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Abstract

In a digraph, a king is a vertex that can reach any other vertex by a
directed path of length at most 2, and a dominating set is a set of
vertices containing an in-neighbor of any vertex outside it. The dom-
ination number of a digraph is the cardinality of a smallest dominat-
ing set. E. Szekeres and G. Szekeres [Math. Gaz. 49 (1965), 290–293]
proved that the domination number of an n-tournament is at most
log2(n) − log2(log2(n)) + 2. In this paper the concept of kings is used
in order to improve this bound. Moreover, we show that for every two
integers k ≥ 3 and s ≥ 2, and for all n ≥ 3s + k − 2, there exists an
n-tournament T which has exactly k kings and δ−(T ) = s. Furthermore,
we characterize the tournaments with exactly three kings. We also treat
the new concept of king degree introduced by El Sahili [Seminars on
Graph Theory, 2021]; that is, in a digraph, the king degree of a vertex x,
denoted by k+(x), is the number of vertices that can be reached from x
by a directed path of length at most 2. The main result in this context
is the characterization of the set of integers that can be the set of king
degrees of the vertices of a tournament.

1 Introduction

A tournament is an orientation of a complete graph. An n-tournament is a tourna-
ment on n vertices. Let u and v be two vertices. A directed path starting from u
and ending at v is said to be a uv-directed path. A tournament is said to be strong
if there is a directed path between every two distinct vertices; otherwise, it is said
to be reducible. A transmitter is a vertex dominating all other vertices. Consider
a tournament T and a vertex u in T . The closed out-neighborhood of x, denoted
by N+[x], is the set N+(x) ∪ {x}. As an abbreviation, we write T+(u) and T−(u)
instead of T [N+(u)] and T [N−(u)]. Also, we write u → v when (u, v) ∈ E(T )
and A → B when u → v for all u ∈ A and v ∈ B. If x is a vertex and X is a
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tournament, we write N+
X (x) instead of N+(x) ∩ V (X), and d+X(x) denotes the car-

dinality of N+
X (x). Consider two disjoint tournaments T1 and T2. The tournament

T = T1 → T2 is the tournament such that V (T1) and V (T2) form a partition of V (T )
and E(T ) = E(T1) ∪ E(T2) ∪ {(u, v); u ∈ T1, v ∈ T2}.

Let T be a tournament and consider two vertices u and v of T . The distance from
u to v in T , denoted by d+T (u, v), is the length of the shortest uv-directed path, if it
exists. The second out-neighborhood of a vertex u is the set N++(u) containing every
vertex v such that d+T (u, v) = 2. A vertex u in T is said to be a king if d+T (u, v) ≤ 2
for all v ∈ T . Analogously, u is said to be a serf if d+T (v, u) ≤ 2 for all v ∈ T . Now,
K(T ) is the subtournament induced by the kings of T and we designate by k(T ) the
order of K(T ). For an integer i ≥ 1, we write Ki(T ) = K(K(. . . K(T ) . . .))

︸ ︷︷ ︸
i times

and for

i = 0, we write Ki(T ) = T . We denote by ξ(T ) the first positive integer such that
Kξ(T )(T ) = Kξ(T )−1(T ). Here, T is said to be an all-kings tournament if ξ(T ) = 1.

In a seminar on graph theory [2], El Sahili introduced the definition of the king
degree k+(u) of a vertex u, in a digraph D, to be the number of vertices v such that
d+D(u, v) ≤ 2. The subdigraph induced by the vertices v such that d+D(u, v) ≤ 2 is
said to be the kingdom of u and is denoted by K+(u).

A set of vertices M ⊆ V (T ) is said to be a dominating set of T if it contains an
in-neighbor of every vertex outside M . The domination number of T , denoted by
γ(T ), is the cardinality of a smallest dominating set. A dominating set is said to be
minimum if it has cardinality γ(T ).

Erdős [3] demonstrated that, for any tournament T of order n, γ(T ) is less than
or equal to ⌈log2 n⌉. Moreover, we can derive that γ(T ) ≥ log2(n)−2 log2(log2(n))−
log2(log2(2+ǫ)) for ǫ > 0, for sufficiently large n. Subsequently, Szekeres and Szekeres
[12] improved the upper bound of the domination number to log2(n)−log2(log2(n))+
2. In [7], Lu et al. gave a short direct proof of the same result. Furthermore, Erdős [3]
proved the existence of tournaments with domination number greater than k for an
arbitrary positive integer k using probabilistic methods. After that, Graham and
Spencer wrote an article [4] describing a technique for constructing tournaments T
with γ(T ) > k for every positive integer k. Reid et al. [11] proved that γ(T ) is at
most 2 if the order of T is less than 7 and it is at most 3 if the order of T is less than
19. Duncan and Jacobson [1] established that for arbitrary positive integers k and m,
where k > 1, there exists a tournament with domination number k having exactly
m minimum dominating sets. In this article, we build a correlation between the
dominating sets and the kings of a tournament. Indeed, for a tournament T , we show
that each dominating set of K(T ) is likewise a dominating set of T . Moreover, any
minimum dominating set of K(T ) is a minimum dominating set of T , which improves
the upper bound of γ(T ) to log2(k)− log2(log2(k)) + 2, where k = |Kξ(T )(T )|.

In a charming explanation of a tournament model for dominance in chicken flocks,
Maurer [8] established the twin terms king and serf. Landau [6] proved that any
vertex with the greatest outdegree in a tournament is a king, and we can derive
from [5] that a tournament T contains a minimum of three kings if δ−(T ) > 0. The
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following theorem is proved by Maurer [8]:

Theorem 1.1 [8] Let n, k ∈ N such that n ≥ k ≥ 1. There exists a tournament of
order n with exactly k kings if and only if (n, k) /∈ {(n, 2), (4, 4)}.

Then Reid [9] provided an inductive proof of this result. In [8], Maurer asked
about 4-tuples (n, k, s, b) for which there exists a tournament of order n, with ex-
actly k kings, s serfs, and b vertices which are both kings and serfs. In [10], Reid
characterized such 4-tuples. Maurer [8] also asked which tournaments can be the
subtournament of kings of some tournament. He proved that such tournaments have
a positive minimum indegree. For a non-trivial tournament T without transmitter,
m(T ) represents the least order of a tournamentW such that T ⊆ W andK(W ) = T .
Reid [9] established a lower and upper bound of m(T ) and he requested an improve-
ment of these bounds. Characterizing the n-tournaments included in an all-kings
m-tournament is a comparable challenge. This is a property that every tournament
possesses. Reid [9] determined, for a tournament T , the smallest order of an all-kings
tournament that contains T . In [13], Yu et al. characterized, in a given tournament
T , those arcs e in a way that the digraph T − e that results from eliminating e has a
king. And in [14], Yu characterized those pairs of arcs {e1, e2} such that the digraph
T − {e1, e2} has a king.

Following the definition of “king degree”, El Sahili [2] stated the subsequent two
problems:

Problem 1 Given a set of distinct integers {m1,m2, . . . ,mt}, can we find a tour-
nament on which the set of king degrees of its vertices is exactly {m1,m2, . . . ,mt}?

Problem 2 Given a strong tournament T of order n, what is the lower bound on
the number of vertices having a king degree at least n

2
?

In this article we give a construction for tournaments T with δ−(T ) = s and
k(T ) = k, where s ≥ 2 and k ≥ 3 are arbitrary. Also, we characterize the tourna-
ments with exactly three kings.

Regarding Problem 2, we show that, in a strong n-tournament, the number of
vertices having king degree at least n

2
is at least

⌊
n
2
+ 3

⌋
. Concerning Problem 1,

Theorem 1.1 is an answer in the case t = 1. In the last section of this paper, we
settle completely Problem 1 in Theorem 4.13.

2 Minimum dominating set

In order to improve the upper bound of γ(T ), where T is a tournament, we first
establish some results:

Lemma 2.1 Let T be a tournament and M be a minimum dominating set of T . For
any x, y ∈ M , we have d+T (x, y) ≤ 2.
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Proof. Suppose that there exist x, y ∈ M such that d+T (x, y) ≥ 3; then (y, x) ∈ E(T )
and N+

T−M(x) ⊆ N+
T−M(y), and thus M − x is a dominating set with |M − x| < |M |,

a contradiction. �

The previous lemma is useful in the proof of the theorem below:

Theorem 2.2 Let T be a tournament. K(T ) contains a minimum dominating set
of T .

Proof. Denote by Γ the set of minimum dominating sets X of T such that |X ∩
K(T )| = max{|N ∩ K(T )| : N is a minimum dominating set of T}}. Let M ∈ Γ
such that Σv∈M−K(T )d

+
T−M(v) is maximal. Suppose that M is not contained in K(T ),

i.e. there exists x ∈ M which is not a king of T . By the previous lemma, d+T (x, y) ≤ 2
for all y ∈ M . Thus, there exists y ∈ N−

T−M(x) such that d+T (x, y) ≥ 3, and so
N+

T−M(x) ⊂ N+
T−M(y). Set M ′ = (M ∪ {y}) − x; then M ′ is an element of Γ with

Σv∈M ′−K(T )d
+
T−M ′(v) > Σv∈M−K(T )d

+
T−M(v), a contradiction. �

Theorem 2.3 Let T be a tournament. Any dominating set of K(T ) is a dominating
set of T .

Proof. Let M be a dominating set of K(T ). Set X =
⋂

x∈M N−
T−K(T )(x) and suppose

that X 6= ∅. Let v ∈ K(X). For y ∈ T − (K(T ) ∪ X), there exists x ∈ M such
that vxy is directed. For y ∈ K(T ), there exists x ∈ M such that x → y and so
vxy is directed. Hence d+T (v, y) ≤ 2 for all y ∈ T ; thus v ∈ K(T ), a contradiction.
Therefore X = ∅, and thus for all x ∈ T −M there exists y ∈ M such that y → x.

�

As a corollary of the above, we reach our main result regarding the domination
number:

Corollary 2.4 Let T be a tournament; then γ(T ) ≤ log2(k) − log2(log2(k)) + 2,
where k = |Kξ(T )(T )|.

Proof. If ξ(T ) = 0, then k = n and the result is the same as in [12]. Suppose now
that ξ(T ) ≥ 1. By Theorem 2.3, any dominating set of Ki(T ) is a dominating set
of Ki−1(T ) for all i ∈ {1, . . . , ξ(T )}. Let M be a dominating set of Kξ(Y )(T ); then
M is a dominating set of Ki(T ) for all i ∈ {0, . . . , ξ(T )}, and in particular, M is a
dominating set of K0(T ) = T . Since M is a dominating set of Kξ(T )(T ), by [12],
|M | ≤ log2(k)− log2(log2(k)) + 2. The result follows. �

3 Kings in tournaments

Notice that in any tournament T , for a vertex x, a king of the subtournament induced
by the in-neighbors of x is a king of T . In particular, every king with positive in-
degree is dominated by a king. From this fact, if δ−(T ) ≥ 1, then T has at least three
kings. Recall that a tournament T has a unique king if and only if δ−(T ) = 0. Given
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Figure 1: Tournament T for k 6= 5

these results, one might expect that there is a relation between δ−(T ) and k(T ) such
as k(T ) ≥ 2δ−(T ) + 1 or k(T ) ≥ δ−(T ) + 2, where T is a tournament. The following
result about the existence of tournaments having both an arbitrary number of kings
and minimu in-degree confirms that such a relation does not exist.

Theorem 3.1 Let k, s ∈ N where k ≥ 3 and s ≥ 2. For all n ≥ 3s + k − 2, there
exists an n-tournament T such that δ−(T ) = s and k(T ) = k.

Proof. Let n ≥ 3s+ k − 2 be an integer; we distinguish two cases:

Case 1: If k 6= 5, let X be an (n − 3s)-tournament such that k(X) = k − 3 (this
tournament exists by Theorem 1.1), and let Y1, Y2 and Y3 be three s-tournaments,
with x1, x2 and x3 being three transmitters of Y1, Y2, and Y3 respectively. Consider
the tournament T on n vertices represented in Figure 1. Note that no vertex in Yi

can reach xi by a directed path of length at most 2 and K+
T (x) ∩ X = K+

X(x) for
every vertex x ∈ X; thus one can easily obtain V (K(T )) = V (K((X))∪{x1, x2, x3}.
Hence T is an n-tournament such that δ−(T ) = s and k(T ) = k.

Case 2: If k = 5, let X be an (n − 3s − 2)-tournament, let Y1 and Y2 be s-
tournaments with x1 and x2 being transmitters of Y1 and Y2 respectively; and let Y3

be an (s + 2)-tournament with x3, x4, and x5 forming a circuit triangle dominating
any other vertex in Y3. Consider the tournament T on n vertices represented in
Figure 2. Clearly, the kings of T are x1, x2, x3, x4, and x5. Moreover, x2 has the
minimum in-degree, which is s. The result follows. �

Is the bound of n sharp or can it be improved? Indeed, if k /∈ {5, 7}, we can
replaceX by an all-kings (k−3)-tournament; this result remains true for n = 3s+k−3
and if k = 5, then T ′ − X ′ gives the result. However, in order to characterize the
tournaments with exactly three kings, we need to define a special form of tournament
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Figure 2: Tournament T for k = 5

T3, represented in Figure 3, where X1, X2, X3, Y1, Y2, Y3 are each tournaments. Note
that Xi and Yi are allowed to be null. We have to mention first that x1, x2 and x3

are the only kings of T . The aim now is to show that any tournament T such that
k(T ) = 3 is of the form T3.

The following lemma is useful in the proof of the results in the rest of the article:

Lemma 3.2 Let T be a tournament and let x and y be two vertices of T . If k+(x) ≥
k+(y), then d+(x, y) ≤ 2.

Proof. If d+(x, y) ≥ 3 then N+(x) ⊆ N+(y) and so k+(x) ≤ k+(y)− 1, a contradic-
tion. So d+(x, y) ≤ 2. �

Theorem 3.3 Let T be a tournament. T has exactly three kings if and only if T is
of the form T3.

Proof. The sufficient condition follows from the fact that x1, x2, and x3 are the sole
kings of a tournament of the form T3. Indeed, for any i ∈ {1, 2, 3}, any vertex in
Xi cannot reach x1 by a directed path of length at most 2. Moreover, any vertex in
Y1 (respectively, Y2, Y3) cannot reach x2 (respectively, x3, x1) by a directed path of
length at most 2. Assume now that a tournament T has exactly three kings, namely
x1, x2 and x3. Note that each xi has a king as an in-neighbor. Therefore x1, x2, x3

induced a directed cycle. Since K(T−(x1)) ⊆ K(T ), it follows that k(T−(x1)) = 1.
Thus K(T−(x1)) = {x3} and x3 → (T−(x1) − x3). Similarly, K(T−(x2)) = {x1},
K(T−(x3)) = {x2}, x1 → (T−(x2)−x1), and x2 → (T−(x3)−x2). Set X1 = T−(x2)−
x1, X2 = T−(x3)−x2, and X3 = T−(x1)−x3. We are going to prove that X1 → X2.
Indeed, suppose that there exists x ∈ X2 such that d+X1

(x) ≥ 1, and suppose that
x is chosen with k+

X2
(x) being maximal. Clearly, d+(x, x2) = 2. By Lemma 3.2, we
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Figure 3: Tournament of the form T3

have d+(x, y) ≤ 2 for every y ∈ X2 such that k+
X2
(x) ≥ k+

X2
(y). Let y ∈ X2 such that

k+
X2
(y) > k+

X2
(x); then X1 → y and so d+(x, y) ≤ 2. Furthermore, let y ∈ T−X2 such

that y 6= x2; then y ∈ N+(x3) and so d+(x, y) ≤ 2. Thus x ∈ K(T ), a contradiction.
Likewise, X2 → X3 and X3 → X1. Set A = T −

⋃3
i=1(Xi ∪ {xi}). We claim that

there exists 1 ≤ i ≤ 3 such that N+(x) ∩ Xi = ∅ for every x ∈ A. Suppose to the
contrary that there exists x ∈ A such that N+(x) ∩ Xi 6= ∅ for all 1 ≤ i ≤ 3 and
suppose that x is chosen such that k+

A(x) is maximal. As above, d+(x, y) ≤ 2 for
every y ∈ A. For y ∈ T − A, depending on the relations between the vertices in
T − A, one can easily check that d+(x, y) ≤ 2. Hence x ∈ K(T ), a contradiction.
Set Yi = {x ∈ A;Xi → x} for all 1 ≤ i ≤ 3. Thus T is of the form T3. �

As we find a characterization for the tournaments having exactly three kings, can
we characterize the tournaments having an arbitrary number of kings? Similarly,
given a tournament T , can we characterize the tournamentsW such thatK(W ) = T?

4 King degree

This section is structured as follows: the first subsection contains a result concerning
Problem 2 and some useful lemmas in the treatment of Problem 1. The second
subsection represents the main result of the section, a complete solution of Problem 1,
which is a characterization of the set of integers which can be the set of king degrees
of the vertices of a tournament.
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4.1 Preliminary study

The first remark about the number of vertices with king degree at most s is the
following:

Lemma 4.1 Let T be a tournament; we have |{v ∈ T : k+(v) ≤ s}| ≤ s. Moreover,
if |{v ∈ T : k+(v) ≤ s}| = s, then x → y for all x, y ∈ T such that k+(x) > s and
k+(y) ≤ s.

Proof. Set X = {v ∈ T : k+(v) ≤ s} and let x ∈ K(T [X]). Clearly, K+
T [X](x) ⊆

K+
T (x) and so |X| ≤ s. Suppose that |X| = s, and to show a contradiction suppose

there exist y and x(y) ∈ T satisfying k+(x(y)) > s, k+(y) ≤ s and y → x(y).
Let y0 be such a vertex with maximum king degree. For all v ∈ T − y0 such that
k+(v) ≤ s, we have v ∈ K+(y0). In fact, if k+(v) ≤ k+(y0), then by Lemma 3.2,
v ∈ K+(y0), and if k+(v) > k+(y0), the path y0x(y0)v is directed, so v ∈ K+(y0).
Since x(y0) ∈ K+(y0), we obtain k+(y0) > s, a contradiction. �

As the equality may occur in the case of reducible tournaments, this number
decreases at least by 2 in the case of a strong tournament.

Theorem 4.2 Let T be a strong tournament of order n and 3 ≤ s ≤ n − 1 be an
integer. Then |{v ∈ T : k+(v) ≤ s}| ≤ s− 2.

Proof. Set X = {v ∈ T : k+(v) ≤ s} and Y =
⋃

v∈X

⋃

u∈N+

T−X
(v) N

+
T−X [u]. If |Y | = 1

then (T − Y ) → Y , contradicting the fact that T is strong. So |Y | ≥ 2. Let x ∈ X
such that |K+(x) ∩ Y | ≥ 2 and suppose that it is chosen of maximal king degree.
For any y ∈ X such that k+(y) > k+(x), there exists z ∈ N+

T−X(x) such that z → y.
Hence |X|+ 2 ≤ k+(x) ≤ s. The result follows. �

As a consequence, one can easily notice the following remark:

Remark 4.3 Let T be a tournament. We have |{v ∈ T : k+(v) = 3}| 6= 2.

Proof. To show a contradiction, suppose |{v ∈ T : k+(v) = 3}| = 2 and let x
and y be the two vertices with king degree 3 such that x → y. If d+(x) = 2, then
N++(x) = ∅, and so k+(y) < 3, a contradiction. Otherwise, d+(x) = 1. Let z be the
unique out-neighbor of y. As k+(y) = 3, z is dominated by all vertices other than x,
y, and z. Then, k+(z) = 3, a contradiction. �

As a corollary of the previous theorem, a lower bound on the number of vertices
having a king degree at least the half of the order of the tournament results:

Corollary 4.4 Let T be a strong tournament of order n. We have

|{v ∈ T : k+(v) ≥
n

2
}| ≥

⌊n

2
+ 3

⌋

.
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Figure 4: All-kings n-tournaments T with n ∈ {5, 7} and δ+(T ) = 2

Proof. We have
∣
∣{v ∈ T : k+(v) ≥ n

2
}
∣
∣ = n− |{v ∈ T ; k+(v) ≤

⌈
n
2
− 1

⌉
}|

≥ n−
⌈
n
2
− 3

⌉

≥
⌊
n
2
+ 3

⌋
.

�

In the rest of this section, we establish some lemmas that are practical in the
treatment of Problem 1.

Lemma 4.5 Let T1 and T2 be two tournaments and let x be a vertex of T1. Let T
be a tournament such that V (T ) = V (T1) ∪ V (T2) and E(T ) = E(T1) ∪ E(T2) ∪
{(v, y) : v ∈ T2, y ∈ N+[x]} ∪ {(y, v) : y ∈ N−(x), v ∈ T2}. Then k+

T (x) = k+
T1
(x),

k+
T (v) = k+

T2
(v) + k+

T1
(x) for all v ∈ T2, and k+

T (u) = k+
T1
(u) + |T2| for all u ∈ T1 − x

such that k+
T1
(u) ≥ k+

T1
(x).

Proof. It is clear that N+
T (x) = N+

T1
(x) and N++

T (x) = N++
T1

(x), so k+
T (x) = k+

T1
(x).

Let v ∈ T2; we have N
+
T (v) = N+

T2
(v)∪N+

T1
(x)∪{x} and N++

T (v) = N++
T2

(v)∪N++
T1

(x),
so k+

T (v) = k+
T2
(v) + k+

T1
(x). Let u ∈ T1 − x; then obviously K+

T (u) ∩ T1 = K+
T1
(u).

Moreover, if k+
T1
(u) ≥ k+

T1
(x), by Lemma 3.2, d+T1

(u, x) ≤ 2, i.e. there exists y ∈ N+[u]
which dominates x. By the definition of T , y dominates every vertex in T2, so then
d+T (u, v) ≤ 2 for all v ∈ V (T2). Thus k

+
T (u) = k+

T1
(u) + |T2|. �

From Figure 4 we can notice the following remark.

Remark 4.6 There exists an all-kings tournament T of order n ∈ {5, 7} with
δ+(T ) = 2.

It can be simply observed for a transitive tournament T on n vertices that {k+(v) :
v ∈ T} = {n, n− 1, . . . , 1}. This idea will be used in proving the following lemma.

Lemma 4.7 There exists a tournament T such that {k+(v) : v ∈ T} = {n,
n− 1, . . . , 5, 4} containing two vertices x and y such that |N+[x] ∪N+[y]| = 3.
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Proof. Let T ′ be a transitive tournament of order n− 5 and define the tournament
T such that V (T ) = V (T ′) ∪ {x1, x2, x3, x4, x5} where T ′ is a subtournament of
T dominating all other vertices, N+(x1) = {x2, x3}, N+(x2) = {x3}, N+(x3) =
{x4, x5}, and N+(x4) = {x1, x2, x5}. Hence {k+

T (v) : v ∈ T ′} = {n, n − 1, . . . , 6},
k+
T (xi) = 5 for all i ∈ {1, 3, 4} and k+

T (xi) = 4 for all i ∈ {2, 5}. We have N+[x1] ∪
N+[x2] = {x1, x2, x3}. �

Lemma 4.8 Let t ≥ 3 be an integer and m1 > m2 > · · · > mt > 2 be t integers
with mt−1 − mt = 2 and mt /∈ {4, 6}. If there exists a tournament T1 such that
{k+(v) : v ∈ T1} = {m1 −mt + 2,m2 −mt + 2, . . . ,mt−1 −mt + 2}, then there exists
a tournament T such that {k+(v) : v ∈ T} = {m1, . . . ,mt}.

Proof. There exists a vertex x ∈ T1 such that d+(x) = 1. Indeed, let v ∈ T1 such
that k+(v) = mt−1 − mt + 2 = 4. If d+(v) ≥ 2 then v has an out-neighbor of out-
degree 1. Let T2 be an all-kings tournament of order mt−2 and define a tournament
T such that V (T ) = V (T1) ∪ V (T2) and E(T ) = E(T1) ∪ E(T2) ∪ {(w, u) : w ∈
T1 − x, u ∈ T2} ∪ {(u, x) : u ∈ T2}. We have k+

T (u) = mt for all u ∈ T2 and
k+
T (w) = k+

T1
(w) +mt − 2 for all w ∈ T1. �

Lemma 4.9 Let t ≥ 3 be an integer and m1 > m2 > · · · > mt−2 > 8 be t − 2
integers. If there exists a tournament T1 such that {k+(v) : v ∈ T1} = {m1− 4,m2−
4, . . . ,mt−2 − 4, 4}, then there exists a tournament T such that {k+(v) : v ∈ T} =
{m1, . . . ,mt−2, 8, 4}.

Proof. Consider the tournament T defined by V (T ) = V (T1) ∪ {x1, x2, x3, x4} and

E(T ) = E(T1) ∪ {(v, x1), (x2, v), (v, x3), (v, x4) : v ∈ T1}

∪{(x1, x2), (x1, x3), (x2, x3), (x3, x4), (x4, x1), (x4, x2)}.

For any vertex u ∈ T1, we have k+
T (u) = k+

T1
(u) + 4. On the other hand, x1, x2, and

x4 are kings in T , i.e. k+
T (xi) = mt for all i ∈ {1, 2, 4}. Finally, k+

T (x3) = 4. �

4.2 The set of king degrees

The theorem below gives a characterization of the set of two integers that can be the
set of the king degrees of the vertices of a reducible tournament.

Theorem 4.10 Let n,m ∈ N be two integers such that n > m. There exists a
reducible tournament T of order n such that {k+(v) : v ∈ T} = {n,m} if and only if
m /∈ {n− 2, n− 4, 2, 4}.

Proof. Let T be a reducible tournament such that {k+(v) : v ∈ T} = {n,m}. As
T is reducible, T = T1 → T2, so for all x ∈ T1, y ∈ T2, we have k+(x) > k+(y).
Thus k+(x) = n and k+(y) = m, and so K(T ) = T1 where T1 and T2 are all-kings
tournaments. Consequently, n−m,m /∈ {2, 4} and therefore m /∈ {n−2, n−4, 2, 4}.
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Figure 5: Tournament T with {k+(v); v ∈ T} = {9, 5}

Suppose that m /∈ {n − 2, n − 4, 2, 4}, so n − m,m /∈ {2, 4}. Let T1 and T2 be
two all-kings tournaments of orders n−m and m respectively. Then the tournament
T = T1 → T2 is the desired tournament. �

The following theorem imposes a necessary condition on two integers n and m,
for the existence of strong tournaments whose set of king degrees is {n,m}.

Theorem 4.11 Let n,m ∈ N be two integers such that n+1
2

< m < n. Then there
exists a strong tournament T of order n such that {k+(v) : v ∈ T} = {n,m}.

Proof. First we will prove the statement for m /∈ {n+3
2
, n+5

2
}. Let T1 be a regular

(2(n − m) + 1)-tournament and T2 be an all-kings (2m − n − 1)-tournament. Let
x0 ∈ T1 and define the tournament T such that V (T ) = V (T1) ∪ V (T2) and E(T ) =
E(T1) ∪ E(T2) ∪ {(x, y) : x ∈ T1 − x0, y ∈ T2} ∪ {(y, x0) : y ∈ T2}. It is clear that
K(T ) = T1 and for all y ∈ T2, K

+(y) = T −N−
T1
(x0), which implies that k+(y) = m,

and thus {k+(v) : v ∈ T} = {n,m}.

Now we will proceed for m ∈ {n+3
2
, n+5

2
}. Let T1 be a regular (2(n − m) + 1)-

tournament and let T2 be a (2m−n−1)-tournament whose vertices are all kings except
for a vertex x of outdegree 0. Let (a, b) be an arc in T1 and define T = (V (T ), E(T ))
such that V (T ) = V (T1) ∪ V (T2) and

E(T ) = E(T1) ∪ E(T2) ∪ {(y, a) : y ∈ K(T2)}

∪{(v, y) : v ∈ T1 − a, y ∈ K(T2)} ∪ {(v, x) : v ∈ T1 − b} ∪ {(x, b)}.

We have K(T ) = T1 and, for all v ∈ K(T2), K
+(v) = T − N−

T1
(a) and K+(x) =

T −N−
T1
(b), which implies that k+(v) = m for all v ∈ T2. The result follows. �

When seeking the sets of integers that qualify as exceptions, one can begin by
imagining tournaments structured as “all-kings” with specific orders mi −mi+1 and
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mt, representing the connected components of the whole tournament. The king
degrees in these tournaments align with the set of mi’s, and the count of vertices
with king degree at mostmi is preciselymi. The core challenge arises whenmi−mi+1

is 2 or 4 for some i, or when mt takes on these values. A useful intuition here is to
identify the last integer mi causing the problem. We will suppose first that this mi is
m1. This means mi −mi+1 ∈ {2, 4} if and only if i = 1. The problem boils down to
the “capability” of altering the king degree of a vertex with king degree mj, j ≥ 2,
without losing mj from the set of king degrees. If such an alteration is feasible, it
allows us to adjust the king degree of the vertex having a king degree between m1

and m2 to m1, rectifying the issue. However, this adjustment is impossible when
mj −mj+1 = 1 for all j > 1, culminating in mt = 1. This configuration leads to the
first expected exceptions: sets containing integers from 1 to t− 1, followed by t+ 1
or t+ 3. These exceptions will be part of A1(t) and A2(t).

Furthermore, as mj −mj+1 /∈ {2, 4} for all j > 1, at least one of the subsequent
differences between the mj’s must be at least 3. When exactly one such difference
is 3, the structure of the tournament induced by the vertices having king degree no
more than m2 is akin to a transitive tournament, except that one vertex is replaced
by a directed triangle. This structural limitation means we cannot adjust the king
degree of a vertex while preserving representation for all integers. Hence, additional
exceptions arise: sets containing integers from 1 to s, and then jumping to s+3 and
up to t+1, and finally t+3 or t+5. Alternatively, sets may exclude the initial segment
(1 to s) entirely, starting instead from 3 to t + 1, followed by t + 3 or t + 5. These
exceptions represent A3(t) and A4(t). Intriguingly, while deriving these anticipated
exceptions and proving the result, additional exceptions emerge, cascading naturally
from the expected ones. These intuitive sets form the foundation of our inductive
proof on t.

To prove the main result, we are going to classify formally the sets of t positive
integers {m1,m2, . . . ,mt} with m1 > m2 > · · · > mt for which we cannot find
a tournament T with {k+(v) : v ∈ T} = {m1,m2, . . . ,mt} into the sets Ai(t) as
follows:

• A1(1) = {{2}}, A2(1) = {{4}}, A3(1) = ∅, A4(1) = ∅.

For t ≥ 2,

• A1(t) = {{m1,m2, . . . ,ms,ms−2,ms−3, . . . , 1} : 1 ≤ s ≤ t−1}∪{{m1,m2, . . . ,
mt−1, 2}}. That is to say, the first part of A1(t) is a decreasing sequence of s
integers m1,m2, . . . ,ms followed by ms−2,ms−3, . . . , 1. This of course implies
that ms = t− s+ 2.

• A2(t) = {{t+3, t−1, t−2, . . . , 1}}. That is, a sequence of t consecutive integers
with exactly one jump of 4 at the beginning.

• A3(t) = {{t+ 3, t+ 1, t, . . . , s, s− 3, s− 4, . . . , 1} : 4 ≤ s ≤ t+ 1}
∪ {{t+ 3, t+ 1, t, . . . , 3}}.



A. EL ZEIN/AUSTRALAS. J. COMBIN. 91 (2) (2025), 282–300 294

That is, a sequence of t consecutive integers with a jump of 2 at the beginning
and another jump of 3 in the middle or at the end (i.e., ending with 3).

• A4(t) = {{t+ 5, t+ 1, t, . . . , s, s− 3, s− 4, . . . , 1} : 4 ≤ s ≤ t+ 1}
∪ {{t+ 5, t+ 1, t, . . . , 3}}.

That is, a sequence of t consecutive integers with a jump of 4 at the beginning
and another jump of 3 in the middle or at the end (i.e., ending with 3).

It is clear that A1(2) = {{n, 2}, {3, 1}}, A2(2) = {{5, 1}}, A3(2) = {{5, 3}} and
A4(2) = {{7, 3}}. The following theorem proves the result for t = 2.

Theorem 4.12 Let m,n ∈ N be two integers such that n > m. There exists a
tournament T of order n such that {k+(v); v ∈ T} = {n,m} if and only if {n,m} /∈
⋃4

i=1 Ai(2).

Proof. By Theorems 4.10 and 4.11, if (n,m) /∈ {(n, 2), (n, 4), (3, 1), (5, 1), (5, 3),
(7, 3), (9, 5)} then there exists an n-tournament such that {k+(v); v ∈ T} = {n,m}.
It is clear that there are no tournaments on 3 or 5 vertices such that {k+(v); v ∈
T} = {|V (T )|, 1}. Suppose that there exists a tournament T such that {k+(v); v ∈
T} = {n, 2}. Let v ∈ T such that k+(v) = 2; then d+(v) = 1. Set N+(v) = {u}.
Then d+

N−(v)(u) = 0 and so k+(u) = 1, a contradiction.

Suppose that there exists a tournament such that {k+(v) : v ∈ T} ∈ {{5, 3},
{7, 3}}. By Theorem 4.10, T is strong. Let x ∈ T such that k+(x) = 3. Then
d+(x) = 1. Set N+(x) = {y} and N++(x) = {z}. We have N−(y) = V (T )\{x, y, z}.
Since T is strong, it follows that d+(z) ≥ 2, and so k+(y) ≥ 4. Then k+(y) = n and
N+(z) = V (T ) \ {y, z}. But k+(v) ≥ 4 for all v ∈ T \ {x, y, z}, and so k+(v) = n
for all v ∈ T \ {y, z}; thus T \ {x, y, z} is an all-kings tournament, a contradiction.
For m = 4, if n /∈ {6, 8}, let X be an all-kings (n − 4)-tournament and define
an n-tournament T such that V (T ) = V (X) ∪ {x, y, z, t} and E(T ) = E(X) ∪
{(x, y), (y, z), (y, t), (z, t), (z, x), (t, x)} ∪ {(v, x), (v, y), (v, z), (t, v), v ∈ X}. We have
k+(x) = 4 and k+(u) = n for all u ∈ T − x. Otherwise, n ∈ {6, 8}, let X be a
tournament on n− 4 vertices such that k(X) = n− 5. Let w be the non-king vertex
of X and define the tournament T such that V (T ) = V (X)∪{x, y, z, t} and E(T ) =
E(X)∪ {(x, y), (y, z), (y, t), (z, t), (z, x), (t, x), (w, z)} ∪ {(v, x), (v, y), (t, v), v ∈ X} ∪
{(z, v) : v ∈ K(X)}. We have k+(x) = 4 and k+(u) = n for all u ∈ T − x,
and so T is the desired tournament. The tournament T in Figure 5 verifies that
{k+(v) : v ∈ T} = {9, 5}. In fact, k+(y1) = 5 and k+(yi) = 9 for all i ∈ {2, . . . , 9}.

�

Finally, we settle completely the question asked by El Sahili in Problem 1:

Theorem 4.13 Let t ≥ 2 be an integer and let m1 > m2 > · · · > mt be t positive
integers. There exists a tournament T such that {k+(v) : v ∈ T} = {m1,m2, . . . ,mt}
if and only if {m1,m2, . . . ,mt} /∈

⋃4
i=1 Ai(t).

Here is an overview of the proof. We use induction on t. The necessary condition
is done by contradiction. That is, supposing for a set of integers belonging to some
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Figure 6: Tournament W with X an all-kings (n− 7)-tournament

Ai(t), there is a representative tournament; we remove some vertices from the tour-
nament to obtain a new tournament having a set of king degrees belonging to some
Ai(t− 1), which is a contradiction.

For the sufficient condition, we assume that the set {m1, . . . ,mt} is not an ex-
ception. If mt = 1, the existence of a tournament with the set of king degrees
{m1 − 1,m2 − 1, . . . ,mt−1 − 1} is equivalent to the existence of a tournament with
the set of king degrees {m1, . . . ,mt}. Thus, we restrict our attention to the case
where mt ≥ 3.

The proof is divided into two main cases based on whether there exists some i
such that a tournament T1 with king degrees {m1 −mi+1, . . . ,mi −mi+1} exists.

• Case 1: If such an i exists, we analyze the existence of another tournament
T2 with king degrees {mi+1, . . . ,mt}. If T2 exists, we combine T1 and T2 using
T1 → T2 to construct the desired tournament. Otherwise, we use induction to
construct a tournament having a set of t − 1 king degrees, most of which are
mi−k, for some constant k. Then by adding a “small” tournament to the first
one, we increase the mi − k to mi and we obtain some vertices of king degrees,
the missing mi’s.

• Case 2: If no such i exists, the structure of the integers provides valuable
information: a large subset of these integers forms a consecutive decreasing
sequence, which can be represented by a transitive tournament. That is, if the
integers frommi tomi+k are consecutive, then the set {mi−mi+k+1, . . . ,mi+k−
mi+k + 1} is nothing but {k + 1, k, . . . , 1}, and then a transitive tournament
of order k + 1 whose vertices can reach other mi+k − 1 vertices by a directed
path of length no more than 2 guarantees the existence of the integers from
mi to mi+k in the set of king degrees of the whole tournament. The remaining
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integers correspond to tournaments with specific vertex properties. Using this
structure, we construct the entire tournament.

Below is the proof of Theorem 4.13.

Proof. We demonstrate the result by induction on t. By Theorem 4.12, the result
holds for t = 2. Indeed, A1(2) = {{m1, 2}, {3, 1}}, A2(2) = {{5, 1}}, A3(2) =
{{5, 3}} and A4(2) = {{7, 3}}. Suppose that it is true until t− 1. For the necessary
condition, to show a contradiction, suppose that there exists a tournament T such
that {k+(v); v ∈ T} = {m1,m2, . . . ,mt} and {m1,m2, · · ·t} ∈

⋃4
i=1 Ai(t). If mt = 2,

let x be a vertex of king degree 2 and y be its out-neighbor; then k+(y) = 1, a
contradiction. Otherwise, mt ∈ {1, 3}. If |{v ∈ T : k+(v) = mt}| = mt, by
Lemma 3.1, x → y for all x, y ∈ T such that k+(x) > mt and k+(y) = mt. Set T

′ =
T \ {v ∈ T : k+(v) = mt}; then we have {k+

T ′(v) : v ∈ T ′} = {m1 −mt, . . . ,mt−1 −
mt} ∈

⋃4
i=1Ai(t − 1), a contradiction. Otherwise |{v ∈ T ; k+(v) = mt}| < mt, and

then mt = 3. By Remark 4.3, |{v ∈ T : k+(v) = 3}| = 1. Let x be the vertex of king
degree 3, let y be its unique out-neighbor and z its second out-neighbor. Note that
z is the unique out-neighbor of y and z has an out-neighbor distinct from x. Thus
k+
T−x(v) = k+

T (v)−1 for all v ∈ T−x, so {k+
T−x(v) : v ∈ T−x} ∈ A3(t−1)∪A4(t−1),

a contradiction.

Suppose now that {m1,m2, . . . ,mt} /∈
⋃4

i=1 Ai(t). We are going to prove that
there exists a tournament T such that {k+(v) : v ∈ T} = {m1,m2, . . . ,mt}. If
mt = 1 then {m1 − 1,m2 − 1, . . . ,mt−1 − 1} /∈

⋃4
i=1 Ai(t − 1) since otherwise

{m1,m2, . . . ,mt} ∈
⋃4

i=1 Ai(t), a contradiction. Hence, by induction, there exists
a tournament T ′ such that {k+(v) : v ∈ T ′} = {m1 − 1,m2 − 1, . . . ,mt−1 − 1}. The
tournament T = T ′ → x gives the result, so we may assume that mt ≥ 3.

Case 1: If there exists i0 ∈ {1, . . . , t−1} such that {m1−mi0+1, . . . ,mi0 −mi0+1} /∈
⋃4

i=1 Ai(i0), suppose that i0 is chosen minimum. If there exists a tournament T2

such that {k+(v) : v ∈ T2} = {mi0+1, . . . ,mt}, let T1 be a tournament such that
{k+(v) : v ∈ T1} = {m1 − mi0+1, . . . ,mi0 − mi0+1}; the tournament T = T1 → T2

gives the result. Otherwise, such a tournament T2 does not exist, by induction,
{mi0+1, . . . ,mt} ∈

⋃4
i=1 Ai(t− i0), i.e. {mi0+1, . . . ,mt} ∈ {{t− i0 + 3, t− i0 + 1, t−

i0, . . . , 3}, {t− i0 + 5, t− i0 + 1, t− i0, . . . , 3}, {4}}.

Subcase 1.1: If mt−1 − mt = 2 i.e. {mi0+1, . . . ,mt} = {5, 3}, then {m1 − mt +
2, . . . ,mt−1 −mt + 2} = {m1 − 1,m2 − 1, . . . ,mt−2 − 1, 4} /∈

⋃4
i=1 Ai(t− 1) and thus

Lemma 4.8 gives the result.

Subcase 1.2: Say mt−1 − mt = 4. If mt = 3, let T1 be a tournament such that
{k+(v) : v ∈ T1} = {m1 − 3,m2 − 3, . . . ,mt−1 − 3} and let T2 be a circuit triangle.
The tournament T = T1 → T2 gives the result. Otherwise, mt = 4 and Lemma 4.9
gives the result.

Subcase 1.3: If mt−1 − mt ∈ N \ {2, 4} then there exists a tournament T1 such
that {k+(v) : v ∈ T1} = {m1 − mt−1 + mt,m2 − mt−1 + mt, . . . ,mt−2 − mt−1 +
mt,mt}. Indeed, if mt = 4 then {m1 − mt−1 + mt,m2 − mt−1 + mt, . . . ,mt−2 −
mt−1 + mt,mt} /∈

⋃4
i=1 Ai(t − 1) and if mt = 3 then mt−1 − mt = 1 and thus:
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{m1 − mt−1 + mt,m2 − mt−1 + mt, . . . ,mt−2 − mt−1 + mt,mt} ∈
⋃4

i=1 Ai(t − 1)
implies that {m1, . . . ,mt} ∈

⋃4
i=1Ai(t). Let T2 be an all-kings tournament of order

mt−1 −mt, let x be a vertex of T1 such that k+
T1
(x) = mt, and define a tournament

T such that V (T ) = V (T1)∪V (T2) and E(T ) = E(T1)∪E(T2)∪{(v, y) : v ∈ T2, y ∈
N+[x]} ∪ {(y, v) : y ∈ N−(x), v ∈ T2}; by Lemma 4.5, the result follows.

Case 2: Assume that {m1 − mi0+1, . . . ,mi0 − mi0+1} ∈
⋃4

i=1 Ai(i0) for all i0 ∈
{1, . . . , t− 1}.

Subcase 2.1: Let mt−1 − mt ∈ {1, 3}. If there exists a tournament T1 such that
{k+(v) : v ∈ T1} = {m1−mt−1+mt, . . . ,mt−2−mt−1+mt,mt}, let y be a vertex in T1

such that k+(y) = mt. Let T2 be an all-kings (mt−1−mt)-tournament and define the
tournament T such that V (T ) = V (T1)∪V (T2) and E(T ) = E(T1)∪E(T2)∪{(x, v) :
x ∈ T2, v ∈ N+[y]}∪{(v, x) : v ∈ N−(y), x ∈ T2}. By Lemma 4.5, T gives the result.
Otherwise, such a tournament T1 does not exist, by induction, mt = mt−1 −mt = 3,
i.e. {m1,m2, . . . ,mt} = {m1, t+3, t+2, . . . , 7, 6, 3} where m1 ∈ {t+5, t+7}. Indeed,
there exists i such that {m1 − mt−1 + mt, . . . ,mt−2 − mt−1 + mt,mt} ∈ Ai(t − 1),
and then mt = 3 and i ∈ {3, 4}, so if mt−1 −mt = 1 then {m1,m2, . . . ,mt} ∈ Ai(t),
a contradiction. If t = 3, the tournament W in Figure 6 gives the result. Otherwise,
let T1 be a tournament such that {k+(v) : v ∈ T1} = {m1− 1, t+2, t+1, . . . , 7, 6, 3}.
Since {m1−4, t−1, t−2, . . . , 3} ∈ A3(t−2)∪A4(t−2), by Lemma 4.1 and Remark 4.3,
|{v ∈ T1 : k+(v) = 3}| = 1. Set {v ∈ T1 : k+(v) = 3} = {x}, N+(x) = {y} and
N+(y) = {z}. Let w ∈ T1 such that k+(w) = 6 and suppose that it is chosen such
that w = y if k+(y) = 6. Set X = {x, y, w} ∪N+(w); we have X = N+[x] ∪N+[w].
Let v be a vertex and define the tournament T such that V (T ) = V (T1) ∪ {v} and
E(T ) = E(T1) ∪ {(v, u) : u ∈ X} ∪ {(u, v) : u ∈ T1 − X}. By definition of T , we
have k+

T (u) = k+
T1
(u) + 1 for all u ∈ T1 −X, k+

T (v) = 7, k+
T (w) = 6 and k+

T (x) = 3.
Moreover, by Lemma 3.2, each vertex u ∈ X − {x, w} reaches w by a directed path
of length 2; then u has at least one out-neighbor in T1−X and so k+

T (u) = k+
T1
(u)+1.

Thus T gives the result.

Subcase 2.2: If mt−1 − mt = 2. If mt /∈ {4, 6}, by induction, there exists a
tournament T1 such that {k+(v) : v ∈ T1} = {m1 − mt + 2, . . . ,mt−1 − mt + 2}.
Thus Lemma 4.8 gives the result. Otherwise, mt ∈ {4, 6}, so let T1 be an all-kings
tournament of order m1 −m2 + 3 such that there exists u ∈ T1 with d+(u) = 2 (this
tournament exists by Remark 4.6, in fact, as we are in case 2, m1 − m2 ∈ {2, 4}).
Let j = max {i : mi−mi+1 ∈ {2, 3}, 1 ≤ i ≤ t− 2}. We have mj −mj+1+1 ∈ {3, 4}.
We distinguish two cases:

Subcase 2.2.1: Suppose there exists a tournament T2 such that {k+(v); v ∈ T2} =
{m2 −mj+1 + 1,m3 −mj+1 + 1, . . . ,mj −mj+1 + 1}. There exist two vertices x and
y in T2 such that |N+[x]∪N+[y]| = 3. Indeed, if mj −mj+1 +1 = 3, let x ∈ T2 such
that k+(x) = 3; then x has a unique out-neighbor y, and we have N+[x] ∪N+[y] =
K+(x). And if mj −mj+1 + 1 = 4, since {m1 −mj+1, . . . ,mj −mj+1} ∈

⋃4
i=1 Ai(j),

{m2 − mj+1, . . . ,mj − mj+1} = {j + 1, . . . , 4, 3} and so {m2 − mj+1 + 1, . . . ,mj −
mj+1 + 1} = {j + 2, . . . , 5, 4}; by Lemma 4.7, T2 can be taken such that there exist
two vertices x and y in T2 with |N+[x] ∪ N+[y]| = 3. Consider the tournament T



A. EL ZEIN/AUSTRALAS. J. COMBIN. 91 (2) (2025), 282–300 298

u x

y

x2 xt−j

T1 T2

X1
. . .

T1: all-kings (m1 −m2 + 3)-tournament T2: (m2 −mj+1 + 1)-tournament
X1: all-kings (mt − 3)-tournament T [x2, . . . , xt−j]: transitive tournament

Figure 7: Tournament T defined in the Subcase 2.2.1

represented in Figure 7. We have k+
T (x1) = mt for all x1 ∈ X1, k

+
T (xi) = mt−i+1 for

all i ∈ {2, . . . , t − j}, k+
T (v) = k+

T2
(v) +mj+1 − 1 for all v ∈ T2 and k+

T (v) = m1 for
all v ∈ T1. The result follows.

Subcase 2.2.2: If there exists l ∈ {1, 2, 3, 4} such that {m2 − mj+1 + 1,m3 −
mj+1 + 1, . . . ,mj − mj+1 + 1} ∈ Al(j − 1) then Al(j − 1) = A2(1) = {{4}} or
{m2−mj+1+1,m3−mj+1+1, . . . ,mj−mj+1+1} = {j+2, j, j−1, . . . , 4, 3}. If Al(j−
1) = {{4}}, let T2 be a tournament such that V (T2) = {y1, y2, y3, y4} and E(T2) =
{(y1, y2), (y2, y3), (y3, y1), (yi, y4) : i ∈ {1, 2, 3}}. Consider the first tournament T
represented in Figure 8. We have k+

T (xi) = mt−i+1 for all i ∈ {1, 2, . . . , t − j},
k+
T (v) = k+

T2
(v) +mj+1 − 1 = m2 for all v ∈ T2 − y4, k

+
T (y4) = m3 and k+

T (v) = m1

for all v ∈ T1. The result follows.

Otherwise, {m1, . . . ,mt} = {m1,mt + t + 1,mt + t − 1,mt + t − 2, . . . ,mt + t −
j + 2,mt + t − j,mt + t − j − 1, . . . ,mt + 2,mt} where m1 ∈ {mt + t + 3,mt +
t + 5}. Let T2 be a tournament such that V (T2) = {y1, y2, y3, y4} and E(T2) =
{(y1, y2), (y2, y3), (y3, y1), (yi, y4) : i ∈ {1, 2, 3}}. Consider the second tournament T
represented in Figure 8. We have k+

T (x1) = mt for all x1 ∈ X1, k
+
T (xi) = mt + i =

mt−i+1 for all i ∈ {2, . . . , t − j}, k+
T (xi) = mt + i + 1 = mt−i+1 for all i ∈ {t − j +

1, . . . , t − 2}, k+
T (v) = m2 for all v ∈ T2 − y4, k

+
T (y4) = m4 and k+

T (v) = m1 for all
v ∈ T1. The result follows. �
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y2

y3

y1

y4u

x2 xt−j

T1 T2

X1
. . .

y2

y3

y1

y4u

x2 xt−j xt−j+1 xt−2

T1 T2

X1
. . . . . .

T1: all-kings (m1 −m2 + 3)-tournament X1: all-kings (mt − 3)-tournament
T [xi’s]: transitive tournament

Figure 8: The tournaments defined in Subcase 2.2.2: at the top is the first one
defined, and below is the second one.
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