A Xj). Suppose that j # k.
By (4.13), X; = Lj or X} = Ly, say X; = L;. Hence C = Cy, A(LjULy) = A1 UL
is a circuit of M and so A; — Ly, that is, A; € Ai. Observe that

CA3 == CACAQ - (Al ULk) A (AQUXk) :A3U (Lk —Ak)

Thus A3 — Lj, and A3 € A;. Therefore (121) C A,. a

Lemma 4.8 Fzxactly one of the following statements holds:

(a) (12) NA #0, for every i € [n]; or

) (5)NA =0, for every i € [n].
Proof. Assume this result fails. There is a 2-subset {i, j} of [n] such that (12) NA #(
and (Izj)ﬂA’ = (). Suppose that (123) ={A;, Ay, A3} and A’ € (121')0./4’. By Lemma 4.7,

there is k € [3] such that (12]) C Ay. By Lemma 4.6, {Ca, N Ly, CyyN Ly, CayNL} C
{Cy N Ly, Ly — Ca}. We have a contradiction because, by Lemma 3.12,

CA3 = CAl ACAz = (Al AAQ) U [(CAl ﬂLk) YA (CA2 ﬂLk)]

and so Cy, = Az or Ca, = A3 U L. O

Lemma 4.9 If Lemma 4.8(a) holds, then

]1 ]2 In /
cA. 4.14
(2o (500 (s) < 429
Proof. Assume that (4.14) fails. First, we show that, for ¢ € [n],k € [3] and
Ae (g) N Ay,
(a) (5) —{A} C A’ and
(b) [Cal =4; and

(c) for j € [n],j # i, there is A; € (12) — A, say A; € Ay, for some k; € [3].

Moreover, k; is unique and k; # k.

Note that (a) is a consequence of Lemma 4.7. By Lemma 4.7 and hypothesis, there
are A’ and A7 in (12]) NA’, with A # AY. By Lemma 4.6,

CanlLye {CA; N Ly, Ly —CA;_}H{OAQ/ N Ly, Ly, —CA;/}.

We can choose C’A;, and CA;.’ such that o ¢ C’Ag U C’A;/, for « € L, — C4. Thus
CaNLy = CA;_ﬂLk = CA;_/ﬂLk. Therefore ’CA’ = ‘A’—HCAHL]C‘ = ’A‘—i—lCA;ﬂLk‘ =4.
We have (b). By Lemma 3.12, Ca; = Cas ACar. As Ca ACr € (A;AAT)U(L—Ly),
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it follows, by Lemma 3.11(i), that A; = A} A A7 ¢ A". Thus A; € Ay, for some
k; € [3] with k; # k. By (b) applied to A;, we conclude that |Cy4;| = 4 and so k;
is unique. We define k; = k. Note that k; is unique by (b). By (c), k; # k;. Hence
ki, ks, ..., k, are pairwise different and so n < 3; a contradiction to (4.12). Therefore
A does not exist and so (4.14) holds. O

Lemma 4.10 ltem (b) of Lemma 4.8 holds. In particular, |A'| = 1, for every
A e A,

Proof. Suppose that Lemma 4.8(a) holds. By Lemma 4.9, we have that

L [1 [2 . e In /
oo (Mo(H) oo (B ea

For A€ A" o € Ly and § € Lo, choose Cy such that Cy C AU(L;—«a)U(Ly—5)ULs,
say Cy = AUX,UY UZy, where Xy C L1—a, Y4 C Lo—f and Z4 C L. (Thereis a
unique C}y satisfying these conditions.) By Lemma 3.10(ii), | X4| = |Ya| = |Z4| = 2.
For i € [n], set (§) = {A;, A}, A’}. First, we show that

Ly —«

{XAI.,XAQ,XAQI}:< 12 ) (4.15)
L _

{YA“YA;,YA;/}_< 22 5), (4.16)
Ly -

{ZANZA;vZA;,} = ( 32 f}/)’ (417>

for some ~; € L3. By Lemma 3.12,
CA;/ = CAi JAN CA; = (AZ A A;) U [XAi A XA;] U [YAi A YA;] U [ZAi A ZA;]

As Xy, Xy and Xy = Xy, A Xy are 2-subsets of [y — « and [L; — af = 3,
it follows that (4.15) holds. A similar argument hods for (4.16). Observe that
Za, DN Za AN Zpr = (). Thus the 2-subsets Z4,, Z A and Zyr of Lz avoids an element
7v; of Ls. We have (4.17).

For A e A" we set Xy = {X4,Ya, Za}. Now, we prove that

XaNXy #0, when {i,j} € ([Z]>,A € (—;Z) and A’ € (]2]) (4.18)

Suppose that (4.18) fails. Consider
C=CaACxy=AUAUXAAXp|U[YAAYN|U[Zs A Z o]

Observe that |C] > 10 becuase: (a) |A| = |A'| = 2; (b) X4 and X4 are different
2-subsets of L; — a and so | X4 A Xa| = 2; and (c) similarly, |[Y4 A Ya| = 2 and
|Za AN Zy| € {2,4}. Thus C is not a circuit of M. As CNL C L — {«a,p} is
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independent in M and A and A’ are the unique series classes of M|(L U AU A’)
avoiding L, it follows that C1 UCy = C C (L — {«, 8}) U AU A’, where C; and Cy
are disjoint circuits of M with A C C} and A’ C Cy. Hence C; = C4 and Cy, = Cy,
a contradiction. Therefore (4.18) holds. Now, we refine (4.18) to

|XaNXy| =1, when {i,j} € <[Z]>,A € (g) and A’ € <12j> (4.19)

Assume that (4.19) fails. By (4.18), we have that |Xa N Xa/| > 2, say X4 = X4 and
Y4 = Y. By (4.15), (4.16) and (4.17),

Xa;r Xar and X A7 are pairwise disjoint. (4.20)
Assume that A" = A7. By (4.18), we have that
|XAﬂXA].| > 1 and |XAQXA;‘ > 1. (421)

By (420), XA N XAJ- Q XA - XA/ Q {ZA} and /YA N XA; Q XA - XA/ Q {ZA}
By (4.21), Za = Za, and Z4 = Za, a contradiction to (4.20). We have (4.19).

By (4.15), (4.16) and (4.17), we may ssume that

{XAla‘XA’l:XA’l’} = {{Xb}/l;Zl}a {XQaYéa Z2}7 {X37Y37 Z3}}7 where

(L12—CY> = {X1, Xo, X3}, (L12_5> Vi, Ya, Ya), (L3571> A A

By (4.19) applied nine times when i = 1 and j € [n] — {1}, we obtain that
{XAJ'? XAgv XA;/} = {{Xh ) Y;w Zi3}7 {le ) Y;'z? Zj3}7 {Xkl7Yk27 st}}

with {il, ig, 23} = {jl,jg,jg} = {kl, kZQ, ]{53} = [3] By (415), (416) and (417) apphed
to the index j, we have that {iy,j1,k1} = {ia, jo, ka} = {is,J3, k3} = [3]. Therefore
there are two possibilities for {X4;, Xar, Xar}:

{{Xla}/%ZS}v{X27}/E’nZl}7{X37}/17ZQ}}Or{{Xlay?nZ2}7{X27}/17Z3}a{X3a}/2aZ1}}-
Hence n < 3, a contradiction to (4.12). O

By Lemma 4.10, |A'| = 1, for every A’ € A%. Fix Cy satisfying Lemma 4.4.
Remember that our goal is to prove that A% = ). We are assuming that A% # ().

In the next lemma, item (iii) refines item (i). We state item (i) because it is a
step towards the proof of item (iii).
Lemma 4.11 Suppose that A € Ay. If A’ € A;, fori € [3], and |A'| =2, then

(Z) CAHLZ‘ QCA/ﬂLi O’I“CA/ﬂLi QCAﬂLi O’I"CAPICA/ :@;
(ZZ) LigCA’; and
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(iii) CaonNL, CCyNL;, orCynNnCyuy = 0.

Proof. Suppose that Cq N Cy # 0. As |A| = 1, it follows that {A, A’} is an apart
pair of L-arcs of M. By Lemma 3.7, C4 A Cy is a circuit of M and

8> |Cu A Cul| = Al +|A|+|Can (L ULp)|+ [(Ca & Car) N Ly,
where {1, 5, k} = [3]. Thus
5> |CAﬁ(LjULk)|—|—|(CAAOA/)QL,~|. (4.22)

Now, we begin the proof of (i) to (iii).
(i) Assume that (i) fails. Hence (Cy — Ca) N L; # 0 # (Car — C4) N L; and so

(Ca A Cu) N Li| > 2. (4.23)

Replacing (4.23) into (4.22), we get 3 > |CaN(L;U Ly)|. Therefore {|CxNL;|,|CaN
Lk\} = {1,2}. Hence vq = (4,2,1),i = 1 and |Ly| = 5. Moreover, we have equality

n (4.23). In particular, |(Cy C’A/) NLy| = |(Car—Cy)N L1 =1. Thus |[CaNLy| =
]C’AIOL1| = 4. There is {a, b} S (Ll) such that CyNL; = Li—band CyNL; = L, —a.
Observe that D = Cy A (Ly U Lg) is a circuit of M such that D N L, = {b}. By
Lemma 3.7, D A Cy is a circuit of M. Hence

8> |DACyl|=IAl+|A+ |Li — {a,b}| + |Ca N Ly| + |Ls — C4|,

a contradiction because |D A C /| = 10. Therefore (i) holds.
(ii) Assume that (ii) fails. Hence Cy» = A’ U L;. First, we show that

L, — Cy| = 1. (4.24)

If |L; — Ca| > 2, then, by (4.22), [C4 N (L; U Ly)| = 3 and |L; — C4| = 2, since
(Ca ACa)NL; = L; — Cy. That is, {j,k} = {2,3} and ¢ = 1, a contradiction
because vq = (4,2,1) and |L; — C4| = 1. Thus (4.24) follows. For j € [3],j # i, we
can view A’ € A; since

is a circuit of M. By (4.24) applied to j, we obtain |L; — C4| = 1. Thus |LNCy| =
|L| — 3 > 8. With this contradiction, we conclude the proof of (ii).
(iii) Assume that (iii) fails. By (i), CaN L; & Ca N L;. By (ii), Ca4 N L; & L;. In
resume,
CANL; S CyNL S L (4.25)

Remember that Cy A Cy = [Ca — (CaN L)|U A U[(Car — Ca) N Ly is a circuit of
M. Thus

8> |CA|+|A/U[<CA/—CA)QL¢]|—|CAﬂLi’. (4.26)
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As |Cal € {7,8}, it follows that |C4 N L;| > 2 because |A" U [(Car — Cx) N L;]| > 3.
By (4.25), |L;| > 4. Next, we show that |L;| = 4. If |L;| = 5, then i = 1 and,
by (4.25), va € {(3,2,2),(2,2,2)}. Consider D = C4 A (L1 U L3). By Lemma 3.7,
D A Cy is a circuit of M. As

DACy=AUAU[(L1 —Ca)U(CxNL)]U(CaNLy)U(Lz—Ca),

it follows that |[D| > 142+ [1+2]+2+1 =09, a contradiction. Therefore |L;| = 4.
By (4.25), |Ca N L;| = 3 and |C4 N L;| = 2. Moreover, u € {1,2}. As |A'U[(Ca —
Ca) N L;] > 3, it follows, by (4.26), that |Ca| = 7. Thus va = (2,2,2). If j € {1,2}
and j # i, consider D = Cy A (L;ULj). Observe that (|DNLy|, DN Ls|,|DNLs|) =
(2,2,2). Thus D can be taken to be C4; a contradiction because (i) is not satisfied
in this case. Therefore (iii) follows. O

By Lemmas 4.7 and 4.10, for i € [n], there is k; € [3] such that

Now, we prove:

Lemma 4.12 Suppose that A € A%. If i € [n], then Cx N Ly, or Ly, — Cy contains

I
XZ':U{CAIQL]%ZAIG (5)}

Proof. Assume this result fails. By Lemma 4.11(iii), there are different 2-subsets A;
and Aj of I; such that Cy,N Ly, € CaNLy and Cy MLy, C Ly, —Ca. As A = A, A A}
is the third 2-subset of I;, it follows, by Lemma 3.12, that

CA;’ = CAi AN CA; = (Az AN A;) U (CAz N Lkl) U (CA; N Lkl)
We arrive at a contradiction to Lemma 4.11(iii) applied to A7 and A. O

Lemma 4.13 Ifi € [n], then | X;| > 3.

Proof. By Lemma 3.6, when |X;| < 2, then |X;| = 2 and Cx = A" U X, for every
A e (12’), a contradiction because C'a, A Cy, = Az, when (IQ’) = {4, Ay, A3}. O

Lemma 4.14 If {i, j} is a 2-subset of [n] such that k; = k;, then, for A; € (%) and
Aj S (Ié), CAZ- ﬂCAj =0 or CAi ﬂLki - CA]. ﬂLki or CA]. ﬂLki - CAi ﬂLki.

Proof. Suppose that Cx, N Ca, # 0, say a € Cy, N Cy,. By Lemmas 4.12 and 4.13,
|Ly,| > 4. We can choose k € [3] such that k # k; and Ly U Ly, is a circuit of M with
8 elements. Consider the following cycle of M:

D = (Cy, ACH) A (LpULy,) = AjUA; ULy ULy, — (Ca, A Cy,)l.
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Figure 2: The graph G isomorphic to K3 ,.

There is b € Ly, — (Ca, U Cy,) because, by Lemmas 4.12 and 4.13, X; and X; are
contained in the unique set in {C4 N Ly,, Ly, — Ca}, where A € A%, with at least
3 elements. (Choose b in the other set.) As {a,b} is a 2-subset of L, — (Ca, A
Cly,), it follows that [D| > 9 and D is not a circuit of M. The result follows from
Lemma 3.9(ii) applied to {A;, A;}. O

Lemma 4.15 If A € A, then |Li| = 5,u = 3,k; =1, for every i € [n], and there is
a partition {Y1,Y2} of Ca 0 Ly such that we can label the elements of Y1,Ys, Iy, for
k € [n], by respectively {c, o'}, {8, '}, {ak, by, e} such that M|(Y1UY,ULULU- - -U
L)/{d, B’y = M(QG), where G is the graph such that v(G) = {u, v, w,uy, ug, ..., u,}
and E(G) ={a,B,a1,a2,...,a,,b1,b,...,by,¢1,C,...,cn} with the incidences o =
uv, f = vw,ap = ugu, by = upv,cp, = wpw, for k € [n] (see Figure 2). Moreover,
{a, '} and {B, '} are series classes of M|(Y1UYo UL Ul U---UL,).

Proof. There is a 2-subset {7, j} of [n] such that k; = k; because, by (4.12), n > 4 and
{k1,ka, ..., k,} C [3]. First, we establish the existence of X € {Ca N Ly,, Ly, — Ca}
such that

X, UX; € X and 3 <min{|X;|,|X;|} and | X]| < 4. (4.27)

By Lemma 4.12, there is X € {C4NLy,, Ly, —Ca} such that X; C X. By Lemma 4.13,
| X| > |X;| > 3. So|Li,—X| <2. By Lemmas 4.12 and 4.13, X; C X, since | X;| > 3.
Moreover, | X| < 4. Hence (4.27) follows. Set

V1,Yo,Ys} = {Cu N Ly, - A € (5)} and {Z1, Zs, Z3} = {Ca N Ly, : A" € (9)}.

2

Next, we prove that
Xi=X;=X,|X|=4,ki=1,|L;] =5 and u = 3. (4.28)

First, we show that | X;| = |X;| = 4. Assume that |X;| = 3 or |X;| = 3, say | X;| = 3.

In this case,
Xi
o= (3)

As |X;| > 3,|X;] > 3 and 4 > |X; U X;|, it follows that |X; N X;| > 2. Choose
a 2-subset {a,b} of X; N X,. Thus {a,b} =Y,, for some r € [3], say r = 1, since
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{Y1,Y5, Y3} = ()g) As Zy N Zy N\ Zs = (), it follows that a € Z, N Z,, for a 2-subset
{s,t} of [3], say s = 1,t = 2. By Lemma 4.14, Y1 C Z; and Y} C Z, because
Y1 = 2 and min{|Z,|,|Z2|} > 2. Thus Z;NY; = 0. As |V} U Z3| > 4, it follows
that Y1 U Zs = X and |Z3] = 2. Note that Yo N Y| = |YoN Z5] = 1. This is a
contradiction to Lemma 4.14 because Yo N Z3 # (0, Zs € Yy and Yy, € Z3. Therefore
| Xi| = |X;| =|X| =4. By (4.27), X; = X; = X = C4N Ly, and so k; = 1. Moreover,
|L1| =5 and u = 3. Thus (4.28) holds.

Now, we establish that
if Z € {}q,lfg,}%,zl,ZQ,Zg}, then ‘Z| S {2,4} (429)

Assume that (4.29) fails. There is Z € {Y1,Y3,Y3, Z1, Z5, Z3} such that |Z| & {2,4}.
As 2 < |Z] < 4, it follows that |Z] = 3, say |Y1| = 3. For each r € [3], Y1 N Z, # ()
since |Z,| > 2,|Y1| =3 and |Z,UY;| < |X| =4. By Lemma4.14, Z, C Yy orY; C Z,,
for each r € [3]. Hence there is a 2-subset {s,t} of [3] such that

(a) Zs C Yy and Z; CYy; or
(b) Y1 C Z;and Y, C Z;.
If (a) happens, then X; = Z,U Z, C Y1 & X, a contradiction to (4.28). If (b)

happens, then Z, A Z, C X; —Y; and so |Z; A Z;| < 1, a contradiction because
Zs N Zy € {Z1, 2, Z3}. Hence (4.29) follows.

In this paragraph, we show that
X € {)/17)/27}/3}Q{ZI7227Z3}‘ (430)

If (4.30) fails, then, by symmetry, we may assume that X & {Y1,Ys,Y3}. By (4.29),
1] = |Ya] = |Y3] = 2. Thus X; = Y] UY; has 3 elements because Y3 = Y] AYs, a
contradiction to (4.28). We have (4.30).

Finally, we show that,
when Y; = Z3 = X, then {Y1,Y2} = {Z1, Z»} is a partition of X. (4.31)

By (4.30), we may assume that Y3 = Z3 = X. By (4.29), |Yi| = |Y2| = |Z1]| = |Z2] =
2. As X =Y1UY, = Z; U Zy and |X| = 4, it follows that {Y7,Y2} and {Z;, Z5} are
partitions of X. By Lemma 4.14, {Y1, Y2} = {71, Zo}. Thus (4.31) follows.

By (4.28), L is a (5,3,3)-theta set of M. As |Ly| = |L3| = 3, it follows, by
Lemmas 4.12 and 4.13, that ky = ks = --- = k, = 1. By (4.31), we can label
the elements of Iy, for k € [n], by ag, bk, ¢, such that {ax, b} U Yy, {bg,cr} UYs
and {ay,cx} UY; UY; are circuits of M. These circuits span the circuit space of
N=M|Y1UYoULUIlU---UI,). Note that Y; and Y3 are series classes of N.
Moreover, {ag, by, a}, {bx, cx, B}, {ax, ¢k, o, 5}, for k € [n], span the circuit space of
both N/{«’, '} and M(G). Therefore N/{d/, '} = M(G). O

Lemma 4.16 A, = ().
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Proof. Assume that A" € A. By Lemma 3.11, |A’| = 1 and L;, for some i € {2, 3}
is a series class of M|(LU A’), say i = 3. Let Y},Y5,a1,b; and ¢; be as defined in
Lemma 4.15. First, we show that |Cx NY;| € {0, 2}, for every j € [2]. Assume that
|[CarNY;| =1, say j = 1. By Lemma 3.11(iv) applied to A" and {ay,b;}, we have
that (a) happens because |Cx NYi| = |Y1 — Ca| = 1. Thus Cyq, 5,3 = {a1,b1} U Ly,
a contradiction. Therefore {|Ca NY1|, |Car NY3|} € {0,2}. Next, we establish that
|CaN(Y1UY3)| € {0,4}. Tf |CxN(Y1UY3)| = 2, then, by Lemma 3.11(iv) applied to A’
and {ay, ¢}, we have that (a) occurs since |Cy N (Y1 UYs)| = |(Y1 UY2) — Cu| = 2.
Thus Cla, ;3 = {a1,c1} U Ly; a contradiction. Hence [Car N (Y U Y3)| € {0,4}.
Replacing Cy by Car A (L U Lg), when |Car N (Y1 UY3)| = 4, we may assume that
|Car N (Y1 UY3)| = 0. Therefore x € Cyr, where {z} = L; — (Y1 UY3). Consider the
following circuit of M|(L U A’):

C=CyA(L1UL3)=A"U(L; —2)U (LyNCa) U Ls.

Hence |C| = 8 4+ |Ly N Ca/|, a contradiction because Ly N Car # (). O

By Lemma 4.10, |A'| = 1, for every A’ € A%, Let aj,as,...,q, be pairwise
different elements of M, with m > 1, such that A% = {{a1}, {az2}, ..., {am}}

Lemma 4.17 Ifi € [m], then there are 2-subsets W; and W] of Ly and Lj respec-

)

tively such that {x,a;} UW; UW/ is a circuit of M, where {z} = L1 — (Y1 UY3). (V1

7

and Yy are defined in Lemma 4.15.)

Proof. 1f A = {«;}, then, by Lemmas 4.4 and 4.15, we can choose C4 such that
Cy =AU (Y1 UY2)UW,;Ud;, where W; is a 2-subset of Ly and d; € Ls. Consider the
circuit C' = Cy A (L1 U Ly) = {z, o, } UW; UW/, where W/ = L3 — d;. The result

follows. O

Lemma 4.18 If {i,j} is a 2-subset of [m], then

(a) Wi =W and W} # W, or

(b) Wi # W; and Wi = W},
Proof. By Lemma 4.17,
C = ({,a:} UG UTV) A ({05} UW; UTV) = {as a5} U (W5 A W) U (W] A TW)
is a cycle of M. Observe that {|[W; A Wy, [W/ A Wi} C {0,2} because, by
Lemma 4.15, [Lo| = |Ls| = 3. If [W; A W = [W] A W]| =0, then C = {a;, a;}; a
contradiction because M is 3-connected. Thus 2 € {|W; A W[, [W] AWI[}. Tf 0 also

belongs to this set, then (a) or (b) holds. Assume that 0 does not belong it, that is,
(Wi AW;| = [W] AW]| = 2. Consider the cycle D of M:

D=CA(L1ULs) = {a;, o} UL UW; AW;) Ud,
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where {d} = Lz — (W] A Wj). Note that [D| = 10. There are pairwise disjoint
circuits Dy, Do, ..., D; of M, for [ > 2, such that D = Dy U Dy U---U D;. Note that
C(M|L)N{Dy,Ds,...,D;} = 0. Thus Dy N {a;,a;} # 0, for every k € [I]. Hence
[ = 2. We may assume that o; € D; and a; € Dy. Observe that d € Dy or d € Do,
say d € Dy. Therefore o; € Dy C Ly U Ly U v, a contradiction since {a;} € A, O

Lemma 4.19 m < 3. Moreover,

(a) Wy =Wy =+ =W, and W], W35, ..., W/ are pairwise different 2-subsets of
Ls; or

(b) Wi =Wi=--- =W/ and Wy, Ws, ..., W, are pairwise different 2-subsets of
L.

Proof. If m = 1, then the result follows. Assume that m > 2. By Lemma 4.18,
permuting Ly with L3, when necessary, we may assume that

Choose j € [m] —{1,2}. (If m = 2, then the result follows.) First, we show that
W; =Wy =Wy, If W; #£ W, = W, then, by Lemma 4.18, VVJ’ = W/ and VV]’ = Wi,
a contradiction to (4.32). Thus W; = Wy = Ws. As j is any element of [m] — {1, 2},

it follows that Wy, = Wy = - - = W,,,. By Lemma 4.18, W{, W3, ... W/ are pairwise
different 2-subsets of L3. We have (a). Hence m < 3 since L3 contains only 3 different
2-subsets. O

By symmetry, we may assume that Lemma 4.19(a) holds. By Theorem 2.1, M has
an L-arc A such that A 4 Wi and A 4 L—W,. By Lemma 4.16, A ¢ A’ Note that
A ¢ A, since we are assuming that Lemma 4.19(a) holds. Thus A € A; U A, U As.
Hence A € A,. By Lemma 4.15, |A] = 1 and C; = AU W, where W C Ly, [W| = 2
and |[W N W;| = 1. Consider, for A = {1}, the cycle of M:

C=CsANCy=AUAU (L — {z}) U(W AWy U(Can Ly).

Note that |C| =9. By Lemma 3.7, C is a circuit of M. With this contradiction we
finish the proof of Theorem 4.1.

5 Proof of Theorem 3.3

We divide the proof of Theorem 3.3 into a sequence of lemmas. Assume that Theo-
rem 3.3(i) fails, that is, M has a theta set L such that |L| > 11. By Theorem 4.1,
L is a (5,3, 3)-theta set. When {L1, Lo, L3} is the canonical partition of L in M, we
may assume that |L;| =5 and |Ly| = |L3| = 3. For i € [3], define A, A;, A, A} and

"> as we did in Section 2. By Theorem 4.1, A% = (). By Lemma 3.4, ) # A" = A/,.
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By Lemma 3.11(i), |A| = 1, for every A € A’. For A € A, define C4 as we did in
Section 2. We fix more notation. For i € {2, 3}, set

V={a€e E(M)—L:{a} € A’} and
Vi={aeV:{a} - L1 UL;}.

By Lemma 3.11(ii), {V4, V3} is a partition of V.

Lemma 5.1 Ifa €V, fori € {2,3}, then there is a partition {Z,, W,} of Ly, with
|Za| = 2 and |W,| = 3, a partition {X,,Y,} of L;, with | X,| =1 and |Y,| = 2, such
that a U X, U Z, and a UY, U W, are circuits of M. (These circuits are the two
options for Cyay.)

For a € V', we use the sets X,,Y,, Z, and W, and theirs properties establish in
Lemma 5.1 along this section without referring to this lemma.

Proof. Replacing C{qy by Ciay A (L1 U L;), when necessary, we may assume that
|C{a} N L1| > |L1 — C{a}|. Set W, = C{a} NL,Z, =11 — O{a},Ya = C{a} N L; and
Xo = L; — Ctqy. We have just chosen Cyqy such that |W,| > |Z,|. Hence |[W,| > 3.
If j satisfies {7, j} = {2, 3}, then, by Lemma 3.11(iii),

D1 = C{Q}A(LlLJL]) = aUYaUZaULj and DQ = C{G}A(LZULJ) = aUXaUWaULj

are circuits of M satisfying |D;| = |Dy| = 8. Thus |Y,| + |Z,| = | Xa| + |Wa| = 4. As
0 & {Xa,Ya, Za, W, } because {a} 4 L; and {a} 4 L;, it follows that 3 < |[W,| =
4 —1X,| < 3. Therefore |W,| = 3 and | X,| = 1. Consequently |Z,| = |Li| — |W,| = 2
and Y| = |Li| — | X.| = 2. O

Lemma 5.2 Fori € {2,3}, V; # 0.

Proof. By symmetry, we may assume ¢ = 3. By Theorem 2.1, there is an L-arc A
such that A /4 Ly ULy and A /4 Lj because {L; U Ly, L3} is a 2-separation for M|L.
Thus A € A" = A}.. By Lemma 3.11(i)(ii), |A| = 1, say A = {a}, and M|(LU A) is
a subdivision of M (Ky) with A — Ly U Ly or A — LU L3. Hence A — L; U Lz and
so a € Vs. O

Lemma 5.3 [fA € A; anda € V;, fori € {2,3}, satisfy X, C Ca, then Cy = AUL;.

Proof. Suppose that Cy = AU X, for X C L;. Take Cfyy = aU X, U Z,. If
X = L, then the result follows. Assume that X G L;. By Lemma 3.6, |A| < |X| <
|L;|—1 < 2. Thus | X| = 2 because every parallel class of M is trivial. By hypothesis,
X, CX. Set 5, = (C{a} ﬂLi) NCy =X, and S5 = (L, - C{a}) NCy=X—X,. As
|So| = |S3| = 1, it follows, by Lemma 3.11(iv), that Lemma 3.11(iv)(a) holds. Thus
Cy = AU L;, a contradiction. The result follows. O
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Lemma 5.4 Suppose that N is a binary matroid. Let {X,Y} be an exact 2-separ-
ation for N|(XUY). Assume that N|(XUY') is connected. If A is an (XUY)-arc of N
such that A /A X and A AY and C is a circuit of M such that A C C C AUXUY,
then CNX A0, X —C#0,Y -C#0Dand CNY # 0.

Proof. As A 4 X, it follows that CNY # (). Similarly, CNX =# (). The result follows
provided X —C # @ and Y — C # 0, say X — C # (. Assume that X — C = 0.
Hence X G C because CNY # (. Thus X is independent in N. Let C' be a
circuit of N|(X UY) such that C"'NX # () and C"NY # (. As X is independent
in NV, it follows that X C C’. Consider the cycle D = C' A C" of M. Note that
ACDCYUA. There is a circuit D’ of N such that A C D’ C D because A is a
series class of N|(X UY UA). Hence A — Y, a contradiction. Therefore X — C' # 0).

(I

Lemma 5.5 Fori € {2,3}, there is a 2-subset {a,b} of V; such that X, # Xp.

Proof. By Lemma 5.2, there is a € V;. Observe that {Y,, (L —Y,) Ua} is a 2-
separation for M|(L U a). By Theorem 2.1, there is an (L U a)-arc A of M such
that A 4 Y, and A /A (L —Y,)Ua. As L spans a in M, it follows that A is an
L-arc of M. Consider Cy. By Lemma 5.4, C4NY, # 0 and Y, — C4 # 0. Hence
|CxNY,| =Y, — C4| = 1. We have two cases to deal with: A € A" and A ¢ A'. If
Ae A=Ak, say A= {b}, then b € V; and

Y, — CA ﬂLZ’, when ‘CA le| = 2,
"7 \Li—C4, when |CuN L =1

IfYZ-, = CAﬂLi, thenXb :Li—CA 2 Ya—CA #Qandszb :Y;—CA. In
particular, X, N X, = 0 because X, NY, = (). Hence X, # X;. f Y, = L; — Cy,
then X, = CuaNL;, DC4NY, # 0 and so X, =Y, NCy. Again, X, N X, = 0 and so
Xo # Xp. When A € A’ the result follows. Assume that A ¢ A’. Therefore A € A;,
for some j € [3]. Note that j =i since |[CaNY,| =Y, —Ca|=1. If Cy = AUX,
for X G L;, then, by Lemma 3.6, |X| > 2 and so |X| = 2. Thus X, C X C Cy, a
contradiction to Lemma 5.3. O

Lemma 5.6 A, U A5 C A,.

Proof. If A € A; — Ay, for some i € {2,3}, then Cy = AU X, for some X & L;. By
Lemma 3.6, | X| = 2. By Lemma 5.5, X contains X, for some a € V;, a contradiction
to Lemma 5.3. O

Lemma 5.7 If {a,d'} is a 2-subset of V with X, # Xy, then Z, N Zy # 0.

Proof. Suppose that Z, N Zy = 0. If b € Ly — (Z, U Zy), then {{b}, Z,, Zs} is a
partition of L;. We deal with the two cases simultaneously: {|{a,a'} NVa|, |[{a,d'} N
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Figure 3: The two possibilities for the graph H. In (A), when a € V5 and
a’ € V5. In (B), when {a,a’} C V5.

V3|} can be equal to {1} or {0,2}, say a € V5 and o’ € V3; or {a,da’} C V5. In both
cases the circuit space of N = M|(L U {a,a’}) is spanned by

LiULy, Li ULz, aUX, U Zy,a' UXy U Zy. (5.1)

In Figure 3, H is a graph such that E(H) = SC(N). Let G be a subdivision of H
such that each edge S of H is replaced by a path of length |.S| whose edges are labeled
by the elements of S. Note that the circuits displayed in (5.1) span the circuit space
of M(G). Therefore M(G) = M|(LU{a,a'}). When a € V5 and d’ € V5,

(@UY,UW,) A (dUY, UWy,)={a,d}UZ,UZ,UY,UYy
is a circuit of M with 10 elements, a contradiction. When {a,a’} C V5,
(LoUL3) A (aUX,UZ) A (dUXyUZy)=A{a,d'}UZ,UZy U (Y,NYy)ULs

is a circuit of M with 10 elements, a contradiction. O

Lemma 5.8 Fori € {2,3}, there is a connected component N; of M /Ly such that
E(N;) = L; UV, L; is a triangle of N;, each element of V; is in parallel with some
element of L; and N; has at least two non-trivial parallel classes.

Proof. By symmetry, we may assume i = 2. The set of L-arcs of M\V; is A — A}, =
A5 U Ay, since, by Lemma 5.6, Ay U A3 C A;. Therefore A — L; U L3, for every
A e A—A,. By Theorem 2.1, M\ V5, has a 2-separation { X, Y} such that XNL = Ly
and Y N L = L; U L3. Moreover, by Theorem 2.2, we may take

y:(LluLg)U<U{A:AeA—A§})

and X = Ly. Thus Ly is a series class of M\Vs. As Lo is a circuit of (M\V2)/Ly,
it follows that Lo is the ground set of a connected component H of (M\V,)/L;. By
Lemma 5.1, for each a € V5, aU X, U Z, is a circuit of M. Therefore a U X, is circuit
of M/Ly. As |aU X,| =2 and X, C Lo, say X, = {x,}, it follows that, in M/L,
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a is in parallel with z, € L. If Ny is the connected component of M/L; satisfying
Ly C E(Ny), then V, C E(N,) and No\Va = H. Thus E(N,) = Ly U V. Moreover,
when a € V5, aUx, is contained in a non-trivial parallel class of Ny. By Lemma 5.5,
Ny has at least two non-trivial parallel classes. O

Now, we refine Lemma 5.8. Let C? be the unique connected matroid over
{1,2,3,4,5,6} having {1,2},{3,4} and {5,6} as parallel classes.

Lemma 5.9 If {a,d’} is a 2-subset of V;, for i € {2,3}, then Z, = Z,,. Moreover,
N; is isomorphic to C3 or C2\6.

Proof. First, we establish that
Lo = Ly. (5.2)

Assume that ¢ = 2. Observe that L' = (L — X,)Ua is a (5, 3, 3)-theta set of M with
canonical partition {LsUZ,, W,,aUY,}. Applying Lemma 5.8 to L, we conclude that
M/(LsU Z,) has rank-2 connected components Hy and Hs having W, and aUY, as
triangles respectively. As [M/(LsU Z,)]/Wa = (M/Ly)/Ls, it follows that Hs = Ny
because a UY, C Ly UV, = E(N;). By Lemma 5.8, there is b € Ly such that {d/, b}
is a circuit of Hs. Let C be a circuit of M such that C' — (L3 U Z,) = {d’,b}. As
C C LUd' and CN Ly = {b}, it follows that C' = {da’,b}UZ, or C = {da’,b}UW, U Ls.
Hence C' = {d/,b} U Z, because |L; N (L3 U Z,)| = 2 and |W,| = 3. Therefore
Zy C(L3UZ,)N Ly = Z, and so Z, = Z,. We have (5.2). Now, we show that
every parallel class of Ny has at most two elements. Assume that P is a parallel
class of Ny such that |P| > 3. Choose a 2-subset {ai,as} of P — Ly. Observe that
Xo, = Xo, = {2}, where x € Ly N P. By (5.2), Z,, = Z,,. Hence

(al U )(a1 U Zal) A ((1,2 U Xa2 U ZQQ) = {al, CZQ}

is a circuit of M, a contradiction. Thus every parallel class of Ny has at most two
elements. The result follows from Lemma 5.8. a

Lemma 5.10 If A € A; and |A| =3, then
(i) Ca=AULy; or
(11) Cy = AUX, with X C Ly and |X| = 3.
Moreover, when (ii) happens, X = W, = W, for every a € Vo and a’ € V.

Proof. There is X C L; such that Cy = AU X. If X = Ly, then (i) happens.
Assume that X & Li. By Lemma 3.6, |[A| < |X| < |Ly| = 5. Thus X € {3,4}.
If | X| =4, then L; ULy U A is a (4,4, 3)-theta set of M with canonical partition
{X, (L1 U Ly) — X, A}, a contradiction to Theorem 4.1. Hence |X| = 3. We have
(ii). If X = W, = Wy, then the result follows. By symmetry, we may assume that
X #W,. Set Sy = [(aUX,UZ,)NLi]NCyand S5 =[L; — (aU X, U Z,)] N Ca.
Note that Sy = Z, N X # @ and S3 = W, N X # 0. As {|Sa,|S]} = {1,2},
since |Sa| + |S5] = | X, it follows that Lemma 3.11(iv)(b)(c) cannot happen because
|A| = 3. Hence Lemma 3.11(iv)(a) holds and C'y = AU Ly, a contradiction. O
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Lemma 5.11 If N is a connected component of M/Ly, then
(i) r(N) =2 and N is isomorphic to C2 or C2\6; or
(ii) r(N) =1 and N is isomorphic to Uy |gn); or

(111) 7(N) =0 and N is isomorphic to Uy .

Proof. If N = Ny or N = Nj, then, by Lemma 5.9, (i) follows. Assume that
N ¢ {No, Ny}, If

A" ={Ae A: AN [E(Ny)UE(Ns)] = 0},

then, by Lemma 5.6, A” C A;. As every theta set of M has at most 11 elements, it
follows that |A| < 3, for every A € A”. If |A| = 3, then, by Lemma 5.10, we have
two possibilities:

(a) C4 = AU Ly. In this case, by Lemma 5.9, when applied to L' = Ly U L, U A
whose canonical partition is {Li, Ly, A}, M/L; has connected component N
such that A C E(N) and N is isomorphic to C3 or C2\6. We have (i).

(b) Cy = AUW,, for a € V. Observe that L' = L1 ULyUA is a theta set of M with
canonical partition {L,UZ,, W,, A}. By Lemma 5.9 applied to L', M /(LU Z5)
has connected components N and N’ such that A C E(N),W, C E(N') and N
and N’ are isomorphic to C2 or C2\6. If H is the connected component of M/L;
that contains A, then H ¢ {Ns, N3}. Note that H is a connected component
of M/[Ly UE(N;)]. Thus H is a connected component of M/(L; U L) because
E(Ny) — Ly is a set of loops of this matroid. As M/(LyULs) = M/(LUZ,)/W,
and W, C E(N'), it follows that H = N. We have (i).

Now, let K be a connected component of M/L; such that every L-arc A of M
satisfying A C F(K) has cardinality at most 2. If |A| = 1, for some A € A” such
that A C E(K), then r(K) = 0 and (iii) follows. Assume that |A| = 2, for every
A€ A" such that A C E(K). By Lemma 2.3, r(K) = 1 and (ii) follows. O

Lemma 5.12 I[fA€ Ay anda €V, then Cy O Zy or Cy D W, or W, D C4 N Ly.

Proof. Assume this result fails. If Cy = AU X, for X C Ly, then | X N Z,| =
|Z, — X| =1and W, — X # 0. By Lemma 3.6, |[A| < |X| and so |X| > 2 because
M is simple. Set S; = Z, — X,5 = Z,NX,5 =W,NX and S, = W, — X.
Note that ) & {S1, 52,53, S4}. We have a contradiction to Lemma 3.11(iv) applied
to C, =aUX,UZ, and Cy4. O

Lemma 5.13 Ifa €V, and a' € V3, then Z, = Z,.
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Proof. Note that L' = (L — X,) Ua is a theta-set of M with canonical partition
{L3 U Z,,(Ly — X,) Ua,W,}. By Lemma 5.9 applied to L, there is a connected
component Ny of M/(L3UZ,) such that W, is a circuit of Ny and NV, is isomorphic to
C2 or C2\6. Let {b,b'} and {zy, vy} be 2-subsets of E(N;) — W, and W, respectively
such that {b, 2} and {0/, zy } are parallel classes of N;. By Lemma 5.9 applied to L/,
there is a 2-subset X of L3 U Z, such that {b, z,} U X and {V/, zy} U X are circuits
of M. We have three possibilities for X:

(i) If X C Ls, then bUX and 'UX are cycles of M/L,. As Ly is a triangle of M /L,
it follows that bUX and b’UX are also triangles of M/L,. If {V"} = L3— X, then
{b,V/, 1"} is contained in a parallel class of N3; a contradiction to Lemma 5.9.

(ii) If | X N L3| =1, say " € X N Ls, then {b,b"} and {V',0"} are cycles of M/L;.
Similarly, we conclude that {b,¢/,b"} is contained in a parallel class of Nj.
Again, we arrive at a contradiction to Lemma 5.9. Thus we must have (iii).

(iii) If X N Ly = 0, then X = Z,.

Similarly, we conclude that X = Z,,. The result follows. O

By Lemmas 5.9 and 5.13, for a 2-subset {a,a’} of V, we have Z, = Z, and
soW, =L — 242, = L1 — Zy = Wy. Therefore the connected component N;
of M/(Ls U Z,) that contains W, does not depend on a € V;. By the proof of
Lemma 5.13, N; is isomorphic to C2 or C3\6.

Lemma 5.14 Let K be a connected component of M/Ly such that r(K) = 1. If
Z, =A{z,y}, for a € Vs, then:

(1) If I is a 2-subset of E(K), then I € Ay and C; N Ly € {Zy,W,, Ly — x, Ly —
nyl}'

(i) If I is a 3-subset of E(K) and (}) = {I1, L, I3}, then X; = {C1, N L1,Cy, N
Ly, Cr, N Ly} ois equal to {Z,, W, L1} or {Z,, L1 — x, Ly — y}.

(111) |E(K)| € {3,4} and, when |E(K)| =4, E(K) is a circuit-cocircuit of M.
(iv) If I and J are 3-subsets of E(K), then X; = X;. (We denote this set by Xk.)

Proof. (i) By Lemma 5.6, I € A;. There is X C L; such that C; = TU X. In
M/(LsU Z,), Cr — (L3 U Z,) = T U (X — Z,) is a union of pairwise disjoint circuits.
As X — Za C W, C E(N;), where Nj is the connected component of M/(LsU Z,)
such that W, C FE(N;), it follows that X — Z, = ) or X — Z, = W, because W,
is a triangle of Ny. If X — Z, = (), then X = Z,, since |X| > 2, by Lemma 3.6. If
X —Zy =W, then X € {W,, Ly —x,Ly —y, L}

(ii) If L; —x and L; —y do not belong to X7, then X; = {Z,, W,, L1} and (ii) follows.
Assume that Ly —z € X, say. Observe that W, and L; do not belong to X; otherwise
(Ly —x) AW, ={y} or (Ly —x) A Ly = {z} belong to &}, because C, A Cy, = CJ,.
(That is, X} is closed under symmetric differences.) By (i), X; = {Z,, L1 —x, L1 —y}.
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(iii) Suppose that I = {a,b,c} is a 3-subset of E(K). By (iii), Ly or L; — x belongs
to X7. Suppose that Cy,py = {a,b} U Ly, when Ly € X;, or Capy = {a,b} U (L — ),
when Ly —x € Xr. Assume that d € E(K)—1. Set J = {a,b,d}. Note that L, € X,
when Ly € X, and Ly —x € X, when Ly —x € &;. By (ii), & = &;. There is a
2-subset {a, 3} of J such that Ly N Ciapy = L1 N Crap € X = X;. Hence

CEC{(X’B}AC{CL’C}:{Ot,ﬂ}A{a,C}g[UJ:[Ud

is a cycle of M contained in F(K). As M is 3-connected, it follows that {«, 8} N
{a,c} = (. Therefore I Ud is a circuit of M. Assume that d' € F(K)— (IUd). Thus
I'Ud' is a circuit of M; a contradiction because (I Ud) A (IUd') ={d,d'} is a cycle
of M.

(iv) If |E(K)| = 3, then the result follows. Assume that |E(K)| = 4. By (iii),
E(K) is a circuit of M. If {X,Y} is a partition of F(K) with |X| = |Y| = 2, then
E(K)ACx ACy = LN (Cx A Cy) is a union of pairwise disjoint circuits of M.
As Ly N (Cx A Cy) is independent in M, it follows that L; N (Cx A Cy) = ) and so
Cx N Ly = Cy N Ly. The result follows from (ii). O

Lemma 5.15 Suppose that Z, = {x,y}, for a € V. If K is a connected component
of M/Ly such that r(K) =1 and Xx = {Z,, L1 — x, Ly — y}, then,

(i) K is unique; and

(i) M does not have an element z such that (L1 —x)Uz or (L1 —y)Uz is a circuit
of M.

Proof. We prove (i) and (ii) simultaneously. Assume that (i) or (ii) fails. First, we
choose A” € A;. We have two possibilities. When (ii) fails, say (L; —z)Uz is a circuit
of M, set A” = {z} and Cy» = zU (L; — ). When (i) fails, choose a 2-subset A” of
E(K'), where K’ is a connected component of M/L; such that K’ # K, r(K') =1
and Xy = Xk, satisfying Cyr = A” U (L; — z). Next, we choose a 2-subset A of
E(K) such that C4 = AU (L; — y). Note that {A, A”} is an apart pair of L-arcs of
M. Hence A and A” are series classes of M|(L U AU A”). Consider

O:OAACANA(LlLJLg):AUAHUWGULg.

As |C] > 9, it follows that C'is the union of pairwise disjoint circuits Cy, Cy, . . ., C, of
M, for n > 2. Observe that ) ¢ {C1—L,Cy—L,...,C,—L} because CNL = W,ULj
is independent in M. Thus n = 2. Also, we may assume that A C C; and A” C Cs.
As L is a series class of M(AU A” U L), it follows that

(a) Ly CCyand A” C Cy C A”UW, C A”U Ly; a contradiction because Cyr is
unique; or

(b) Ly CCyand A C C7 C AUW, C AU Ly; a contradiction because C4 is unique.

The result follows. O
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Let No, N3, Ny, ..., N; be the connected components of M/ Ly such that r(N;) = 2,
for every i € [l], i # 1. (In Lemma 5.8, we have defined N, and N3 satisfying Ly C
E(N,) and Ly C E(Ns).) Let Kiy1, Kiyo, ..., K,—1 be the connected components of
M/ Ly such that, for each i € [n — 1] — [l], 7(K;) = 1 and Xk, = {Z,, Wy, L1}, where
a € V. By Lemmas 5.11 and 5.15, we have two cases:

(a) The other connected components of M /L, have rank equal to 0; or

(b) M/L; has a connected component K’ such that r(K’') = 1 and Xx» = {Z,, L1 —
x, L1 — y}, where Z, = {z,y}, and the other connected components of M/L;
have rank equal to 0.

Remember that N; is the connected component of M/(Z3 U Z,), for a € Vs, such
that W, C E(Ny).

We are going to decompose M. We may need to add elements «, 5,7 to M to
obtain a matroid M’.

(a) If a U Z, is a triangle of M, for some o« € E(M), then set M, = M. If Z,
is not contained in a triangle of M, then let M, be the binary matroid over
E(M) U a, where « is a new element, whose circuit space is spanned by C(M)
and Z, U «.

(b) If BUW, is a circuit of M,, for some 5 € E(M,), then set Mp = M,. If W, is
not contained in a 4-element circuit of M, then let Mz be the binary matroid

over E(M,) U B, where 3 is a new element, whose circuit space is spanned by
C(M,) and W, U B.

(c) If {o, 8,7} is a triangle of Mg, for some v € E(Mp), then set M’ = Mpg. If
{a, B} is not contained in a triangle of Mg, then let M’ be the binary matroid
over E(Mpg) U+, where v is a new element, whose circuit space is spanned by

C(Mp) and {a, 5,7}.

We can resume this construction as follows. Let M’ be a binary matroid such that
E(M) C E(M"), M'|E(M) = M, r(M') = r(M), M’ has a triangle {«a, 8,7} such
that o U Z, and 5 U W, are circuits of M and |E(M’)| is minimum. (We denote M’
by M (L) when we need to emphasize the dependence on L.)

Observe that M’ is 3-connected and E(M') = E(M)U{«, 8,7}. The next lemma
is probability known and its proof is very simple.

Lemma 5.16 For a matroid N and X C E(N), let H be a connected component
of N/JX. If Y C X and (N/)Y)|E(H) = (N/X)|E(H), then H is a connected
component of NJY .

Proof. As (N/Y)|E(H) = (N/X)|E(H), it follows that E(H) is contained in a
connected component of K of N/Y. If E(K) = E(H), then K = (N/Y)|E(H) =
(N/X)|E(H) = H and the result follows. Assume that E(K)— E(H) # (). Let C be
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a circuit of N/Y such that C N E(H) # () and C — E(H) # (). Hence C — (X —Y)
contains a circuit D of (N/Y)/(X —Y) = N/X such that DN E(H) # 0. Thus
D CE(H). As (N/Y)|E(H) = (N/X)|E(H), it follows that D is a circuit of N/Y
properly contained in C', a contradiction. O

Lemma 5.17 Ifi € [l], then M; = M'|[E(N;) U{«, 8,7}] is
(1) a 4-legged spike having tip o, when |E(N;)| = 6; or

(11) a matroid obtained from a 4-legged spike having tip o by deleting an element
outside the leg {cv, 8,7}, when |E(N;)| = 5.

Moreover, Ny, Ny, N3, ..., N; are connected components of M'/{a, B,~}.

Proof. First, we show this result for ¢ = 2; ¢ = 3; and @ = 1 (in this sequence). Then
to a general i.

Assume that ¢ = 2. Suppose that Ly = {ag, b, co}. By Lemma 5.9, we may assume
that {ag, aj} and {by, by} are non-trivial parallel classes of Ny and, when Ny = C% | let
{ca, d,} be the third parallel class of it. By Lemma 5.9, {ay, a5} U Z, is a circuit of M,
for every a € V. As aUZ, is a circuit of M’, it follows that («UZ,) A ({ag, a4 }UZ,) =
{ag, db, a} is a triangle of M,. Similarly, {by, b}, a} and, when ¢, exists, {cq, ¢, o}
are triangles of M. Note that {7, as,bs,c2} = (L1 U La) A (Ly U~) is a circuit of
M,. As «, 3, are loops of M'/L; and

(M'/L1)|E(N2) = (M'/[Ly U{e, B, 7} | E(N2) = (M'/{er, B,7})E(N2),  (5.3)
it follows that the circuit space of M, is spanned by
{Oé, ﬁa 7}7 {a27 a/27 Oé}, {b27 b/27 Oé}, {/77 a2, b2> 62} and7 when 012 eXiStS? {027 0/27 Oé}

because r(Ms) = r({«, B,7}) + r(Ma/{a,5,7}) = 2 +r(Ny) = 4. By (5.3) and
Lemma 5.16, we conclude that Ny is a connected component of M’/{c, 8,v}. The
result follows in this case.

Assume that i = 3. By Lemma 5.13, when da' € V3, then Z, = Z,,. We conclude the
result in this case permuting L, with L3 and using the previous case.

Assume that ¢ = 1. Consider the theta set L' = (L — X,) Ua, for a € V3, whose
canonical partition is {Ls U Z,, Wy, (Ly — X,) Ua}. Note that N; and Ny are the
connected components of M/(Lz U Z,). In M’, the sets v U L3, S U W,, a0 U Z,, are
circuits. For the theta set L', the roles of § and v commutes. But a have the same
role. (Note that M(L') is obtained from M (L) by permuting v with 3.) By the
previous paragraph, applied to L’ and N, we obtain the result in this case.

Now, assume that ¢ > 4. By Lemma 5.10, we have two cases to deal with. There is
an L-arc A of M such that |A| =3, A C E(}V;) and

(1) Ca = AU L;. In this case L' = L; U Ly U A is a theta set of M with canonical
partition {L;, Ly, A}. The result follows in this case because A takes the place
of L3.
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(2) Cy = AUW,. In this case, L' = Ly UL3U A is a theta set of M whose canonical
partition is {L3 U Z,, W,, A} and L3 U Z, takes the place of L;. The result

follows from the case i = 1 because A takes the place of (Ly — X,) Ua.
O

Lemma 5.18 Ifi € [n— 1] —[l], then M; = M'||[E(K;) U{«, 5,7}] is isomorphic to
M(Ky) or F;. Moreover, K; is a connected component of M'/{c, B,~}.

Proof. Let I; be a 3-subset of F(K;), say I; = {a;, b;, ¢;}. We may assume that
Craipy = {ais bi} U Zo, Clay ey = {@, ¢y UWo, Cpy ey = {bis i} U Ly.

Thus {a;, b;, a},{a;,¢;, B} and {b;, ¢;,v} are triangles of M;. If |E(M;)| = 6, then
these triangles spans the circuit space of M;. That is, M; is isomorphic to M (K,). If
|E(M;)| = 7, then those triangles together with E(K;) spans the circuit space of M;.

In this case, M; is isomorphic to F;. By Lemma 5.16, K; is a connected component
of M'/{«a, B,~} because E(K;) is contained in a parallel class of M'/{«, 5,7}. O

Let M, = M'\[E(N;)UE(Ny)U---UE(N,)UE(K;4+1)UE(Kj42)U---UE(K,_1)].
To finish the proof of Theorem 3.3, we need to analyse M,,. By Lemma 5.15, we have
two cases to deal with:

Case 1. Each connected component of M/L; different from Ny, N3, ..., N;, K1,
Ko, ..., K,_1 has rank 0.

Note that Z, U{a, 8,7} € E(M,), when a € V. If b € E(M,) — (Z, U{a, B,7}),
then b is a loop of M/L;. Assume that bU X, for X C Ly, is a circuit of M. As
(bUX) — (Z,U L3), for a € Vs, is a cycle of M/(Z, U L3) and b & E(Ny), it follows
that XNW, =0 or X D W,. If X = Z,, then {a,b} = (bUZ,) A (U Z,) is a
circuit of M’, a contradiction. If X = W, or X = L, then, similarly, {3, b} or {v, b}
is a circuit of M’ respectively, a contradiction. Thus X € {L; — x, L1 — y}, where
Zy ={x,y}. f X = L; —x, then bU (L1 —x)] A [yU Ly] = {b,v,2} is a triangle
of M,. Hence {b,v,z} or {b,7,y} is a triangle of M,.) As Z, is not a cocircuit of
M, at least one of these two possibilities for b must exist. Thus M,, is isomorphic to
M (K,) or F;. Theorem 3.3 follows in this case with m = (.

Case 2. M/L; has a connected component K such that 7(K) = 1 and X =
{Z4, Ly — x, Ly — y}, where Z, = {z,y}, fora € V.

Suppose that b € E(M,,)—[E(K)UZ,U{a, 3,7}]. Note that b is a loop of M/L;.
Similarly to the previous case, bU X is a circuit of M, for some X € {L; —x, L1 —y},
a contradiction to Lemma 5.15(ii). Therefore E(M,,) = E(K)U Z, U{«, 3,7}. Let
{an, by, cn} be a 3-subset of E(K). Suppose that {a,,b,} U Z,, {an,cn} U (L1 — ),
{by, cn }U (L1 —y) are circuits of M. Note that {a,, b,, o}, {an, cn, 5,9}, {bn, cn, B, x},
{a, 8,7}, {z,y,a} are circuits of M. If |E(K)| = 4, say d,, € E(K) — {an, b, ¢y},
then the circuit space of M, is spanned by

{a7 /87 /y}) {a7 'T’ y}? {a7 an7 bn}) {a7 CTL’ dn} a’nd {a’rw CTL’ y? /B}‘
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and M, is isomorphic to a 4-leged spike. (Note that {«, ¢,,, d,} = {«, an, b, }AE(K).)
If |E(K)| = 3, then M, is obtained from the 4-legged spike described above removing
d,,. Therefore Theorem 3.3 also follows in this case with m =11 + 1.
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