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Abstract

We study two types of nestings of balanced incomplete block designs
(BIBDs). In both types of nesting, we wish to add a point (the nested
point) to every block of a (v, k, λ)-BIBD in such a way that we end up
with a partial (w, k + 1, λ+ 1)-BIBD for some w ≥ v. In the case where
w > v, we are introducing w−v new points. This is called a weak nesting.
A strong nesting satisfies the stronger property that no pair containing a
new point occurs more than once in the partial (w, k + 1, λ + 1)-BIBD.
In both cases, the goal is to minimize w. We prove lower bounds on w
as a function of v, k and λ and we find infinite classes of (v, 2, 1)- and
(v, 3, 2)-BIBDs that have optimal nestings.

1 Introduction

Various kinds of nested designs have been studied for many years. One definition
of these objects can be found in [10, VI.36], where it is required that a balanced
incomplete block design (BIBD) with blocks of size dk can be decomposed into d
BIBDs with blocks of size k. Here we consider a problem motivated by nesting of
Steiner triple systems (STS), e.g., as studied in [15].

A (v, k, λ)-balanced incomplete block design (or BIBD) is a pair (X,A) that sat-
isfies the following properties:

1. X is a set of v points.

2. A consists of a multiset of blocks of size k such that every pair of points is
contained in exactly λ blocks.

It can be shown that every point in X occurs in exactly r = λ(v− 1)/(k− 1) blocks.
Also, the total number of blocks is b = vr/k = λv(v − 1)/(k(k − 1)).
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A (v, 3, 1)-BIBD is called a Steiner triple system and it is denoted by STS(v). In
an STS(v), we have r = (v − 1)/2 and b = v(v − 1)/6.

An STS(v), say (X,A), can be nested if there is a mapping φ : A → X such that
(X, {A∪{φ(A)} : A ∈ A) is a (v, 4, 2)-BIBD. In words, we are adding a fourth point
to every block of the STS(v) so the result is a (v, 4, 2)-BIBD. It was shown in [15]
that, for all v ≡ 1 mod 6, there exists a nested STS(v).

More generally, we could start with an arbitrary (v, k, λ)-BIBD and again add a
point to each block, hoping to obtain a partial (v, k + 1, λ + 1)-BIBD. (In a partial
(v, k, λ)-BIBD, every pair of points occurs in at most λ blocks.) The mapping φ :
A → X is a nesting provided that (X, {A∪{φ(A)} : A ∈ A}) is a partial (v, k+1, λ+
1)-BIBD. In order to distinguish these kinds of nestings from some generalizations
that we will be discussing, we sometimes refer to them as minimal nestings.

If the partial (v, k + 1, λ + 1)-BIBD is in fact a (v, k + 1, λ + 1)-BIBD, we have
a perfect nesting. There have been various papers that have studied perfect nestings
of BIBDs and group-divisible designs (GDDs), including [12, 13, 15] among others.

We recall a few relevant known results concerning minimal nestings.

Lemma 1.1. [6] Suppose that a (v, k, λ)-BIBD has a nesting. Then k ≥ 2λ+ 1.

Theorem 1.2. [6] Suppose a (v, k, λ)-BIBD has a nesting. The following are equiv-
alent:

1. k = 2λ+ 1,

2. v = 2r + 1, and

3. the nesting is perfect.

Theorem 1.3. [15] There exists a nested (v, 3, 1)-BIBD if and only if v ≡ 1 mod 6
and v ≥ 7.

Theorem 1.4. [6] There exists a nested (v, 4, 1)-BIBD if and only if v ≡ 1 or 4 mod
12 and v ≥ 13.

We remark that the nestings of (v, 4, 1)-BIBDs are not perfect (this follows from
Theorem 1.2).

Lemma 1.5. [6] If a (v, k, λ)-BIBD has a perfect nesting, then v ≡ 1 mod 2k.

We recall some terminology from [6]. The point φ(A) is called the nested point for
the block A. We refer to A ∪ {φ(A)} as an augmented block. The (possibly partial)
(v, k+1, λ+1)-BIBD obtained from a nesting is called the augmented design. In the
case where the nesting is perfect, we may also call it the augmented BIBD.

If k ≤ 2λ, then a (v, k, λ)-BIBD does not have a (minimal) nesting, from Lemma
1.1. This suggests that we consider more general kinds of nestings. For example,
we might allow “new” points (i.e., points that are not in the (v, k, λ)-BIBD) to be
introduced.
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Definition 1.1. Suppose (X,A) is a (v, k, λ)-BIBD and let φ : A → Y , where
X ⊆ Y . Denote |Y | = w ≥ v.

A mapping φ : A → Y is a weak nesting provided that (Y, {A∪ {φ(A)} : A ∈ A)
is a partial (w, k + 1, λ+ 1)-BIBD.

A mapping φ : A → Y is a strong nesting if

1. for all A ∈ A, it holds that φ(A) ∩ A = ∅, and

2. the multiset
{{x, φ(A)} : x ∈ A ∈ A}

consists of distinct pairs of points.

In a weak nesting, any pair of points can occur up to λ + 1 times. In a strong
nesting, a pair that includes a new point (i.e., a point in Y \X) can only occur once,
whereas, pairs of old points (i.e., points in X) can occur up to λ + 1 times in the
augmented design.

It is easy to see that a strong nesting is also a weak nesting. Also, any minimal
nesting is automatically strong.

If a minimal nesting of a (v, k, λ)-BIBD does not exist, a natural problem is to
construct a strong or weak nesting of a (v, k, λ)-BIBD in which w is as small as
possible; such a nesting is an optimal nesting.

We present two small examples to illustrate the difference between weak and
strong nestings.

Example 1.1. We construct an optimal weakly nested (4, 3, 2)-BIBD. The aug-
mented design has blocks (1, 2, 3,∞1), (1, 2, 4,∞1), (1, 3, 4,∞1), (2, 3, 4,∞1).

The augmented design is a partial (5, 4, 3)-BIBD. The new point is ∞1. It is easy
to verify that there are no minimal nestings of the (4, 3, 2)-BIBD, so the nesting is
optimal (the optimality of this nesting is also a consequence of Lemma 1.1).

Example 1.2. We construct an optimal strongly nested (4, 3, 2)-BIBD with w = 7.
The augmented design has blocks (1, 2, 3, 4), (1, 2, 4,∞1), (1, 3, 4,∞2), (2, 3, 4,∞3).
The augmented design has w = 7 points; the new points are ∞1,∞2,∞3.

To verify that the nesting is strong, we examine the new pairs occurring with the
nested points: {1, 4}, {2, 4}, {3, 4}, {∞1, 1}, {∞1, 2}, {∞1, 4}, {∞2, 1}, {∞2, 3},
{∞2, 4}, {∞3, 2}, {∞3, 3}, {∞3, 4}. These pairs are all distinct, so we have a strong
nesting.

There are various ways to show that there is no strong nesting of this (4, 3, 2)-
BIBD with w ≤ 6, so the nesting with w = 7 is optimal. For example, the lower
bound w ≥ 7 follows from Lemma 4.11, to be proven later in this paper.

For future reference, we summarize the differences between various types of nest-
ings in Table 1.
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Table 1: Summary of definitions of various types of nestings

Type of nesting Definition
weak augmented design is a partial BIBD with index

λ+ 1
strong augmented design is a partial BIBD with index

λ + 1, and all the pairs in the augmented design
that contain a nested point are distinct

optimal w is as small as possible (applies to weak and
strong nestings)

minimal w = v (this is necessarily a strong nesting)
perfect a minimal nesting where the nested design is a

BIBD with index λ+1, or equivalently, the equal-
ity k = 2λ+ 1 is satisfied

1.1 Design theory definitions

Here we give a few definitions concerning the types of designs that we use in the rest
of the paper.

A (k, λ)-group-divisible design (or GDD) is a triple (X,G,A) that satisfies the
following properties:

1. X is a set of points.

2. G is a partition of X into subsets called groups, say G = {G1, . . . , Gu}.

3. A consists of a multiset of blocks of size k such that

(a) |Gi ∩ A| ≤ 1 for 1 ≤ i ≤ u and for all A ∈ A,

(b) every pair of points from different groups is contained in exactly λ blocks.

If λ = 1, we often refer to the GDD as a k-GDD.

The type of a GDD is the multiset {|G| : G ∈ G}. If there are ui groups of size
ti, for 1 = i, . . . , s, then we write the type as t1

u1t2
u2 · · · ts

us . If all the groups have
the same size, then the type is of the form tu.

A (k, λ)-GDD of type tu can be nested if there is a mapping φ : A → X such
that (X,G,B) is a partial (k + 1, λ+ 1)-GDD of type tu, where

B = {A ∪ {φ(A)} : A ∈ A}.

If the augmented partial GDD is actually a GDD (i.e., a (k+ 1, λ+ 1)-GDD of type
tu), then we say that the nesting of the GDD is perfect.

It has been shown in [6] that a nesting of a (k, λ)-GDD is perfect if and only
if k = 2λ + 1. In this paper, we only make use of nestings of (3, 1)-GDDs (i.e.,
3-GDDs). Since 3 = 2× 1 + 1, these are perfect nestings.
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A (v, k, λ)-BIBD, say (X,A), is resolvable if the set of blocks A can be partitioned
into r = λ(v−1)/(k−1) subsets of blocks, say P1, . . . ,Pr, such that each Pi partitions
the set of points X. The Pi’s are called parallel classes. Of course v ≡ 0 mod k is a
necessary condition for a resolvable (v, k, λ)-BIBD to exist. A resolvable STS(v) is a
Kirkman triple system; it is denoted by KTS(v). KTS(v) are known to exist for all
v ≡ 3 mod 6 (see [11]).

A (k, λ)-GDD of type tu, say (X,G,A), is resolvable if the set of blocks A can
be partitioned into r = λt(u − 1)/(k − 1) subsets of blocks, say P1, . . . ,Pr, such
that each Pi partitions the set of points X. The Pi’s are called parallel classes. A
resolvable (k, λ)-GDD of type tu can exist only if tu ≡ 0 mod k.

A 3-frame is a 3-GDD, say (X,G,A) such that A can be partitioned into holey
parallel classes, where each holey parallel class partitions X \ G for some G ∈ G.
If P ⊆ A is a partition of X \ G, then we say that G is the hole associated with
P . It is known that, for every group (i.e., hole) G ∈ G, there must be exactly |G|/2
holey parallel classes associated with G (see [16]). The total number of holey parallel
classes is |X|/2.

Finally, a (v, k, λ)-BIBD, say (X,A), is cyclic if X = Zv and A is fixed under
the action of Zv. If we let Zv act on any particular block in A, we obtain an orbit of
blocks. It is well-known that a cyclic STS(v) exists if and only if v ≡ 1 or 3 mod 6,
v 6= 9 (see [11]). In the case of a cyclic STS(v) with v ≡ 1 mod 6, there will be
(v − 1)/6 orbits, each consisting of v blocks. In the case of a cyclic STS(v) with
v ≡ 3 mod 6, there will be one short orbit of v/3 blocks (consisting of the subgroup
{0, v/3, 2v/3} and its additive cosets) and the remaining orbits each consist of v
blocks.

1.2 Prior and related work

Strong nestings have been considered implicitly in [2, 3, 7] in the setting of harmo-
nious colourings of Levi graphs of BIBDs. The paper by Buratti, Merola, Nakic
and Rubio-Montiel [7] is the first one to note the connections between these two
problems. We discuss these connections further in Section 5.

In this paper, we are only considering the problem of nesting a (v, k, λ)-BIBD
into a partial (w, k + 1, λ + 1)-BIBD. If we want to have w = v (i.e., a minimal
nesting), then k ≥ 2λ + 1 is a necessary condition. In other words, if k < 2λ + 1,
then we must have w > v (these are the cases we address in this paper).

Marco Buratti pointed out that the standard embedding of an affine plane into a
projective plane could be regarded as a type of nesting where the value of λ does not
change. Specifically, if we delete one line from a projective plane of order n, then we
have a nesting of an (n2, n, 1)-BIBD into a partial (n2 + n+ 1, n+ 1, 1)-BIBD. Both
of these designs have n2 + n blocks.

Another approach is to require w = v, but permit λ to increase by more than
one. In other words, we could nest a (v, k, λ)-BIBD into a partial (w, k+1, λ′)-BIBD,
where λ′ is minimized. For example, it is often possible to nest a (v, 3, λ)-BIBD into a
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(v, 4, 2λ)-BIBD (for these parameters, the augmented design will be a BIBD). Many
results on this problem can be found in [9]. See also [11] for other results involving
various types of nesting problems for triple systems.

1.3 Our contributions

We introduce the notion of a weak nesting in this paper. In Section 2, we consider
the simplest case, namely, weakly nesting (v, 2, 1)-BIBDs. We prove a lower bound
on the number of points w required in such a nesting and we provide constructions
to show that this bound can always be met with equality.

In Section 3, we study weak nestings of (v, k, λ)-BIBDs for arbitrary k ≥ 2. We
first prove a lower bound on w. Then we study the case of (v, 3, 2)-BIBDs in detail.
It is well-known that a (v, 3, 2)-BIBD exists if and only if v ≡ 0 or 1 mod 3. For
almost all values of v ≡ 0, 1 or 3 mod 6, we find (v, 3, 2)-BIBDs that have optimal
weak nestings. For v ≡ 4 mod 6, find (v, 3, 2)-BIBDs that have close to optimal weak
nestings (with a small number of exceptions, w is one greater than the lower bound).

In Section 4, we turn our attention to strong nestings. The construction of
optimal strong nestings of (v, 2, 1)-BIBDs for all v was done by Abreu et al. in [2].
Here, we show how the lower bound on w for strongly nested (v, 2, 1)-BIBDs from
[3] can easily be proven by adapting our lower bound for weak nestings. We also
show that some examples of optimal nestings can be obtained by modifying the weak
nestings we constructed in Section 2.

In Section 4.2, we investigate strongly nested (v, k, λ)-BIBDs for arbitrary k ≥ 2.
We give a simple alternate derivation of a lower bound on w that was first proven
in [7]. Then we focus on strong nestings of (v, 3, 2)-BIBDs. For almost all values of
v ≡ 1, 3 or 4 mod 6, and for most values of v ≡ 0 mod 12, we find (v, 3, 2)-BIBDs
that have optimal strong nestings. For v ≡ 6 mod 12, we find (v, 3, 2)-BIBDs that
have close to optimal strong nestings (with a small number of exceptions, w is two
greater than the lower bound).

Section 5 explores connections between strong nestings of BIBDs and harmonious
colourings of Levi graphs of BIBDs, expanding on some results from [7]. Finally,
Section 6 is a brief summary and conclusion.

2 Optimal weak nestings of (v, 2, 1)-BIBDs

The smallest case to consider is when (X,A) is a (v, 2, 1)-BIBD. A minimal nesting
cannot exist from Lemma 1.1. We begin by considering weak nestings of (v, 2, 1)-
BIBDs. In a (v, 2, 1)-BIBD, the set of blocks A just consists of all pairs of points
from X. Suppose φ : A → Y defines a weak nesting, where X ⊆ Y and |Y | = w. For
convenience, for every A ∈ A, denote A′ = A∪{φ(A)}. Also, let A′ = {A′ : A ∈ A}.

We first establish a lower bound on w as a function of v.
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Lemma 2.1. Suppose a (v, 2, 1)-BIBD can be weakly nested into a partial (w, 3, 2)-
BIBD. Then w ≥ (5v − 1)/4.

Proof. Let (Y,A′) be the partial (w, 3, 2)-BIBD (i.e., the augmented design) obtained
from weakly nesting the (v, 2, 1)-BIBD (X,A) using the mapping φ. First, observe
that no block in A′ contains two points from Y \ X. Hence, every point in Y \ X
occurs in at most v blocks (since each pair of the form {x, y}, where x ∈ X and
y ∈ Y \X, can occur in at most two blocks in A′).

We now obtain an upper bound on |T |, where T = {A ∈ A : φ(A) ∈ X}.
Whenever φ(A) ∈ X, A′ contains two new pairs of points from X. So

|T | ≤
1

2

(

v

2

)

=
v(v − 1)

4
.

The total number of blocks is at most

(w − v)v + |T | ≤ (w − v)v +
v(v − 1)

4
.

However, the total number of blocks is exactly v(v − 1)/2, so we have

(w − v)v +
v(v − 1)

4
≥

v(v − 1)

2
, (1)

or

(w − v)v ≥
v(v − 1)

4
,

which simplifies to give

w ≥
5v − 1

4
.

Since w must be an integer, the minimum values of w are as follows:

• if v ≡ 1 mod 4, say v = 4t+ 1, then w ≥ (5v − 1)/4 = 5t+ 1

• if v ≡ 3 mod 4, say v = 4t+ 3, then w ≥ ⌈(5v − 1)/4⌉ = 5t+ 4

• if v ≡ 0 mod 4, say v = 4t, then w ≥ ⌈(5v − 1)/4⌉ = 5t

• if v ≡ 2 mod 4, say v = 4t+ 2, then w ≥ ⌈(5v − 1)/4⌉ = 5t+ 3.

The case of equality in Lemma 2.1, i.e., the case v ≡ 1 mod 4, is particularly
interesting. In this situation, w = (5v− 1)/4 and the augmented design is actually a
(w, 3, 2)-BIBD with a hole of size w− v (this just means that no block contains two
points from Y \X).

Here are a few small examples of optimal weak nestings. Here and elsewhere, for
brevity, we write the blocks of A′ (the augmented design) in the form (x, y, φ(x, y)).
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Example 2.1. For v = 5, w = 6, develop the following two blocks modulo 5:
(0, 1,∞) and (0, 2, 3). Note that ∞ is the new point.

Example 2.2. For v = 9, w = 11, develop the following four blocks modulo 9:
(0, 1,∞1) (0, 2,∞2), (0, 3, 4) and (0, 4, 6). Note that ∞1,∞2 are new points.

Example 2.3. For v = 13, w = 16, develop the following six blocks modulo 13:
(0, 1,∞1), (0, 5,∞2), (0, 6,∞3), (0, 2, 6), (0, 3, 5) and (0, 4, 1). Note that ∞1,∞2,∞3

are new points.

We prove a general existence result for v ≡ 1 mod 4.

Lemma 2.2. For any v = 4t + 1, v ≥ 5, there is an optimal weak nesting of the
(v, 2, 1)-BIBD with w = 5t+ 1.

Proof. Develop the following 2t blocks modulo 4t+1 to obtain the augmented design:

(0, 2j,∞j), for j = 1, . . . , t; and
(0, 2j + 1, 2t− 2j), for j = 0, . . . , t− 1,

where the ∞j’s are the new points.

The verifications are straightforward. First, it is clear that the first two points in
each block, when developed modulo 4t+ 1, form a K4t+1 (i.e., a (4t+ 1, 2, 1)-BIBD.
Next, consider the differences of the form ±(2t − 2j) and ±(2t − 4j − 1) (reduced
modulo 4t+ 1) for j = 0, . . . , t− 1. The first set of differences is {±2,±4, . . . ,±2t}
and the second set of differences is {±1,±3, . . . ,±(2t− 1)}. The development of all
2t blocks contains every pair in the Kv once, and every pair of the form {i,∞j} twice
(and there are no pairs of the form {∞i,∞j}).

Remark 2.1. A design is said to be t-pyramidal when it has an automorphism group
with t fixed points, while acting sharply transitively on the others. Marco Buratti
observed that the augmented design in Lemma 2.2 gives rise to a t-pyramidal (5t+
1, 3, 2)-BIBD whenever t ≡ 0 or 1 mod 3: it suffices to add the blocks of a (t, 3, 2)-
BIBD with point set {∞1, . . . ,∞t}. For instance, adding the block {∞1,∞2,∞3}
twice to the augmented design of Example 2.3, we get a 3-pyramidal (16, 3, 2)-BIBD.
Very little is known on t-pyramidal BIBDs with t > 1 apart from two papers [4, 8]
on 3-pyramidal Steiner triple systems and Kirkman triple systems.

A slight modification of Lemma 2.2 handles all the cases v ≡ 3 mod 4.

Lemma 2.3. For any v = 4t + 3, v ≥ 7, there is an optimal weak nesting of the
(v, 2, 1)-BIBD with w = 5t+ 4.

Proof. Develop the following 2t + 1 blocks modulo 4t + 3 to obtain the augmented
design:

(0, 2j,∞j), for j = 1, . . . , t;
(0, 1,∞t+1); and
(0, 2j + 1, 2t+ 2− 2j), for j = 1, . . . , t,
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where the ∞j’s are the new points. The verifications are similar to those in the proof
of Lemma 2.2.

For even values of v, we construct base blocks that are developed modulo v − 1.
The v original points are Zv−1 and ∞, and the additional nested points are ∞i,
1 ≤ i ≤ w − v.

Lemma 2.4. For any v = 4t, v ≥ 4, there is an optimal weak nesting of the (v, 2, 1)-
BIBD with w = 5t.

Proof. Develop the following 2t blocks modulo 4t−1 to obtain the augmented design:

(0, 2j,∞j), for j = 1, . . . , t;
(∞, 0, 2t− 1); and
(0, 2j − 1, t+ j − 1), for j = 1, . . . , t− 1,

where the ∞j ’s (but not ∞) are the new points. The verifications are similar to
those in the proof of Lemma 2.2.

Lemma 2.5. For any v = 4t + 2, v ≥ 6, there is an optimal weak nesting of the
(v, 2, 1)-BIBD with w = 5t+ 3.

Proof. Develop the following 2t + 1 blocks modulo 4t + 1 to obtain the augmented
design:

(0, 2j,∞j), for j = 1, . . . , t+ 1;
(∞, 0, 2t− 1); and
(0, 2j − 1, t+ j − 1), for j = 1, . . . , t− 1,

where the ∞j ’s (but not ∞) are the new points. The verifications are similar to
those in the proof of Lemma 2.2.

Combining Lemmas 2.2–2.5, we have the following complete result.

Theorem 2.6. For all v, there is an optimal weak nesting of the (v, 2, 1)-BIBD with
w =

⌈

5v−1
4

⌉

.

3 Weak nestings of BIBDs with block size k ≥ 3

We prove a lower bound on w for weak nestings of (v, k, λ)-BIBDs. The bound is
useful in the cases where a minimal nesting does not exist, i.e., when k ≤ 2λ. In the
following bound, recall that r = λ(v − 1)/(k − 1).

Theorem 3.1. Suppose a (v, k, λ)-BIBD can be weakly nested into a partial (w, k+
1, λ+ 1)-BIBD. Then

w ≥
r

λ+ 1
+

v + 2λv + 1

2(λ+ 1)
. (2)
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Proof. Let (Y,A′) be the partial (w, k+1, λ+1)-BIBD obtained from a weak nesting
of a (v, k, λ)-BIBD (X,A) using the mapping φ. We observe that the following
properties hold:

1. Every point in Y \X occurs in at most
⌊

(λ+1)v
k

⌋

blocks.

2. Let T = {A ∈ A : φ(A) ∈ X}. Then |T | ≤ 1
k

(

v
2

)

.

3. Therefore the number of blocks is at most

(w − v)

⌊

(λ+ 1)v

k

⌋

+ |T | ≤ (w − v)

⌊

(λ+ 1)v

k

⌋

+
1

k

(

v

2

)

.

4. Since (X,A) is a BIBD, the exact number of blocks is λv(v− 1)/(k(k− 1)), so

(w − v)

⌊

(λ+ 1)v

k

⌋

+
1

k

(

v

2

)

≥
λv(v − 1)

k(k − 1)
. (3)

Since
⌊

(λ+1)v
k

⌋

≤ (λ+1)v
k

, equation (3) implies

(w − v)
(λ+ 1)v

k
+

1

k

(

v

2

)

≥
λv(v − 1)

k(k − 1)
. (4)

5. Simplifying (4), we have

(w − v)(λ+ 1) +
v − 1

2
≥

λ(v − 1)

k − 1

(w − v)(λ+ 1) +
v − 1

2
≥ r

w − v ≥
1

λ+ 1

(

r −
v − 1

2

)

w ≥ v +
r

λ+ 1
−

v − 1

2(λ+ 1)

w ≥
r

λ+ 1
+

v + 2λv + 1

2(λ+ 1)
.

Remark 3.1. When k = 2 and λ = 1, we have r = v − 1 and the inequality (2)
becomes w ≥ (5v − 1)/4, agreeing with Lemma 2.1.

The case k = 3, λ = 1 is the Steiner triple system case. Since k ≥ 2λ + 1,
Theorem 3.1 does not provide a nontrivial bound. However, it was shown in [15]
that there is a perfect nesting of an STS(v) (i.e., a nesting into a (v, 4, 2)-BIBD) for
all v ≡ 1 (mod 6). On the other hand, an STS(v) with v ≡ 3 (mod 6) cannot be
nested (this follows from Lemma 1.5, but this fact has actually been known for a very
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long time). Lindner and Rodger [12] found perfect nestings of 3-GDDs of type 3v/3

for all v ≡ 3 (mod 6), v ≥ 15. By adding a new point to all the groups, we obtain an
(optimal) strong nesting of an STS(v) with w = v+1 for all v ≡ 3 (mod 6), v ≥ 15.
These nestings are also optimal when considered as weak nestings.

We next consider λ = 2. A (v, 3, 2)-BIBD cannot have a perfect nesting, so
we consider weak nestings of (v, 3, 2)-BIBDs. A (v, 3, 2)-BIBD exists if and only if
v ≡ 0 or 1 mod 3. Here r = v − 1. Theorem 3.1 tells us that

w ≥
v − 1

3
+

5v + 1

6
=

7v − 1

6
. (5)

Of course w must be an integer, so we can strengthen (5) to give

w ≥

⌈

7v − 1

6

⌉

. (6)

3.1 v ≡ 1 mod 6

Theorem 3.2. Suppose v ≡ 1 mod 6. Then there exists a (v, 3, 2)-BIBD that has
an optimal weak nesting.

Proof. There is an STS(v) that has a perfect nesting, say (X,A), from [15]. Let
φ : A → X be a nesting of this STS.

Let (X,B) be a cyclic STS(v). Since v ≡ 1 mod 6, a cyclic STS(v), say (X,B),
has (v − 1)/6 orbits of v blocks under the cyclic group Zv. Denote the orbits by
O1, . . . ,O(v−1)/6. For 1 ≤ i ≤ (v−1)/6, and for each block B ∈ Oi, define φ(B) = ∞i

(the ∞i’s are new points).

It is easy to see that φ defines a weak nesting of the (v, 3, 2)-BIBD (X,A ∪ B).
Since we have introduced (v − 1)/6 new points, we have w = (7v − 1)/6 and the
nesting is optimal, from (5).

Example 3.1. We construct an optimal weakly nested (7, 3, 2)-BIBD using Theorem
3.2. The (7, 3, 2)-BIBD that we nest is just two copies of a (7, 3, 1)-BIBD. We start
with a nested STS(7): develop (1, 2, 4, 0) modulo 7 (note that the last point in each
augmented block is the nested point). Now we take a cyclic STS(7) and add a new
point ∞ to each block, obtaining seven more blocks: (1, 2, 4,∞) modulo 7. The 14
blocks thus obtained form a weakly nested (7, 3, 2)-BIBD on w = 8 points. Note that
the resulting (7, 4, 2)-BIBD is simple, even though we start with a (7, 3, 2)-BIBD that
is not simple.

3.2 v ≡ 3 mod 6

We first present an optimal nesting for v = 9.

Example 3.2. (Buratti [5]) We construct an optimal weakly nested (9, 3, 2)-BIBD.
We take two copies of the affine plane of order 3 (i.e., AG(2, 3)) on points 1, . . . , 9.
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Suppose one parallel class consists of the three blocks {1, 2, 3}, {4, 5, 6} and {7, 8, 9}.
We nest the two copies of this parallel class as follows:

(1, 2, 3, 4) (4, 5, 6, 7) (7, 8, 9, 1)
(1, 2, 3, 5) (4, 5, 6, 8) (7, 8, 9, 2)

For the remaining nine blocks in the first copy of AG(2, 3), adjoin ∞1 to each block.
For the remaining nine blocks in the second copy of AG(2, 3), adjoin ∞2 to each
block. Thus the augmented BIBD has w = 11 points; the new points are ∞1 and
∞2. The nesting is optimal, from equation (6).

Theorem 3.3. Suppose v ≡ 3 mod 6, v ≥ 9. Then there exists a (v, 3, 2)-BIBD that
has an (optimal) weak nesting with w = (7v + 3)/6.

Proof. Denote v = 6t+ 3. The case t = 1 is done in Example 3.2, so we can assume
t ≥ 2. For t ≥ 2, there is a 3-GDD of type 32t+1 that has a perfect nesting, say
(X,G,A) (see [12]). Let φ : A → X be a nesting of this GDD.

Let (X,B) be a KTS(v). (X,B) has (v− 1)/2 = 3t+1 parallel classes. Take one
parallel class to be groups. We can assume that this parallel class is the same as G.
So we obtain a resolvable 3-GDD of type 32t+1, (X,G,B′), where B′ = B \ G. There
are 3t parallel classes in B′.

Let ∞i, for 1 ≤ i ≤ t, be new points. Associate each ∞i for 1 ≤ i ≤ t with
three parallel classes in B′, in such a way that every parallel class has a unique ∞i

associated with it. For every block A ∈ B′, let φ(A) be the point associated with the
parallel class containing A.

For each group G ∈ G, take two copies of G and nest both copies with ∞,
where ∞ is another new point. It is easy to see that we have a weak nesting of
the resulting (v, 3, 2)-BIBD. Since we have introduced t + 1 new points, we have
w = 6t+ 3 + t+ 1 = 7t+ 4 and the nesting is optimal, from (6).

Remark 3.2. It is also possible to prove Theorem 3.3 using the method of Theo-
rem 3.2. Cyclic STS(v) exist for v ≡ 3 mod 6, v ≥ 15. Such a design will necessarily
consist of one parallel class of blocks (a “short orbit” under the action of Zv) along
with a collection of full orbits. The reader can fill in the remaining details.

Our remaining constructions in this section, as well as the constructions for strong
nestings of (v, 3, 2)-BIBDs, all follow a similar strategy, which can be viewed as a
generalization of the techniques used in proving Theorems 3.2 and 3.3. Suppose we
are trying to find a (weak or strong) nesting of a (v, 3, 2)-BIBD. We use the following
approach.

1. Find a 3-GDD on v points that can be nested.

2. Find a second 3-GDD on v points, having the same set of groups, in which the
blocks can be partitioned into parallel classes (i.e., we have a resolvable GDD)
or holey parallel classes (i.e., we have a frame). Associate new points with the
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parallel or holey parallel classes of this GDD so the blocks of the GDD are
nested (how this is done depends on whether we are seeking a weak or a strong
nesting).

3. For each group G, find an appropriate nesting of a (|G|, 3, 2)-BIBD. In general,
this requires additional new points. However, in the case where the GDD from
step 2 is a frame, it may be possible to reuse some of the new points introduced
in step 2.

3.3 v ≡ 0 mod 6

We have an almost complete result for v ≡ 0 mod 6. We first construct a couple of
small examples.

Example 3.3. We construct an optimal weakly nested (6, 3, 2)-BIBD. Develop the
following two base blocks modulo 5 (the last point in each augmented block is the
nested point): (0, 1, 3,∞1), (∞, 0, 1, 2). The (6, 3, 2)-BIBD has point set Z5 ∪ {∞}.
The augmented BIBD has w = 7 points; the new point is∞1. The nesting is optimal,
from (6).

Example 3.4. We construct an optimal weakly nested (12, 3, 2)-BIBD. Develop the
following four base blocks modulo 11 (the last point in each augmented block is the
nested point): (0, 1, 3,∞1), (0, 1, 4,∞2), (0, 2, 6, 5), (∞, 0, 5, 9). The (12, 3, 2)-BIBD
has point set Z11 ∪ {∞}. The augmented BIBD has w = 14 points; the two new
points are ∞1 and ∞2. The nesting is optimal, from (6).

Our general construction for v ≡ 0 mod 6 makes use of nested and resolvable
3-GDDs with all groups having size 6.

Theorem 3.4. There exists an optimal weakly nested (6t, 3, 2)-BIBD for all t ≥ 1,
t 6= 3, 6.

Proof. The cases t = 1, 2 were done in Examples 3.3 and 3.4. So we can assume
t ≥ 4, t 6= 6. For these values of t, it was shown in [15, Lemma 3] that there exists a
nested 3-GDD of type 6t, say (X,G,A). Denote the nesting by φ : A → X.

Next, take a resolvable 3-GDD of type 6t, say (X,G,B) (see [11, Theorem 19.33]).
We can assume that the points and groups are the same as in the nested GDD
constructed above. This GDD has 3(t− 1) parallel classes, which we denote P1, . . . ,
P3(t−1). Let ∞i (1 ≤ i ≤ t−1) be new points. We associate an ∞i with each parallel
class in such a way that each ∞i is associated with three of the parallel classes. We
extend the nesting φ by defining φ(B) = ∞i, where ∞i is the new point associated
with the parallel class containing B, for every block B ∈ B.

Finally, replace each group G ∈ G by by a weakly nested (6, 3, 2)-BIBD on the
points in G ∪ {∞}, where ∞ is another new point (see Example 3.3). The result
is a weakly nested (6t, 3, 2)-BIBD with w = 6t + t − 1 + 1 = 7t, which is optimal,
from (6).
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3.4 v ≡ 4 mod 6

We divide the case v ≡ 4 mod 6 into two subcases, v ≡ 4 mod 12 and v ≡ 10 mod 12.
In our constructions, we will be making use of 4-GDDs with group sizes two and five.
For up-to-date information on this topic, see [1]. We also use 3-frames of type 24,
which were constructed in [16].

First we look at the case v ≡ 4 mod 12. Our main theorem for v ≡ 4 mod 12
provides a construction in which w is at most one greater than the optimal value.

Theorem 3.5. There exists a weakly nested (12t + 4, 3, 2)-BIBD with w = 14t + 6
for all t ≥ 2.

Proof. It is known (e.g., see [1]) that there is a 4-GDD of type 23t+1 for any t ≥ 2.
Give every point weight two and apply the Fundamental Frame Construction from
[16], filling in 3-frames of type 24 for every block. The result is a 3-frame of type
43t+1. This frame has 6t+ 2 holey parallel classes.

Starting again from the 4-GDD of type 23t+1 and giving every point weight two,
we apply Wilson’s Fundamental GDD construction [10, §IV.2.1, Theorem 2.5]. We
can replace every block by a nested 3-GDD of type 24 (see [16]). We obtain a nested
3-GDD of type 43t+1. We can assume that the groups of the nested 3-GDD are the
same as the groups of the 3-frame.

Let ∞1, . . . ,∞2t+1 be new points. Associate a new point with every holey parallel
class of the 3-frame in such a way that every new point is associated with at most
three holey parallel classes. Then nest every block A with the new point associated
with the holey parallel class containing A. We replace every group G with a weakly
nested (4, 3, 2)-BIBD on G∪{∞}, where ∞ is another new point (see Example 1.1).
The result is a weakly nested (12t+4, 3, 2)-BIBD with w = 12t+4+2t+1+1 = 14t+6.

The lower bound on w obtained in (6) is

w ≥

⌈

7(12t+ 4)− 1

6

⌉

=

⌈

84t+ 27

6

⌉

= 14t+ 5.

Hence the value of w in the nesting we have constructed is at most one greater than
the optimal value.

A variation of Theorem 3.5 can be used when v ≡ 10 mod 12. Here we again
obtain nestings in which w is at most one greater than the optimal value. First we
look at the case v = 10.

Example 3.5. (Buratti [5]) A weakly nested (10, 3, 2)-BIBD with w = 12. The
BIBD is defined on points Z7 ∪{∞1,∞2,∞3}. The two new points are {A,B}. The
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blocks in the augmented design are as follows:

(1, 2, 4, 0) mod 7 (∞1,∞2,∞3, 0) (∞1,∞2,∞3, 6)
(∞1, 0, 1, B) (∞2, 0, 2, B) (∞3, 0, 3, A)
(∞1, 1, 2,∞2) (∞2, 1, 3, A) (∞3, 1, 4,∞1)
(∞1, 2, 3, A) (∞2, 2, 4,∞3) (∞3, 2, 5, B)
(∞1, 3, 4, B) (∞2, 3, 5, B) (∞3, 3, 6, B)
(∞1, 4, 5, A) (∞2, 4, 6, A) (∞3, 4, 0, B)
(∞1, 5, 6, B) (∞2, 5, 0, A) (∞3, 5, 1, A)
(∞1, 6, 0, A) (∞2, 6, 1, B) (∞3, 6, 2, A)

The result is an (optimal) weak nesting of a (10, 3, 2)-BIBD with w = 12.

Theorem 3.6. There exists a weakly nested (12t+10, 3, 2)-BIBD with w = 14t+13
for all t ≥ 2.

Proof. It is known (see [1]) that there is a 4-GDD of type 23t51 for any t ≥ 3. Give
every point weight two and apply the Fundamental Frame Construction, filling in
3-frames of type 24 for every block. The result is a 3-frame of type 43t101. This
frame has 6t+ 5 holey parallel classes.

Starting again from the 4-GDD of type 23t51 and giving every point weight two,
we can replace every block by a nested 3-GDD of type 24. We obtain a nested 3-GDD
of type 43t101. We can assume that the groups of the nested 3-GDD are the same
as the groups of the 3-frame. Let’s name the groups G1, . . . , G3t+1, where G3t+1 is
the group of size 10. There are two holey parallel classes associated with each of the
first 3t groups and five holey parallel classes associated with the last group, G3t+1.

Let ∞1, . . . ,∞2t be new points. Associate a new point with the holey parallel
classes of the 3-frame corresponding to the first 3t groups in such a way that every new
point is associated with exactly three holey parallel classes (note that 3t×2 = 2t×3).
Then nest every block A with the new point associated with the holey parallel class
containing A. For the last group, we use two additional new points, say ∞2t+1 and
∞2t+2. We associate ∞2t+1 with three holey parallel classes and we associate ∞2t+2

with two holey parallel classes.

We still need to replace the groups by nested (4, 3, 2)-BIBDs and a nested (10,3,2)-
BIBD. For each group Gi of size four, we need one new point for the nesting since the
nested (4, 3, 2)-BIBD from Example 1.1 has w = 5. We will use a new point ∞. For
the last group, G3t+1, of size ten, we need two new points to nest it since the nested
(10, 3, 2)-BIBD from Example 3.5 has w = 12. However, here we can reuse∞2t+1 and
∞2t+2 since neither of these points have occurred with any of the points in G3t+1.

1

The result is a weakly nested (12t+ 4, 3, 2)-BIBD with w = 12t+ 10 + 2t+ 2 + 1 =
14t+ 13.

The lower bound on w obtained in (6) is

w ≥

⌈

7(12t+ 10)− 1

6

⌉

=

⌈

84t+ 69

6

⌉

= 14t+ 12.

1Note that we cannot reuse any of ∞1, . . . ,∞t since each of these points is associated with more
than one hole.
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Hence the value of w in the nesting we have constructed is at most one greater than
the optimal value.

4 Strong nestings of BIBDs

4.1 Block size k = 2

We begin by briefly discussing strong nestings of (v, 2, 1)-BIBDs. The next lemma
is essentially the same as the lower bound from [3, Theorem 11]. We give a simple
proof using the technique we used to prove Lemma 2.1.

Lemma 4.1. [3, Theorem 11] Suppose a (v, 2, 1)-BIBD can be strongly nested. Then
w ≥ ⌈3v/2⌉.

Proof. The only change from the proof of Lemma 2.1 is that now every point in
Y \X occurs in at most ⌊v

2
⌋ blocks (since each pair of the form {x, y}, where x ∈ X

and y ∈ Y \X, can occur in at most one block in A′).

Equation (1) becomes

(w − v)
⌊v

2

⌋

+
v(v − 1)

4
≥

v(v − 1)

2
,

or

(w − v)
⌊v

2

⌋

≥
v(v − 1)

4
,

which simplifies to give

w ≥ v +
v(v − 1)

4
⌊

v
2

⌋ .

When v is even, we obtain w ≥ (3v − 1)/2. Since w is in integer, we must have
w ≥ 3v/2 = ⌈3v/2⌉. For v odd, the resulting inequality is w ≥ 3v/2. Since w is an
integer, we have w ≥ (3v + 1)/2 = ⌈3v/2⌉.

The following complete result concerning (optimal) strong nestings of (v, 2, 1)-
BIBDs was proven in by Araujo-Pardo et al. in [2, Theorem 1.2].

Theorem 4.2. [2, Theorem 1.2] For any v ≥ 2, v 6= 4, there is an (optimal) strong
nesting of the (v, 2, 1)-BIBD with w = ⌈3v/2⌉.

Here we just show how the optimal weak nestings of (v, 2, 1)-BIBDs constructed
in Section 2 can be modified to yield strong nestings of (v, 2, 1)-BIBDs. When v ≡
1 mod 4, the resulting strong nestings turn out to be optimal. First, we can easily
modify the nestings in Examples 2.1, 2.2 and 2.3 to be strong nestings by increasing
w slightly. Here, the resulting values of w are optimal (they meet the bound of
Lemma 4.1).

In Example 2.1, the edges of the K5 that are joined to ∞ form a cycle of odd
length. This can be properly edge coloured using three colours. It follows that there
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is a strong nesting of the (5, 2, 1)-BIBD with w = 5 + 3 = 8. From Lemma 4.1, this
is optimal.

In Example 2.2, the edges of the K9 that are joined to ∞1 or ∞2 form a four-
regular graph. By Vizing’s Theorem, this subgraph can be properly edge coloured
using at most five colours. It follows that there is a strong nesting of the (9, 2, 1)-
BIBD with w ≤ 9 + 5 = 14. From Lemma 4.1, this is optimal.

In Example 2.3, the edges of the K13 that are joined to ∞1, ∞2 or ∞3 form a
six-regular graph. By Vizing’s Theorem, this subgraph can be properly edge coloured
using at most seven colours. It follows that there is a strong nesting of the (13, 2, 1)-
BIBD with w ≤ 13 + 7 = 20. From Lemma 4.1, this is optimal.

Using a similar technique, we have the following general result for v ≡ 1 mod 4.

Theorem 4.3. For any v = 4t + 1, there is an (optimal) strong nesting of the
(v, 2, 1)-BIBD with w = 6t+ 2.

Proof. Start with the same base blocks as in Theorem 2.2. The edges of the Kv that
are joined to an ∞j (for 1 ≤ j ≤ t) form a 2t-regular graph. By Vizing’s Theorem,
this subgraph can be properly edge coloured using at most 2t+ 1 colours. It follows
that there is a strong nesting of the (v, 2, 1)-BIBD with w ≤ 4t+1+(2t+1) = 6t+2.
From Lemma 4.1, this is optimal.

The above-described technique based on Vizing’s Theorem can also be applied
to the optimal weak nestings presented in Lemmas 2.3–2.5, but the resulting strong
nestings are not optimal.

4.2 Block size k > 2

We now turn our attention to strong nestings of (v, k, λ)-BIBDs with k > 2. It
is straightforward to modify the proof of Theorem 3.1 to apply to the situation of
strong nestings. In doing so, we obtain an alternate proof of the bound proven by
Buratti, Merola, Nakic and Rubio-Montiel in [7, Theorem 6.1].

Theorem 4.4. [7, Theorem 6.1] Suppose a (v, k, λ)-BIBD can be strongly nested
into a partial (w, k + 1, λ+ 1)-BIBD. Then

w ≥ r +
v + 1

2
. (7)

Proof. As before, let (Y,A′) be the partial (w, k + 1, λ + 1)-BIBD obtained from a
strong nesting of a (v, k, λ)-BIBD (X,A) using the mapping φ. We observe that the
following properties hold:

1. Every point in Y \ X occurs in at most
⌊

v
k

⌋

blocks (this is different from the
corresponding statement in the proof of Theorem 3.1).

2. Let T = {A ∈ A : φ(A) ∈ X}. Then |T | ≤ 1
k

(

v
2

)

.
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3. Therefore the number of blocks is at most

(w − v)
⌊v

k

⌋

+ |T | ≤ (w − v)
⌊v

k

⌋

+
1

k

(

v

2

)

.

4. Since (X,A) is a BIBD, the exact number of blocks is λv(v− 1)/(k(k− 1)), so

(w − v)
⌊v

k

⌋

+
1

k

(

v

2

)

≥
λv(v − 1)

k(k − 1)
. (8)

Since ⌊ v
k
⌋ ≤ v

k
, we have

(w − v)
v

k
+

1

k

(

v

2

)

≥
λv(v − 1)

k(k − 1)
. (9)

5. Simplifying (9), we have

(w − v) +
v − 1

2
≥

λ(v − 1)

k − 1

w ≥ v + (v − 1)

(

λ

k − 1
−

1

2

)

w ≥ r +
v + 1

2
,

since r = λ(v − 1)/(k − 1).

In the case v = 2, λ = 1, the bound of Theorem 4.4 is the same as Theorem 4.1.
We should also note that the bound of Theorem 4.4 agrees with the bound for k = 2
and general λ that is proven in [2, Theorem 1.4].

Now let’s consider (v, 3, 2)-BIBDs. Here r = v − 1, and so Theorem 4.4 tells us
that

w ≥ v − 1 +
v + 1

2
=

3v − 1

2
. (10)

Since w is an integer, we can strengthen (10) as follows:

w ≥

⌈

3v − 1

2

⌉

. (11)

4.3 v ≡ 3 mod 6

We show how to get optimal (or close to optimal) strong nestings by modifying some
of the constructions used to obtain weak nestings of (v, 3, 2)-BIBDs in Section 2. We
first look at the case v ≡ 3 mod 6. We begin by showing that there are no strong
nestings of (v, 3, 2)-BIBDs in which w = (3v − 1)/2.
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Lemma 4.5. Suppose v ≡ 3 mod 6. If a (v, 3, 2)-BIBD has a strong nesting, then
w ≥ (3v + 1)/2.

Proof. The inequality (10) states that w ≥ (3v − 1)/2. If we have w = (3v − 1)/2,
then, in the proof of Theorem 4.4, all inequalities must in fact be equalities. This
will lead to a contradiction.

Define T = {A ∈ A : φ(A) ∈ X}. Then |T | = v(v − 1)/6. Hence there are
v(v − 1)/6 blocks nested with old points and v(v − 1)/6 blocks nested with new
points. Each of the (v − 1)/2 new points must be attached to a parallel class of
v/3 blocks. Hence, the blocks not in T contain every old point exactly (v − 1)/2
times. Therefore, every old point occurs exactly (v − 1)/2 times in a block in T in
the (v, 3, 2)-BIBD.

Let’s consider the multiset of pairs P = {{x, φ(A)} : a ∈ A ∈ T}. This multiset
must contain every pair of old points exactly once, so it is a set. Suppose an (old)
point occurs r times as a nested point for a block in T . The number of pairs in P
containing x is 3r + (v − 1)/2. But there are v − 1 pairs in P that contain x, so
r = (v − 1)/6. However, this is not an integer, so we have a contradiction.

Example 4.1. We construct a strongly nested (9, 3, 2)-BIBD with w = 14. We
take two copies of an AG(2, 3) defined on points 1, . . . , 9. The five new points are
∞1, . . . ,∞5.

We have a total of eight parallel classes, each consisting of three disjoint blocks.
We can assume that three of the parallel classes are 123, 456, 789; 159, 267, 348; and
168, 249, 357. We nest these nine blocks as follows:

(1, 2, 3, 4) (4, 5, 6, 7) (7, 8, 9, 1)
(1, 5, 9, 2) (2, 6, 7, 8) (3, 4, 8, 5)
(1, 6, 8, 3) (2, 4, 9, 6) (3, 5, 7, 9)

There are five additional parallel classes, which we name P1, . . . , P5. We adjoin ∞i

to all the blocks in Pi, for 1 ≤ i ≤ 5.

Theorem 4.6. Suppose v ≡ 3 mod 6, v ≥ 9. Then there exists a (v, 3, 2)-BIBD that
has an (optimal) strong nesting with w = (3v + 1)/2.

Proof. Let v = 6t+ 3. The case t = 1 is handled in Example 4.1, so we can assume
t ≥ 2.

We adapt the construction given in the proof of Theorem 3.3. Recall in the course
of that proof that we constructed a resolvable 3-GDD of type 32t+1 that contained
3t parallel classes of blocks. We now associate a different new point with each of
these parallel classes, and nest each block in one of these parallel classes with the
relevant point. Then take two copies of each group, nest one with ∞ and nest the
other with ∞′, where ∞,∞′ are two additional new points. It is clear that we get
a strong nesting of the (v, 3, 2)-BIBD with w = 6t + 3 + 3t + 2 = 9t + 5. This is
optimal, in view of Lemma 4.5.
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4.4 v ≡ 1 mod 6

In the case v ≡ 1 mod 6, we can construct optimal strong nestings for almost all
values of v.

Lemma 4.7. Suppose v ≡ 1 mod 6. If a (v, 3, 2)-BIBD has a strong nesting, then
w ≥ (3v + 1)/2.

Proof. The inequality (11) states that w ≥ (3v − 1)/2. However, we can prove a
stronger result. When v ≡ 1 mod 3, we have ⌊v

3
⌋ = (v − 1)/3 and the inequality (8)

becomes

(w − v)

(

v − 1

3

)

+
1

3

(

v

2

)

≥
2v(v − 1)

6
.

This simplifies to give w ≥ 3v/2. However, 3v/2 is not an integer when v ≡ 1 mod 6,
so it must be the case that w ≥ (3v + 1)/2.

Example 4.2. We construct an optimal strongly nested (7, 3, 2)-BIBD with w = 11.
This is optimal, in view of Lemma 4.7. The BIBD is defined on points Z6 ∪ {∞}.
The four new points are {A,B,C,D}. The blocks in the augmented design are as
follows:

(∞, 0, 3, 1) mod 6 (0, 2, 4, D) (1, 3, 5, D)
(0, 1, 2, A) (1, 2, 3, B) (2, 3, 4, C)
(3, 4, 5, A) (4, 5, 0, B) (5, 0, 1, C)

Theorem 4.8. Suppose v ≡ 1 mod 6, v ≥ 19. Then there exists a (v, 3, 2)-BIBD
that has an (optimal) strong nesting with w = (3v + 1)/2.

Proof. We adapt the proof of Theorem 3.2, replacing the cyclic STS(v) by a Hanani
triple system of order v, which exists from [17]. A Hanani triple system of order v is
an STS(v) in which the blocks can be partitioned into (v− 1)/2 near parallel classes
(each consisting of (v− 1)/3 disjoint blocks) and one partial parallel class consisting
of (v − 1)/6 blocks. We associate a new point with each of these (v + 1)/2 partial
parallel classes and proceed as before. This yields (v, 3, 2)-BIBD that has a strong
nesting with w = (3v + 1)/2. This is optimal from Lemma 4.7.

4.5 v ≡ 0 mod 6

We now turn to the case v ≡ 0 mod 6. Our first general construction yields strongly
nested (v, 3, 2)-BIBDs in which w is two greater than the lower bound. However,
we will show a bit later that, for most values of v ≡ 0 mod 12, we can construct
(v, 3, 2)-BIBDs with optimal strong nestings.

We begin by looking at the cases v = 6 and v = 12.

Example 4.3. We construct an optimal strongly nested (6, 3, 2)-BIBD with w = 11.
The points in the BIBD are X = Z5 ∪ {∞}. We introduce five new points, namely
∞i, i = 0, 1, . . . , 4. To obtain the set of ten blocks, say A, develop the following two
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base blocks modulo 5 (the last point in each augmented block is the nested point):
(0, 1, 3,∞0) (where the subscripts are also developed modulo 5) and (∞, 0, 1, 2). The
augmented BIBD has w = 11 points.

The lower bound given by (11) is w ≥ ⌈17/2⌉ = 9. Nevertheless, we can prove
that w = 11 is optimal. It is known that there is a unique (6, 3, 2)-BIBD up to
isomorphism, and it is easily verified that any two blocks in this BIBD intersect.

Let φ : A → Y be a nesting of this BIBD. From the proof of Theorem 4.4, we
have

|{A : φ(A) ∈ X}| ≤
1

3

(

6

2

)

= 5.

Any new point can be the nested point of at most one block, because there do not
exist any pairs of disjoint blocks in the BIBD. Hence |Y \X| ≥ 10−5 = 5. Therefore
w ≥ 6 + 5 = 11.

Example 4.4. We construct a strongly nested (12, 3, 2)-BIBD with w = 18. The
(12, 3, 2)-BIBD is constructed on points 1, . . . , 12; the new points are 13, . . . , 18. Each
new point is attached to a parallel class of blocks. The nesting of the remaining 20
blocks was found by computer.

(1, 2, 3, 4) (1, 2, 4, 5) (1, 3, 4, 8) (2, 3, 4, 6)
(5, 6, 7, 11) (5, 6, 8, 10) (5, 7, 8, 6) (6, 7, 8, 12)
(9, 10, 11, 3) (9, 10, 12, 4) (9, 11, 12, 10) (10, 11, 12, 2)
(1, 5, 9, 12) (2, 6, 10, 1) (3, 7, 11, 1) (4, 8, 12, 11)
(1, 6, 11, 9) (2, 7, 12, 3) (3, 8, 9, 5) (4, 5, 10, 7)
(1, 6, 12, 13) (2, 5, 11, 13) (3, 8, 10, 13) (4, 7, 9, 13)
(1, 7, 10, 14) (2, 8, 9, 14) (3, 5, 12, 14) (4, 6, 11, 14)
(1, 8, 11, 15) (2, 7, 12, 15) (3, 6, 9, 15) (4, 5, 10, 15)
(1, 7, 10, 16) (2, 6, 9, 16) (3, 5, 12, 16) (4, 8, 11, 16)
(1, 8, 12, 17) (2, 5, 11, 17) (3, 6, 10, 17) (4, 7, 9, 17)
(1, 5, 9, 18) (2, 8, 10, 18) (3, 7, 11, 18) (4, 6, 12, 18)

We have the following general result for v ≡ 0 mod 6.

Theorem 4.9. Suppose v = 6t where t ≥ 4, t 6= 6. Then there exists a (v, 3, 2)-BIBD
that has a strong nesting with w = 9t+ 2.

Proof. We adapt the proof of Theorem 3.4. The resolvable 3-GDD of type 6t has
3(t−1) parallel classes. We associate a different new point with each of these parallel
classes. This requires 3(t− 1) new points.

Then replace each group G ∈ G by by a strongly nested (6, 3, 2)-BIBD on the
points in G together with five new points, say ∞i, for 0 ≤ i ≤ 4. The result is a
strongly nested (6t, 3, 2)-BIBD on w = 6t+ 3(t− 1) + 5 = 9t+ 2 points.

The lower bound on w from (11) is

w ≥

⌈

3(6t)− 1

2

⌉

= 9t.

So our construction yields a value of w that is two greater than the lower bound.
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We can prove a better result when v ≡ 0 mod 12.

Theorem 4.10. Suppose v = 12t and t ≥ 4. Then there exists a (v, 3, 2)-BIBD that
has an (optimal) strong nesting with w = 18t.

Proof. For t ≥ 4, there exists a 4-GDD of type 6t (see [1]). It was shown in [15] that
there exists a nested 3-GDD of type 24. Giving every point of the 4-GDD weight two
and applying Wilson’s Fundamental GDD construction [10, §IV.2.1, Theorem 2.5],
we obtain a nested 3-GDD of type 12t. Let φ denote the nesting of this GDD.

Next, take a resolvable 3-GDD of type 12t, say (X,G,B) (see [11, Theorem
19.33]). We can assume that the points and groups are the same as in the nested
GDD constructed above. This GDD has 6(t − 1) parallel classes, which we denote
P1, . . . ,P6(t−1). Let ∞i (1 ≤ i ≤ 6(t− 1)) be new points. We associate each ∞i with
one parallel class. We extend the nesting φ by defining φ(B) = ∞i, where ∞i the
new point associated with the parallel class containing B, for every block B ∈ B.

Finally, replace each group G ∈ G by by a strongly nested (12, 3, 2)-BIBD on the
points in G ∪ {αi : 1 ≤ i ≤ 6}, where α1, . . . , α6 are six additional new points (see
Example 4.4). The result is a strongly nested (12t, 3, 2)-BIBD with

w = 12t+ 6(t− 1) + 6 = 18t,

which is optimal, from (11).

4.6 v ≡ 4 mod 6

Now we look at the case v ≡ 4 mod 6. First we show that the lower bound from (11)
cannot be met with equality.

Lemma 4.11. Suppose v ≡ 4 mod 6. If a (v, 3, 2)-BIBD has a strong nesting, then
w ≥ 3v/2 + 1.

Proof. The inequality (11) states that w ≥ 3v/2. However, we can prove a stronger
result. When v ≡ 4 mod 6, we have ⌊v

3
⌋ = (v − 1)/3 and the inequality (8) becomes

(w − v)

(

v − 1

3

)

+
1

3

(

v

2

)

≥
2v(v − 1)

6
.

This simplifies to give w ≥ 3v/2. Now we examine the case of equality in detail.

Suppose we have a strong nesting φ of a (v, 3, 2)-BIBD (X,A) with w = 3v/2. We
use the same notation as in the proof of Theorem 4.4. Let T = {A ∈ A : φ(A) ∈ X}.
We must have |T | = v(v − 1)/6. It follows that, for every pair x, y ∈ X, there is a
unique block B ∈ T such that x ∈ B and φ(B) = y, or y ∈ B and φ(B) = x.

The w − v = v/2 new points each must occur in exactly (v − 1)/3 blocks. The
blocks in A that contain a fixed new point form a near parallel class of (X,A). Thus
the new points induce v/2 near parallel classes of blocks in (X,A).
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Suppose x ∈ X and suppose x occurs sx times in blocks of T and rx times as a
nested point of a block in T . Then

3rx + sx = v − 1. (12)

There are v points and v(v − 1)/6 blocks in T . So there exists a point x such that

rx ≥

⌈

v(v − 1)

6v

⌉

=
v + 2

6
.

For such a point x, (12) yields the inequality

sx = v − 1− 3rx ≤ v − 1−
v + 2

2
=

v

2
− 2.

Since x occurs in v − 1 blocks in A, it follows that x occurs in at least

v − 1−
(v

2
− 2

)

=
v

2
+ 1

blocks in A\T . However, since A\T is partitioned into v/2 near parallel classes, it
follows that x can occur in at most v/2 blocks in A\T . Thus we have a contradiction,
and hence w ≥ 3v/2 + 1.

First we consider the subcase v ≡ 4 mod 12. We construct strong nestings where
w meets the lower bound from Lemma 4.11. So these are optimal nestings.

Theorem 4.12. There exists an (optimal) strongly nested (12t+ 4, 3, 2)-BIBD with
w = 18t+ 7 for all t ≥ 2.

Proof. We modify the proof of Theorem 3.5. As before, we construct a 3-frame of
type 43t+1, which has 6t+2 holey parallel classes. We also construct a nested 3-GDD
of type 43t+1 where the groups of the nested 3-GDD are the same as the groups of
the 3-frame.

We associate a different new point with every holey parallel class of the 3-frame.
This requires 6t+ 2 new points. To be precise, let’s name the groups G1, . . . , G3t+1.
We can assume that we adjoin ∞2i−1 and ∞2i to the holey parallel classes associated
with Gi, for 1 ≤ i ≤ 3t+ 1.

Then we replace every group Gi with a strongly nested (4, 3, 2)-BIBD (see Exam-
ple 1.2) on Gi ∪ {∞2i−1,∞2i,∞}, where ∞ is an additional new point . The result
is a strongly nested (12t+ 4, 3, 2)-BIBD with w = 12t+ 4 + 6t+ 2 + 1 = 18t+ 7.

The lower bound on w obtained from Lemma 4.11 is w ≥ 3(12t+4)/2+1 = 18t+7,
so the nesting is optimal.

The subcase v ≡ 10 mod 12 is similar; we again construct optimal strong nestings.
First we look at the case v = 10.
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Example 4.5. (Buratti [5]) We construct an optimal strongly nested (10, 3, 2)-BIBD
with w = 16. The BIBD is defined on points Z7∪{∞1,∞2,∞3}. The six new points
are {A,B,C,D,E, F}.

(1, 2, 4, 0) mod 7 (∞1,∞2,∞3, 1) (∞1,∞2,∞3, 4)
(∞1, 0, 1, A) (∞2, 0, 2, F ) (∞3, 0, 3,∞1)
(∞1, 1, 2, B) (∞2, 1, 3, E) (∞3, 1, 4, F )
(∞1, 2, 3, C) (∞2, 2, 4, A) (∞3, 2, 5, D)
(∞1, 3, 4, D) (∞2, 3, 5, B) (∞3, 3, 6, A)
(∞1, 4, 5, E) (∞2, 4, 6, C) (∞3, 4, 0, B)
(∞1, 5, 6, F ) (∞2, 5, 0,∞3) (∞3, 5, 1, C)
(∞1, 6, 0,∞2) (∞2, 6, 1, D) (∞3, 6, 2, E)

The nesting is optimal from Lemma 4.11.

Theorem 4.13. There exists an (optimal) strongly nested (12t+10, 3, 2)-BIBD with
w = 18t+ 16 for all t ≥ 0, t 6= 1.

Proof. The case t = 0 is done In Example 4.5, so we only need to consider t ≥ 2. We
adapt the proof of Theorem 3.6. As before, we construct a 3-frame of type 43t101,
which has 6t + 5 holey parallel classes. We also construct a nested 3-GDD of type
43t101, where the groups of the nested 3-GDD are the same as the groups of the
3-frame.

Let ∞1, . . . ,∞6t+5 be new points. Associate each new point with a holey parallel
class of the 3-frame. Then we nest every block A with the new point associated with
the holey parallel class containing A.

To be precise, let’s name the groups G1, . . . , G3t+1, where G3t+1 is the group of
size 10. We can assume that we adjoin ∞2i−1 and ∞2i to the holey parallel classes
associated with Gi, for 1 ≤ i ≤ 3t. For the last group, G3t+1, there are five holey
parallel classes; here we use the last five infinite points, ∞6t+1, . . . ,∞6t+5.

We still need to replace the groups by nested (4, 3, 2)-BIBDs and a nested (10,3,2)-
BIBD. Here, unlike the weak nestings, we can reuse all of the ∞i’s. For each group
Gi of size four, we need three new points for the nesting since the nested (4, 3, 2)-
BIBD from Example 4.12 has w = 7. We can use ∞2i−1,∞2i and a new point ∞.
For the last group, of size ten, we need six new points for the nesting since the nested
(10, 3, 2)-BIBD from Example 4.13 has w = 16. We can use ∞6t+1, . . . ,∞6t+5 along
with ∞. The result is a weakly nested (12t+4, 3, 2)-BIBD with w = 12t+10+ 6t+
5 + 1 = 18t+ 16.

The lower bound on w obtained from Lemma 4.11 is w ≥ 3(12t + 10)/2 + 1 =
18t+ 16. Hence the nesting we have constructed is optimal.

5 Harmonious colourings of Levi graphs

Strong nestings have received some previous attention in [7] in the context of har-
monious colourings of Levi graphs. We briefly expand on some of these connections



D.R. STINSON/AUSTRALAS. J. COMBIN. 91 (1) (2025), 148–176 172

in this section.

We begin with some relevant definitions that can be found in [2, 3, 7]. Let (X,A)
be a (v, k, λ)-BIBD. The Levi graph of (X,A), which we denote by L(X,A), is the
bipartite graph on vertex set X ∪ A having edges {x,A} for all x ∈ A ∈ A. A
harmonious colouring of L(X,A) is a proper colouring of the vertices of L(X,A)
such that every pair of colours appears on at most one edge. That is, we have a
mapping c : X ∪ A → Y (for some set of colours Y ) such that the following two
properties are satisfied:

1. if {x,A} is an edge of L(X,A), then c(x) 6= c(A), and

2. if {x,A} and {x′, A′} are distinct edges in L(X,A), then {c(x), c(A)} 6=
{c(x′), c(A′)}.

If we assign a different colour to every vertex of L(X,A), we of course obtain a
harmonious colouring. In general, we want to find harmonious colourings in which the
number of colours is minimized. This minimum is termed the harmonious chromatic
number of L(X,A); it is denoted by h(L(X,A)). It is easy to see that h(L(X,A)) ≥
v.

We first note a connection between strong nestings and harmonious colourings.
The following result generalizes the discussion in [7, §3] which points out the equiv-
alence of perfect nestings of STS(v) and harmonious colourings of the Levi graphs
of STS(v). We state our result in terms of strong nestings.

Theorem 5.1. Suppose (X,A) is a (v, k, λ)-BIBD. Then there exists a harmonious
colouring of L(X,A) using w colours if and only if there is a strong nesting φ : A →
Y where X ⊆ Y and |Y | = w.

Proof. Suppose φ : A → Y is a strong nesting of (X,A), where |Y | = w. We define
a colouring of L(X,A) using the colours in Y as follows:

c(x) = x for all x ∈ X

c(A) = φ(A) for all A ∈ A.

We prove that the colouring c is harmonious. First, if {x,A} is an edge of L(X,A),
then c(x) = x and c(A) = φ(A) 6= x (this follows from property 1 of a strong
nesting). Second, assume that {x,A} and {x′, A′} are distinct edges in L(X,A).
Suppose that {c(x), c(A)} = {c(x′), c(A′)}. Then {x, φ(A)} = {x′, φ(A′)}, where
x ∈ A and x′ ∈ A′. This contradicts property 2 of a strong nesting.

Conversely, suppose that there exists a harmonious colouring c of L(X,A) using
w colours. First, we observe that c(x) 6= c(x′) if x 6= x′. To see this, suppose
that c(x) = c(x′) for some x 6= x′. Let A ∈ A be a block that contains x and x′.
{x,A} and {x′, A} are two edges in L(X,A), and {c(x), c(A)} = {c(x′), c(A)}, which
contradicts property 2 of a harmonious colouring.

Hence all x ∈ X receive distinct colours. So we can assume without loss of
generality that c(x) = x for all x ∈ X. We can now define a strong nesting of (X,A)
as follows: φ(A) = c(A) for all A ∈ A.
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First, we show that φ(A)∩A = ∅ for all A. Suppose not; then φ(A) = x for some
x ∈ A. But then property 1 of a harmonious colouring is contradicted.

Next, we show that {{x, φ(A)} : x ∈ A ∈ A} consists of distinct pairs of points.
Suppose not; then {x, φ(A)} = {x′, φ(A′)} where x ∈ A and x′ ∈ A′. This means
that {c(x), c(A)} = {c(x′), c(A)}, which contradicts property 2 of a harmonious
colouring.

A Banff design, as defined in [7], is a (v, k, λ)-BIBD, say (X,A), such that
h(L(X,A)) = v. A Banff design has an exact colouring if every pair of colours
occurs in exactly one edge of L(X,A). This can occur only when

(

v
2

)

= |X| × |A|.

It was noted in [7, §4] that Banff designs generated from so-called Banff difference
families have exact colourings. We prove a theorem that notes the equivalence of
perfect nestings and Banff designs having exact colourings.

Theorem 5.2. A (v, k, λ)-BIBD having a perfect nesting is equivalent to a (v, k, λ)-
Banff design having an exact colouring.

Proof. Suppose a (v, k, λ)-BIBD has a perfect nesting. Then, from Theorem 1.2, we
have λ = (k − 1)/2 and r = (v − 1)/2. The Levi graph of the BIBD has vr =

(

v
2

)

edges, so the nesting gives rise to an exact colouring.

Conversely, suppose a (v, k, λ)-Banff design has an exact colouring. As in the
proof of Theorem 5.1, the vertices in the Levi graph receive distinct colours and
{{x, φ(A)} : x ∈ A} consists of distinct pairs of points. Since there are vr such
pairs of points in the Levi graph, the equation

(

v
2

)

= vr yields r = (v − 1)/2. Then
λ = r(k−1)/(v−1) = (k−1)/2. Finally, since the colouring is exact, it immediately
yields a perfect nesting of the (v, k, λ)-BIBD.

Table 2: Bounds on w for weakly nested (v, k, λ)-BIBDs

k λ v Lower bound Upper bound Exceptions Source
2 1 4t 5t 5t Lemma 2.4
2 1 4t+ 1 5t+ 1 5t+ 1 t 6= 0 Lemma 2.2
2 1 4t+ 2 5t+ 3 5t+ 3 t 6= 0 Lemma 2.5
2 1 4t+ 3 5t+ 4 5t+ 4 t 6= 0 Lemma 2.3
3 2 6t+ 3 7t+ 4 7t+ 4 t 6= 0, 1 Theorem 3.3
3 2 6t+ 1 7t+ 1 7t+ 1 t 6= 0 Theorem 3.2
3 2 6t 7t 7t t 6= 3, 6 Theorem 3.4
3 2 12t+ 4 14t+ 5 14t+ 6 t 6= 0, 1 Theorem 3.5
3 2 12t+ 10 14t+ 12 14t+ 13 t 6= 0, 1 Theorem 3.6
3 2 4 5 5 Example 1.1
3 2 10 12 12 Example 3.5



D.R. STINSON/AUSTRALAS. J. COMBIN. 91 (1) (2025), 148–176 174

Table 3: Bounds on w for strongly nested (v, k, λ)-BIBDs

k λ v Lower bound Upper bound Exceptions Source
3 2 6t+ 3 9t+ 5 9t+ 5 t 6= 0 Theorem 4.6
3 2 6t+ 1 9t+ 2 9t+ 2 t 6= 0, 1, 2 Theorem 4.8
3 2 6t 9t 9t+ 2 t 6= 1, 2, 3, 6 Theorem 4.9
3 2 12t 18t 18t t 6= 1, 2, 3 Theorem 4.10
3 2 12t+ 4 18t+ 7 18t+ 7 t 6= 0, 1 Theorem 4.12
3 2 12t+ 10 18t+ 16 18t+ 16 t 6= 0, 1 Theorem 4.13
3 2 4 7 7 Example 1.2
3 2 6 11 11 Example 4.3
3 2 7 11 11 Example 4.2
3 2 10 16 16 Example 4.5
3 2 12 18 18 Example 4.4

6 Summary

We have introduced the notion of weak nestings of BIBDs. A bound has been proven
on the minimum value of w such that a (v, k, λ)-BIBD can be weakly nested into
a partial (w, k + 1, λ + 1)-BIBD. We have shown that the bound can be met with
equality for (v, 2, 1)-BIBDs. For (v, 3, 2)-BIBDs with v ≡ 0, 1 or 3 mod 6, we have
constructed optimal weak nestings (with a couple of exceptions). See Tables 2 and
3 for a summary of our constructions.

Strong nestings have previously been considered by various researchers. We have
provided an alternative proof of a known lower bound on w and we have shown how
constructions for optimal weak nestings can sometimes be modified to yield optimal
or near-optimal strong nestings. We have addressed the problem of finding strong
nestings of (v, 3, 2)-BIBDs in detail.

Some problems that can be studied in future work include the following.

1. Construct optimal weak nestings of (v, 3, 2)-BIBDs with v ≡ 4 mod 6.

2. Construct optimal strong nestings of (v, 3, 2)-BIBDs with v ≡ 6 mod 12.

3. Construct optimal weak or strong nestings for BIBDs with block size k ≥ 4
having k ≤ 2λ. The first case to consider would be (v, 4, 2)-BIBDs.
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