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Abstract

The degree-diameter problem consists of finding the maximum number of
vertices n of a graph with diameter d and maximum degree ∆. This prob-
lem is well studied, and has been solved for plane graphs of low diameter
in which every face is bounded by a 3-cycle (triangulations), and plane
graphs in which every face is bounded by a 4-cycle (quadrangulations).
In this paper, we solve the degree diameter problem for plane graphs of
diameter 3 in which every face is bounded by a 5-cycle (pentagulations).
We prove that if ∆ ≥ 8, then n ≤ 3∆− 1 for such graphs. This bound is
sharp for ∆ odd.

1 Introduction

The well-known degree-diameter problem asks for the maximum order n(∆, d)
of a graph with maximum degree ∆ and diameter d. By considering a ∆-regular
breadth-first tree, we easily obtain a trivial upper bound on n(∆, d) known as the
Moore Bound. The graphs attaining this bound for ∆ > 2 and d > 1 are called
Moore Graphs, and there are only finitely many of them: the Petersen graph,
the Hoffman-Singleton graph and, conjecturally, some ‘missing’ Moore graph(s) of
diameter 2 and maximum degree 57 [1,4,11,15]. These Moore graphs are not planar,
and the upper bounds attained on n(∆, d) for planar graphs are substantially smaller
than the Moore bound.

In [10], Hell and Seyffarth exactly solve the degree-diameter problem for planar
graphs of diameter 2, showing that n(∆, 2) = 3

2
∆+1 for such graphs. Further results

for planar graphs are obtained in [9] by Fellows, Hell and Seyffarth. They give bounds
on n(∆, 3) and show that for each fixed diameter d, there exists some constant c such
that n(∆, d) ≤ c∆⌊d/2⌋. For planar graphs with even diameter and large maximum
degree, the degree-diameter problem was solved exactly by Tishchenko in [19]. In [16],
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Nevo, Pineda-Villavicencio and Wood extend the result of [19] to all diameters. They
also improve the state of the art in the degree-diameter for graphs embedded on
surfaces by showing that for a graph with large ∆ embedded in a surface of genus g,
there is some constant c and a function f(g) such that n(∆, d) ≤ cf(g)(∆− 1)⌊d/2⌋.

Further refining the problem, we consider plane graphs in which every face is
bounded by a circuit or cycle of the same length ρ. When ρ = 3, we obtain the
well-studied maximal planar graphs / triangulations. Seyffarth proved in [17] that a
triangulation of diameter 2 and ∆ ≥ 8 has at most 3

2
∆+ 1 vertices, and this bound

is sharp. Interestingly, the bound is the same as the bound for general planar graphs
obtained in [10], and this fact is critical to the proof in [10]. Plane graphs with ρ = 4
are maximal planar bipartite graphs, or quadrangulations. For quadrangulations,
Dalfó, Huemer and Salas prove the sharp bounds n(∆, 2) = ∆+2, n(∆, 3) = 3∆− 1
when ∆ is odd and n(∆, 3) = 3∆−2 when ∆ is even [3]. They also give approximate
bounds on n(∆, d) for quadrangulations with d > 3 and ∆ large. In [8], the present
author considered plane graphs in which ρ was (almost) as large as possible for
fixed diameter d, obtaining the following sharp bounds: n(∆, d) = 2d + 1 when
ρ = 2d+1 and n(∆, d) = ∆(d− 1) + 2 when ρ = 2d. The extremal graphs were also
characterized.

The degree-diameter problem has been studied for graphs and triangulations on
other surfaces, see [14, 18], as well as for highly structured graphs such as triangu-
lar and honeycomb networks [12, 13]. In recent work, the problem was tackled for
outerplanar graphs [5], and a generalization of the degree-diameter problem is the
subject of the 2022 paper [20]. For a comprehensive overview of the degree-diameter
problem, see Miller and Širáň’s survey [15]. For the early version of this work, and
related research, see [7].

We call a plane graph in which every face is bounded by a cycle of length 5 a
pentagulation. In this paper, we prove that n(∆, 3) = 3∆ − 1 for pentagulations
with ∆ ≥ 8. The paper begins with definitions and basic lemmas in Section 2. In
Section 3, we prove that a diameter 3 pentagulation is triangle-free. The structure
of 4-cycles and separating 5-cycles is explored in Section 4. Section 5 introduces the
notion of dislocated 4-cycles, a concept central to the proof of the main theorem. The
proof that n(∆, 3) ≤ 3∆ − 1 for pentagulations is very involved, so we split it into
three sections. Section 6 considers pentagulations with a pair of dislocated 4-cycles,
Section 7 proves the bound for pentagulations with a 4-cycle, but no dislocated pair,
and Section 8 proves that a diameter 3 pentagulation with ∆ ≥ 8 contains at least
one 4-cycle, and gives examples to show the bound is sharp for ∆ odd. We conclude
and give some further questions in Section 9.

2 Preliminaries

For most definitions used, see [6]. Let G = (V,E) be a graph, and S, T two sub-
sets of V . The distance between vertices u and v is denoted d(u, v), and we let
d(u,S) = min{d(u, w) : w ∈ S}. For a subgraph H, we overload notation and de-
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note d(u,H) = d(u, V (H)). We say S dominates T if every vertex of T is adjacent
to some vertex of S, and S dominates the whole graph G if S dominates V . Let
Ni(v) be the set of vertices at distance i from v. A cycle C in a plane graph G

partitions the plane into an interior bounded region denoted Int (C), an exterior
unbounded region Ext (C), and the cycle C itself. Denote Int [C] = Int(C) ∪ C,
and Ext [C] = Ext(C) ∪ C. If both Int(C) and Ext(C) contain vertices, then C is
a Jordan separating cycle. Consider a subgraph H of a graph G. A chord of H
in G is an edge uv such that u, v ∈ V (G) and uv ∈ E(G) − E(H). The girth of a
graph is the length of its shortest cycle.

It is well known that a plane graph is 2-connected if and only if each face is
bounded by a cycle, so all pentagulations are 2-connected.

Lemma 2.1. Let G be a pentagulation of diameter 3, and C a cycle of G. If C is
a Jordan separating cycle, then C dominates its interior, or dominates its exterior.
Further, if C has length 3 or 4, then it is a Jordan separating cycle.

Proof. Suppose that C is a Jordan separating cycle, and that u ∈ Int(C), v ∈ Ext(C)
are two vertices not dominated by C. Any u−v geodesic contains at least one vertex
of C, so d(u, v) ≥ 4, contradicting the diameter of G.

Suppose C has length 3 or 4. Its interior and exterior both contain at least one
face. Since a facial cycle has five vertices, we have |V (Int[C])| ≥ 5 and |V (Ext[C])| ≥
5. Thus Int(C) and Ext(C) both contain at least one vertex, so C is a Jordan
separating cycle.

Lemma 2.2. Every cycle of length 6 or 7 in a pentagulation is a Jordan separating
cycle.

Proof. Let C be a cycle of length 6 or 7 in a pentagulation G. The cycle C does not
bound any face of G, so its interior either contains a vertex, or has some chord e.
Since the length of C is at most 7, C ∪{e} induces a cycle of length 3 or 4. Applying
Lemma 2.1, we see that Int(C) contains some vertex. Similarly, Ext(C) contains a
vertex.

For a cycle C of length 5 in a pentagulationG, there are three distinct possibilities:

1. The cycle C Jordan separates G,

2. C is a facial cycle that separates G, but necessarily does not Jordan separate G,

3. C is a facial cycle that does not separate G.

3 There are no 3-cycles

The following lemmas show that no 3-cycle in a pentagulation dominates its interior
(or exterior). We phrase our lemmas in terms of cycle interiors, but the same results
are easily seen to hold for exteriors.
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Lemma 3.1. Let G be a pentagulation. If C is a 3-cycle in G, then no single vertex
of C dominates the interior of C.

Proof. For the sake of contradiction, let C : v1, v2, v3 be a 3-cycle, the interior of
which is dominated by the single vertex v1. Choose C to be minimal, so there is no
3-cycle C ′ such that v1 dominates the interior of C ′, and for which Int(C ′) ⊂ Int(C).
By Lemma 2.1, the cycle C Jordan separates G, so there is some vertex u ∈ Int(C).
By assumption, u and v1 are adjacent. AsG is a pentagulation, and thus 2-connected,
the vertex u has some neighbor other than v1 in Int[C]. This neighbor is not v2, as
then v1, v2, u is a 3-cycle, contradicting the minimality of C. Similarly, u and v3 are
not adjacent. (see Figure 1).

v1

v2 v3

u

(1)
v1

v2 v3

u

(2)
v1

v2 v3

u w

(3)

Figure 1: Some steps in the proof of Lemma 3.1.

Thus there is some other vertex w in Int(C) that is adjacent to u. Since v1 dom-
inates Int(C), the vertices v1, u and w form a 3-cycle, contradicting the minimality
of C.

Lemma 3.2. Let G be a pentagulation, and let C be a 3-cycle in G. The interior of
C is not dominated by any two vertices of C.

Proof. Let C = v1, v2, v3 be a 3-cycle. Assume to the contrary and without loss of
generality that every vertex in Int(C) is dominated by {v1, v2}. We claim that no
vertex in Int(C) is adjacent to v3. Assume to the contrary there is a vertex v adjacent
to v3. Without loss of generality, v is adjacent to v1 as well, since {v1, v2} dominates
Int(C). Thus the triangle v1, v, v3 is dominated by v1, contradicting Lemma 3.1 and
proving the claim.

The edge v1v2 lies on the boundary of two faces, one of which is in the interior of
C. Call this interior face f , and note that the boundary of f is a 5-cycle. By Lemma
3.1, the interior of C is not dominated by a single vertex, so both v1 and v2 have
some neighbor in Int(C). Thus the cycle bounding f is of the form u, v1, v2, w, x,
where u, w and x are vertices in the interior of C. As {v1, v2} dominates Int(C),
the vertex x is adjacent to either v1 or v2. If x is adjacent to v1, then u, x, v1 is a
triangle whose interior is dominated by v1, and similarly if x is adjacent to v2 then
w, x, v2 is a triangle whose interior is dominated by v2. Both possibilities contradict
Lemma 3.1, completing the proof.
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Lemma 3.3. Let G be a pentagulation and C be a 4-cycle in G. Then no vertex of
C dominates Int(C).

Proof. Let C = v1, v2, v3, v4 be a 4-cycle. Assume for the sake of contradiction that v1
dominates Int(C), and choose C to be minimal, i.e., there is no 4-cycle C ′ dominated
by v1 such that Int(C ′) ⊂ Int(C). By Lemma 2.1, Int(C) 6= ∅. Let u be the neighbor
of v1 in the interior of C such that uv1 and v1v2 both lie on the boundary of some
common face. Since G is 2-connected, u is adjacent to some vertex w in Int[C]−{v1}.
Up to symmetry, there are three possible choices for the vertex w.

Case 1: w = v2 or w = v4.

If w = v2, we obtain a 3-cycle v1, u, v2, the interior of which is dominated by v1,
contradicting Lemma 3.1. The situation is similar if u is adjacent to v4.

Case 2: w = v3.

The interior of the 4-cycle v1, u, v3, v2 is dominated by v1, contradicting minimality
of C.

Case 3: w is a vertex in Int(C).

By assumption, the vertex v1 dominates Int(C), so v1 and w are adjacent. Thus
v1, u, w is a 3-cycle whose interior is dominated by v1, contradicting Lemma 3.1.

Lemma 3.4. Let C be a 4-cycle in a pentagulation. No pair of vertices of C, that
are adjacent in C, dominate Int(C).

Proof. Assume for the sake of contradiction that C = v1, v2, v3, v4 is a 4-cycle in
a pentagulation whose interior is dominated by {v1, v2}. By Lemma 3.3, both v1
and v2 have at least one neighbor in Int(C) — for if one of these two vertices had
no neighbor in Int(C), the other would dominate Int(C). Thus there is a face f in
the interior of C, bounded by a 5-cycle of the form u, v1, v2, w, x, where u and w

are vertices in Int(C) and x is a vertex in Int[C]. If x is either v3 or v4, then Int[C]
contains a triangle whose interior is dominated by v1 or v2 respectively, contradicting
Lemma 3.1. If x lies in Int(C), then it is adjacent to either v1 or v2. If x is adjacent
to v1, then v1, u, x is a triangle whose interior is dominated by v1, and if x is adjacent
to v2, then the interior of the triangle v2, w, x is dominated by v2. In any case,
we obtain a triangle whose interior is dominated by a single vertex, contradicting
Lemma 3.1.

Lemma 3.5. A 3-cycle in a pentagulation does not dominate its interior (or exte-
rior).

Proof. Let C : v1, v2, v3 be a 3-cycle in a pentagulation G. Assume for the sake
of contradiction that C dominates its interior. By Lemmas 3.1 and 3.2, no proper
subset of V (C) dominates Int(C), so every vertex of C has at least one neighbor
in Int(C). Thus there exists a neighbor u of v1 in Int(C). Since G is 2-connected,
the vertex u has some neighbor w in Int[C] − {v1}. By Lemma 3.2, the vertex w

is neither v2 nor v3, as this induces a 3-cycle whose interior is dominated by two
vertices. By Lemma 3.1, w is not adjacent to v1, as this creates a 3-cycle whose



B. DU PREEZ/AUSTRALAS. J. COMBIN. 91 (1) (2025), 104–147 109

interior is dominated by v1. By Lemma 3.4, neither v2 nor v3 is adjacent to w, since
this induces a 4-cycle, the interior of which is dominated by two adjacent vertices.
Thus u does not have a neighbor in Int[C]− {v1}, a contradiction.

Lemma 3.5 and Lemma 2.1 easily yield the following corollary, which we make
extensive use of.

Corollary 3.6. Pentagulations of diameter 3 contain no 3-cycles.

4 The structure of separating cycles

We have shown that diameter 3 pentagulations do not contain 3-cycles (and, hence,
that any 4-cycle or 5-cycle in a such a pentagulation is chordless). In this section,
we describe the structure of 4-cycles and separating 5-cycles in diameter 3 pentagu-
lations.

Lemma 4.1. If a pentagulation contains a Jordan separating 5-cycle C, then the
interior of C is dominated by neither a single vertex of C, nor by an adjacent pair
of vertices in C.

Proof. Let C = v1, v2, v3, v4, v5 be a Jordan separating cycle of a pentagulation G.
We first prove that Int(C) is not dominated by a single vertex of C. Assume to the
contrary that v1 dominates Int(C), and let u be a neighbor of v1 in Int(C). Since G

is 2-connected, u has some neighbor in Int[C]−{v1}. If u is adjacent to any neighbor
of v1 (including v2 and v5), then G contains a triangle, contradicting Corollary 3.6.
If u is adjacent to v3 or v4, we obtain a 4-cycle whose interior is dominated by the
single vertex v1, contradicting Lemma 3.3. Thus u has no neighbor in Int[C]−{v1},
a contradiction.

Now assume to the contrary that {v1, v2} dominates Int(C). Let u be a neighbor
of v1 in the interior of C, and note that u has some neighbor in Int[C]−{v1}. As in the
previous argument, u is not adjacent to any neighbor of v1. If u is adjacent to either
v3 or v4, then G contains a 4-cycle whose interior is either dominated by the single
vertex v1, or by the adjacent pair {v1, v2}, contradicting Lemma 3.3 or Lemma 3.4,
respectively. If u is adjacent to some neighbor of v2, then G contains a 4-cycle whose
interior is dominated by the adjacent pair {v1, v2}, yielding a contradiction.

Lemma 4.2. Let C be a 4-cycle of a pentagulation. If C dominates its interior, then
no two vertices which are adjacent in C both have neighbors in Int(C).

Proof. Let C = v1, v2, v3, v4 be a 4-cycle in a pentagulation, and suppose that C

dominates its interior. Assume to the contrary, and without loss of generality, that
both v1 and v2 have some neighbor in Int(C). The edge v1v2 lies on some face in the
interior of C. This face is bounded by a 5-cycle of the form u, v1, v2, w, x, where u

and w are neighbors of v1 and v2 respectively, and x ∈ Int[C]. Since C dominates its
interior, the vertex x is either a vertex of C, or is adjacent to a vertex of C. If x is a
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vertex of C, or if x is adjacent to v1 or v2, then there is some 3-cycle in Int[C] that
dominates its interior, contradicting Lemma 3.5. If x is adjacent to v3 or v4, then
there is some 4-cycle in Int[C] whose interior is dominated by two adjacent vertices
of the 4-cycle, contradicting Lemma 3.4.

Lemma 4.3. Let C be a 6-cycle in a pentagulation. If the interior of C is dominated
by two vertices u and v of C such that dC(u, v) = 3, then no chord of C lies in the
interior of C.

Proof. Let C = v1, v2, v3, v4, v5, v6 be a 6-cycle in a pentagulation, the interior of
which is dominated by {v1, v4}. Assume to the contrary that e = vivj, with |j− i| >
1 (mod 6), is a chord of C contained in Int[C]. If |j−i| = 2, then the chord induces a
3-cycle in C that dominates its interior, contradicting Lemma 3.5. Thus |j − i| = 3.
If e = v1v4 then the chord induces a 4-cycle whose interior is dominated by two
adjacent vertices, contradicting Lemma 3.4. If e 6= v1v4, then e = v2v5 or e = v3v6,
and C ∪ {e} either induces the 4-cycle v2, v3, v4, v5 or the 4-cycle v3, v4, v5, v6. In
either case there is a 4-cycle dominated by just v3, contradicting Lemma 3.3.

Lemma 4.4. Let C be a 6-cycle in a pentagulation. If Int(C) is dominated by two
vertices u and v with dC(u, v) = 3, then there exists some vertex in Int(C) that is
adjacent to both u and v.

Proof. Let G be a pentagulation. Assume to the contrary that C = v1, v2, v3, v4, v5, v6
is a 6-cycle in G whose interior is dominated by {v1, v4}, and that no vertex in Int(C)
is adjacent to both v1 and v4. Choose C to be a minimal counterexample. That is,
there is no 6-cycle C ′ that has its interior dominated by {v1, v4}, and that does
not contain any neighbor of both v1 and v4 in Int(C ′), and that satisfies Int(C ′) ⊂
Int(C). The cycle C is chordless by Lemma 4.3, and is a Jordan separating cycle
by Lemma 2.2, so there exists some vertex w in Int(C). Without loss of generality,
the vertex w is adjacent to v1. Since G is 2-connected, there is some neighbor x

of w in Int[C] − {v1, v4}. The vertex x is neither v2 nor v6, as this would create a
triangle v1, w, x, v1 that dominates its interior, contradicting Lemma 3.5. Further, x
is neither v3 nor v5 as either case induces a 4-cycle whose interior is dominated by
v1, contradicting Lemma 3.3. So x lies in Int(C), and is adjacent to either v1 or v4.
If x is adjacent to v1, then v1, x, w is a triangle, the interior of which is dominated
by v1, contradicting Lemma 3.1. Thus x is adjacent to v4, and the two internally
disjoint paths v1, v2, v3, v4 and v1, w, x, v4, induce a 6-cycle in Int[C]. The interior
of this 6-cycle is dominated by {v1, v4}, and by assumption there is not a common
neighbor of both v1 and v4 in the interior of this cycle, contradicting the minimality
of C.

Corollary 4.5. Let C be a Jordan separating 5-cycle in a pentagulation. If Int(C)
is dominated by two non-adjacent vertices u and v of C, then there is some vertex
in Int(C) that is adjacent to both v and u.

Proof. Let G be a pentagulation, and let C = v1, v2, v3, v4, v5 be a Jordan separating
5-cycle in G whose interior is dominated by {v1, v3}. Since C is Jordan separating,
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there exists a vertex w in Int(C) that is, without loss of generality, adjacent to v1.
If w is adjacent to v3, we are done. Suppose w is not adjacent to v3. Since G

is 2-connected, w has some neighbor x in Int[C] − {v1}. The vertex x is not any
neighbor of v1, as then v1, w, x is a triangle that dominates its interior, contradicting
Lemma 3.5. Note that x 6= v4, as this would induce a 4-cycle dominated by v1,
contradicting Lemma 3.3. Thus x is a vertex in Int(C) that is adjacent to v3. The
internally disjoint paths v1, v5, v4, v3 and v1, w, x, v3 induce a 6-cycle whose interior
is dominated by {v1, v3}. By Lemma 4.4, the interior of this 6-cycle contains some
vertex adjacent to both v1 and v3, completing the proof.

Lemma 4.6. Let G be a pentagulation. If C is a 4-cycle that dominates its interior,
then every vertex u in Int(C) has degree 2.

Proof. Let G be a pentagulation, let C = v1, v2, v3, v4 be a 4-cycle in G that domi-
nates its interior, and let w be a vertex in Int(C). Since C dominates its interior, we
assume without loss of generality that w is adjacent to v1. Because G is 2-connected,
w has at least one neighbor in Int[C] − {v1}. Assume contrary to the lemma that
d(w) > 2. Thus w has at least two distinct neighbors x1 and x2 in Int[C] − {v1}.
Neither x1 nor x2 is adjacent to v1, as this would induce a triangle in Int[C] that
dominates its interior, contrary to Lemma 3.5. Therefore, each vertex xi is either a
vertex in Int(C), or the vertex v3.

Suppose x1 = v3, then x2 6= v3. Up to swapping the labels on v2 and v4, the vertex
x2 lies inside the cycle v1, w, v3, v2. Since C dominates its interior, x2 is adjacent to
v1, v2 or v3. If x2 is adjacent to v1 or v3, this induces a triangle. If x2 is adjacent
to v2, the interior of the 4-cycle v1, w, x2, v2 is dominated by {v1, v2}, contradicting
Lemma 3.4. Thus x1 6= v3, and similarly x2 6= v3.

Since C dominates its interior, each vertex xi is adjacent to some vertex in
{v2, v3, v4}. The vertex x1 is not adjacent to v2, as this induces a 4-cycle x1, v2, v1, w

whose interior is dominated by {v1, v2}, contradicting Lemma 3.4. Similarly, x1 is
not adjacent to v4, and x2 is not adjacent to either v2 or v4. We conclude that both
x1 and x2 are neighbors of v3 in Int(C). But this induces a 4-cycle x1, w, x2, v3 that
is dominated by v3, contradicting Lemma 3.3.

By Lemma 2.1, any 4-cycle in a pentagulation of diameter 3 dominates either its
interior or exterior. The next theorem gives a complete description of the structure
of this dominated region. An example of such a region is given by Figure 2.

Theorem 4.7. Let G be a pentagulation, and C a 4-cycle in G. If C dominates
its interior, then there exist two non-adjacent vertices u and v of C, and a positive
integer k such that the induced subgraph G[Int[C]] consists of exactly:

(1) the cycle C,

(2) k u− v paths of length 3, and

(3) k − 1 u− v paths of length 2.

All the paths in (2) and (3) are internally disjoint, do not contain any vertices of
C − {u, v}, and the paths of length 2 and 3 alternate.
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v1

v2

v3

v4 w

Figure 2: A 4-cycle dominating its interior which has k = 2 paths of length 3
and k − 1 = 1 paths of length 2 between two non-adjacent vertices v1 and v3,
illustrating Theorem 4.7.

Proof. Let G be a pentagulation, and C : v1, v2, v3, v4 a 4-cycle in G that dominates
its interior. By Lemmas 3.3 and 3.4, exactly two non-adjacent vertices of C have
neighbors in Int(C). Suppose without loss of generality that these two vertices are
v1 and v3. The interior of C is chordless, as a chord would induce a 3-cycle that
dominates its interior, contradicting Lemma 3.5. By Lemma 4.6, any vertex in
Int(C) has degree 2. Further, any vertex in Int(C) is adjacent to either v1 or v3, and
there is no 3-cycle in the interior of C by Lemma 3.5. Thus every vertex in Int(C)
lies on a v1 − v3 path of length 2 or 3, and these paths are internally disjoint. Since
G is a pentagulation and every face is bounded by a 5-cycle, the paths of length 2
and 3 must alternate.

By Corollary 3.6, no diameter 3 pentagulation contains a triangle. Figure 3 shows
two diameter 3 pentagulations containing 4-cycles.

H I

Figure 3: Two diameter 3 pentagulations that contain 4-cycles, H and I. Pairs
of non-adjacent grey vertices dominate regions bounded by bold 4-cycles.

5 Singling out a square with dislocated 4-cycles

In order to describe the structure of diameter 3 pentagulations, we need a new
concept: dislocated 4-cycles. In Figure 2, consider the three 4-cycles C1 : v1, v2, v3, v4;
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C2 : v1, w, v3, v4 and C3 : v1, w, v3, v2. Although these three cycles are distinct, both
C2 and C3 are just ‘substructures’ of C1, formed by C1 and the alternating paths in its
interior (Theorem 4.7). Heuristically, two 4-cycles in a pentagulation are dislocated
when—unlike the cycles in Figure 2—they cannot be considered part of the same
collection of alternating paths. For example, the two bold 4-cycles in Figure 3, graph
I are dislocated.

Consider two distinct 4-cycles, C1 and C2, in a pentagulation G. We say that C1

and C2 are dislocated 4-cycles if there exist two regions R1 ∈ {Int(C1),Ext(C1)}
and R2 ∈ {Int(C2),Ext(C2)}, as well as two pairs of vertices {u1, v1} ⊂ V (C1) and
{u2, v2} ⊂ V (C2), such that all three of the following conditions hold:

1. The regions R1 and R2 are dominated by {u1, v1} and {u2, v2}, respectively,

2. The sets {u1, v1} and {u2, v2} are not equal,

3. The intersection R1 ∩R2 is empty.
Note that by Lemma 3.4, the edge u1v1 is not in E(C1), and u2v2 is not in E(C2).

u1

u2

u3

u4 u5

G

v2

v4

v3v1 v6v5

H

Figure 4: In G, there is no pair of dislocated 4-cycles. In H, any pair of 4-cycles
in which both cycles dominate their interior or exterior is dislocated.

For an example, consider Figure 4. No two of these cycles in G are dislocated,
as they fail either condition (2) or (3) of the definition. In H, any pair C and D of
4-cycles such that C and D both dominate one of their two regions is a dislocated
pair.

6 Bounding the order, part I: An abundance of 4-cycles

In this section, we consider pentagulations containing two or more dislocated 4-cycles.
But first, we handle a simple case, for which we recall the well-known theorem stating
that if a graph of order n and maximum degree ∆ is dominated by γ vertices, then
n ≤ γ(∆ + 1) (see, for example, Theorem 10.6 of [2]).

Lemma 6.1. Let G be a pentagulation of order n and maximum degree ∆ ≥ 3. If
any 4-cycle of G dominates G, then n ≤ 3∆− 1.
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Proof. Let G be a pentagulation of order n and maximum degree ∆ that is dominated
by the 4-cycle C : v1, v2, v3, v4. Since Int(C) is dominated by C, we have without
loss of generality, by Theorem 4.7, that every vertex of Int(C) lies on a v1 − v3 path
of length 2 or 3. There are at most ∆−1

2
paths of length 3 in Int(C), and at most

∆−3
2

paths of length 2 in Int(C). Because Ext(C) is dominated by C, we have by
Theorem 4.7 that every vertex of Ext(C) lies on either a v1 − v3 path, or a v2 − v4
path, and any such path has length 2 or 3. If the vertices of Ext(C) lies on v1 − v3
paths, then {v1, v3} dominates Ext(C), so G is dominated by two vertices. Thus
n ≤ 2∆ + 2 ≤ 3∆− 1.

Therefore the vertices of Ext(C) lie on v2 − v4 paths. As before, the number of
paths of length 3 is bounded above by ∆−1

2
, and the number of paths of length 2 is

at most ∆−3
2

. Each path of length 3 in Int(C) (Ext(C)) contributes 2 to the number
|V (Int(C))| (|V (Ext(C))|), and each path of length 2 contributes 1 to |V (Int(C))|
(|V (Int(C))|). Thus:

n = |V (C)|+ |V (Int(C))|+ |V (Ext(C))|

≤ 4 + 2

[

2

(

∆− 1

2

)

+ 1

(

∆− 3

2

)]

= 3∆− 1.

In the proofs of Lemmas 6.2 and 6.4 to follow, we refer to specific vertices and
faces of the graphs H and I by the labels given in Figure 5.

v1

v2 v4

z1 z2

v3

w1

w2

H

r2r1

r3

v1

v2

v3

v7

v4

v5

v6

w1

w2

z1

z2

I

r1 r2

r3 r4

r5r0

Figure 5: The graphs H and I, with the labels used in the proofs of Lemmas 6.2
and 6.4.

Lemma 6.2. Let G be a pentagulation of diameter 3, order n and maximum degree
∆. If G contains H as a subgraph, then n ≤ 3∆− 1.

Proof. Assume G contains H (Figure 3) as a subgraph, and let C : v1, v2, v3, v4 be the
4-cycle of H. Label the remaining vertices of H so that v1, w1, w2, v3 and v2, z1, z2, v4
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are paths of length 3 (see Figure 5), with w1 and w2 lying in Int(C) and z1 and z2
lying in Ext(C). Since G has diameter 3, we know that, without loss of generality,
the cycle C dominates its interior by Lemma 2.1. Assume to the contrary that C does
not dominate its exterior. Then there is a vertex u ∈ Ext(C) such that d(u, C) ≥ 2.
If u lies in the outer face of H, then d(u, w2) ≥ 4. If u lies in r3, then d(u, w1) ≥ 4.
In either case, we obtain a contradiction, so C dominates its exterior and is thus a
dominating 4-cycle. That n ≤ 3∆− 1 follows immediately from Lemma 6.1.

Theorem 6.3. Let G be a pentagulation of diameter 3, order n, and maximum degree
∆ ≥ 3. If G contains two dislocated 4-cycles, C1 and C2, then G contains I as a
subgraph (see Figure 3), or n ≤ 3∆− 1.

Proof. Let G be a pentagulation of diameter 3, order n and maximum degree ∆ ≥
3. Suppose that G contains two dislocated 4-cycles C1 : v1, v2, v3, v4 and C2 :
u1, u2, u3, u4. We consider all the possible configurations for the two dislocated 4-
cycles. Note that if any 4-cycle dominates G, or if G contains an H subgraph, then
n ≤ 3∆ − 1 by Lemmas 6.1 and 6.2. Assume without loss of generality that C1

dominates its interior. By Theorem 4.7, and without loss of generality, the region
Int(C1) is dominated by {v1, v3}, and there exist vertices w1 and w2 in Int(C1) such
that P1 : v1, w1, w2, v3 is a path in G.

Case 1: The cycles C1 and C2 have exactly two adjacent vertices in common.
By symmetry, we may assume without loss of generality that v2 = u1 and v3 = u4

(see Figure 6, (1)).

v1 v2

v3v4

u2

u3

w1

w2

(1)

v1 v2

v3v4

u2

u3

w1

w2

z1

z2

(2)

Figure 6: Two dislocated 4-cycles, C1 and C2, that share an edge, as in Case 1 of
the proof of Theorem 6.3.

Since C1 and C2 are dislocated, both u2 and u3 lie in Ext(C1). By Corollary 3.6,
the pentagulation G is triangle-free, so dG(w1, C2) = 2. Since C2 dominates either its
interior or exterior, we have that C2 dominates its interior. By Theorem 4.7, there
exist vertices z1 and z2 in Int(C2) such that either P2 : v2, z1, z2, u3 is a path in G,
or P ′

2 : u2, z1, z2, v3 is a path in G. If G contains the path P ′
2, then there is a z1 −w1

path R of length at most 3 in G. Since G is triangle-free, the vertex w1 is only
adjacent to v1 and w2, and z1 is only adjacent to u2 and z2. Thus, since G is a plane
graph and dG(w1, z1) ≤ 3, v1 and u2 are adjacent. This induces a triangle, which is
impossible. Therefore G contains the path P2, not the path P ′

2 (see Figure 6, (2)).
Since G has diameter 3, there exists some w1 − z2 path of length at most 3. By the
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same argument as in the prior paragraph, we deduce that v1 and u3 are adjacent.
But now we have induced H as a subgraph of G, with the 4-cycle of H corresponding
to the 4-cycle of G on v1, v2 = u1, v3 = u4, u3. By Lemma 6.2, we have n ≤ 3∆− 1.

Case 2: The dislocated cycles C1 and C2 have exactly three vertices in common.
Up to symmetry, there are two different ways that C1 could share three vertices with
C2: the cycles may share both the dominating vertices v1 and v3, or only one of
them.

Case 2.1: The vertices v1 and v3 are in both C1 and C2.
Assume without loss of generality that v1=u1, v2=u4 and v3=u3 (see Figure 7 (1)).

v1

v3

v2v4
w1

w2

u2

(1)

v1

v3

v2v4
w1

w2

u3

(2)

Figure 7: Case 2.1 in the proof of Theorem 6.3 has the two dislocated 4-cycles C1

and C2 sharing v1, v2 and v3. Case 2.2 has the cycles sharing v2, v3 and v4.

Since C1 and C2 are dislocated, the set {u2, v2} dominates either the interior
or exterior of C2. We claim the set dominates the interior of C2. By Lemma 4.2,
the vertex v2 does not have any neighbor in Int(C1), and thus has no neighbors in
Ext(C2). By Lemma 3.3, no single vertex of C2 dominates the exterior of C2, so the
set {v2, u2} does not dominate Ext(C2), proving the claim.

Since {u2, v2} dominates Int(C2), there are two vertices z1 and z2 in Int(C2) such
that P2 : v2, z1, z2, u2 is a path in G. The vertices of C1 ∪ C2 ∪ P1 ∪ P2 induce an H
subgraph in G. Thus n ≤ 3∆− 1 by Lemma 6.2.

Case 2.2: Only one of v1 and v3 is common to both C1 and C2.
Assume without loss of generality that v2 = u2, v3 = u1 and v4 = u4 (see Figure 7 (2)).
Since G is triangle-free, the distance dG(w1, C2) = 2, so C2 does not dominate its
exterior and thus dominates its interior. By Theorem 4.7, there are vertices z1 and
z2 in Int(C2) such that either P2 : v3, z1, z2, u3 is a path of G, or P ′

2 : v2, z1, z2, v4 is a
path of G. In the latter case, we obtain an H subgraph on C1 ∪C2 ∪P1 ∪P ′

2. In the
former case, we have d(w1, z2) > 3.

Case 3: The cycles C1 and C2 have exactly one vertex in common.
Since C1 and C2 only share one vertex, and G is triangle-free, either d(w1, V (C2)) ≥ 2
or d(w2, V (C2)) ≥ 2. As such, C2 does not dominate its exterior, and thus dominates
its interior. Up to symmetry, there are four possible cases.
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Case 3.1: The dislocated cycles C1 and C2 share the vertex v2 = u4 and Int(C2) is
dominated by {u1, u3} (see Figure 8 (1)).

v1

v3

v2
v4

u1

u3

u2

w1

w2

z1

z2

(1)

v1

v3

v2
v4

u1

u3

u2

w1

w2

z1 z2

(2)

Figure 8: In both figures, the dislocated 4-cycles C1 and C2 share the vertex
v2 = u4. We have (1) when the interior of C2 is dominated by {u1, u3}, as in
Case 3.1, and we have (2) when the interior of C2 is dominated by {u2, u4}, as in
Case 3.2 of the proof of Theorem 6.3.

By Theorem 4.7, there is a vertex z1 in Int(C2) that is adjacent to u1, but not to
any other vertex of C2. But then dG(w1, z1) > 3, a contradiction.

Case 3.2: The dislocated cycles C1 and C2 share the vertex v2 = u4 and Int(C2) is
dominated by {u2, u4} (see Figure 8 (2)).
By Theorem 4.7, there are two vertices z1 and z2 in the interior of C2 such that
P2 : v2, z1, z2, u2 is a path in G. Since G is a triangle-free plane graph, and both
dG(z2, w1) ≤ 3 and dG(z2, ww) ≤ 3, we have that u2 is adjacent to both v1 and v3.
Thus G contains H as a subgraph.

Case 3.3: The dislocated cycles C1 and C2 share the vertex v3 = u1 and Int(C2) is
dominated by {u2, u4} (see Figure 9 (1)).

v1
v3

v2

v4

u3

u4

u2

w1 w2 z1

z2

(1)

v1
v3

v2

v4

u3

u4

u2

w1 w2 z1 z2

(2)

Figure 9: In both figures, the dislocated 4-cycles C1 and C2 share the vertex
v3 = u1. When the interior of C2 is dominated by u2 and u4, as in Case 3.3 of
the proof of Theorem 6.3, (1) occurs. When the interior of C2 is dominated by u1
and u3, as in Case 3.4, (2) occurs.

Reversing the roles of the cycles C1 and C2, we observe that this case is identical
to Case 3.2, hence G contains H as a subgraph, so n ≤ 3∆− 1.
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Case 3.4: The dislocated cycles C1 and C2 share the vertex v3 = u1 and Int(C2) is
dominated by {u1, u3} (see Figure 9 (2)).
By Theorem 4.7, there are vertices z1 and z2 in Int(C2) such that P2 : v3, z1, z2, u3 is
a path in G. Since d(w1, z2) ≤ 3, we have that v1 and u3 are adjacent. Thus I is a
subgraph of G.

Case 4: The dislocated cycles C1 and C2 are disjoint.
In this case, no vertex of C2 is adjacent to w1, so C2 dominates its interior. By
Theorem 4.7, and without loss of generality, there are vertices z1 and z2 in the
interior of C2 and edges u1z1, z1z2 and z2u3. Since G has diameter 3, we have that
dG(wi, zj) ≤ 3 for any indices i and j in {1, 2}. Since G is triangle-free, it contains
all four edges of the form uiwk, where i and k are in {1, 3}. However, noting the
4-cycle on v1, u1, v3, u3, we see that G contains H as a subgraph.

Case 5: The dislocated cycles C1 and C2 share exactly two non-adjacent vertices.

v1

v3

v2v4 u2u4
w1

w2

(1)

v2

v4

v3v1 u2u4

w1

w2

(2)

Figure 10: In (1), the dislocated 4-cycles C1 and C2 share vertices v1 = u1 and
v3 = u3, as in Case 5.1 of Theorem 6.3. In Figure (2), the cycles share vertices
v2 = u1 and v4 = u3, as in Case 5.2.

Up to symmetry, there are two subcases to consider. Either v1 = u1 and v3 = u3

are common to both C1 and C2, or the vertices v2 = u2 and v4 = u4 are. In both
cases, since C1 and C2 are dislocated, the set {u2, u4} of vertices dominates the
interior of C2 (it does not dominate the exterior, as neither is adjacent to w1). Thus,
in both cases, by Theorem 4.7, there are vertices z1 and z2 in Int(C2) such that
P2 : u2, z1, z2, u4 is a path in G.

Case 5.1: The vertices v1 and v3 are common to C1 and C2 (see Figure 10 (1)).
Consider the cycle C : v1, v2, v3, u4. Since z1 is not adjacent to a vertex of C, the cycle
C dominates its interior. If {v1, v3} dominates Int(C), then C and C2 are dislocated
4-cycles sharing three vertices, and by Case 2 we have that n ≤ 3∆− 1. Similarly, if
{v2, u4} dominates Int(C), then C and C1 are dislocated.

Case 5.2: The vertices v2 and v4 are common to C1 and C2 (see Figure 10 (2)).
Denote by C ′ the cycle on v2, v3, v4, u4. By the argument of the preceding paragraph,
C ′ and C1 are dislocated 4-cycles. Thus, by Case 2, n ≤ 3∆− 1.
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Lemma 6.4. Let G be a pentagulation of diameter 3, order n and maximum degree
∆. If G contains I as a subgraph, then n ≤ 3∆− 1.

Proof. Let G be a pentagulation of diameter 3, order n and maximum degree ∆ that
contains I as a subgraph. Let the vertices of I be labeled as they are in Figure 5,
such that the vertices w1 and z1 lie in the interiors of the 4-cycles C1 : v1, v2, v3, v7 and
C2 : v3, v4, v5, v6, respectively. Since G is triangle-free (Corollary 3.6), the subgraph
I is an induced subgraph of G. Therefore, dG(z2, C1) = 2, and by a similar argument,
dG(w1, C2) = 2. Hence the cycles C1 and C2 dominate their interiors by Lemma 2.1.
In particular, the set {v1, v3} dominates Int(C1), and {v3, v5} dominates Int(C2).
We refine our choice of embedding of G (or equivalently, our choice of subgraph
isomorphic to I), so that the interiors of the cycles C1 and C2 are maximal. In other
words, there does not exist a 4-cycle C ′

1 such that Int(C1) ⊂ Int(C ′
1) and Int(C ′

1)
is dominated by {v1, v3}, and likewise for C2. Assume for the sake of contradiction
that n > 3∆− 1. Suppose that every vertex of V (G)− V (I) is adjacent to at least
one of v1, v3 or v5. Then:

n = |V (I)|+ |V (G)− V (I)|

≤ 11 + (d(v1)− 4) + (d(v3)− 6) + (d(v5)− 4)

≤ 11 + 3∆− 14 = 3∆− 3 < 3∆− 1.

Thus assume that G contains vertices in V (G) − V (I) that are not adjacent to
any of v1, v3 or v5. Let x be such a vertex, and label the faces r0, r1, . . . , r5 of I
as they are labeled in Figure 5. The regions r1 ∪ r2, and r3 ∪ r4 are dominated by
the 4-cycles C1 and C2, respectively, and as such any vertex added to these regions
is adjacent to a vertex in the set {v1, v3, v5}. Thus we assume that x is not in any
of the regions r1, r2, r3 or r4. By the symmetry of r0 and r5, we assume without
loss of generality that x is in r5. If x is adjacent to v2 and v4, then we induce a
4-cycle C : v2, x, v4, v3 which shares an edge with the cycle C1. Since d(w1, C) = 2,
C dominates its interior. Thus C and C1 are dislocated 4-cycles that share an edge,
so n ≤ 3∆ − 1 by Theorem 6.3, a contradiction. Hence we assume that x is not
adjacent to both v2 and v4. There are two cases to consider.

Case 1: The vertex x is not adjacent to either v2 or v4.
Since the diameter of G is 3, x is within distance 3 of each of w1, w2, z1, z2. Thus
x has neighbors y1, y2 and y3 in r5 such that y1v1, y2v3 and y3v5 are all edges in
G. Note that y1 6= y3 as this induces a triangle with vertex set {v1, y1, v5}. We
claim that y1 6= y2. Assume to the contrary that y1 = y2, and let C be the 4-cycle
on v1, v2, v3, y1, v1. Note that dG(z2, C) = 2, so C dominates its interior. By the
maximality of C1, we deduce that C and C1 are dislocated 4-cycles that share more
than one vertex. Thus n ≤ 3∆ − 1 by Theorem 6.3, proving the claim. Similarly
y2 6= y3, so the three vertices y1, y2 and y3 are distinct. The paths Q1 : v1, y1, x,
Q2 : v3, y2, x and Q3 : v5, y3, x divide r5 up into three sub-regions. Let r6 denote
the region with vertices v1, v2, v3, y2, x, y1 on its boundary, let r7 be bounded by
v3, y2, x, y3, v5, v4, and let r8 be bounded by v1, y1, x, y3, v5.
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We claim that the subgraph I ′ = I ∪Q1 ∪Q2 ∪Q3 of G is an induced subgraph.
Any edge between two vertices on the boundary of any region r0, . . . , r4 induces a
triangle, which is not possible since G is triangle-free. Similarly, no edge crosses r8.
Any edge crossing r6 either creates a triangle, which is not possible, or a 4-cycle C

such that C1 and C are two dislocated 4-cycles which share at least two vertices. By
Theorem 6.3, we have n ≤ 3∆ − 1, contrary to assumption. The argument that no
edges cross the region r7 is similar to the argument for r6, just replace the role of C1

with C2. This proves the claim.

If there exists a vertex in r6, it is adjacent to v1 or v3 since it is within distance
3 of z2. Similarly, any vertex in r7 is adjacent to v3 or v5 as it is within distance 3
of w1. No vertex lies in r8, as it would be adjacent to both v1 and v5 to be within
distance 3 of w2 and z1 respectively, inducing a triangle on y4, v1, v5. Any vertex of
r0 is at distance 3 or less from x, and thus is adjacent to one of v1, v3 or v5. The
subgraph I ′ has 15 vertices, and every vertex of G − I ′ is adjacent to one of v1, v3
or v5. Noting that dI′(v1) = 5, dI′(v3) = 7 and dI′(v5) = 5, we can bound the order
of G:

n ≤ 15 + (d(v1)− 5) + (d(v3)− 7) + (d(v5)− 5)

≤ 3∆− 2 < 3∆− 1.

Case 2: The vertex x is adjacent to v2.
By assumption, x is not adjacent to any of v1, v3, v4 or v5, and d(x, z2) ≤ 3. As no
two vertices on the boundary of r5 are adjacent, there exists some vertex y1 in r5
such that there is a path S1 : v2, x, y1, v5 in G. We claim that I ∪ S1 is an induced
subgraph of G. Since G is triangle-free, no edges crosses a region bounded by a 5-
cycle. Thus the only possible region of I ∪S1 with a chord is the region bounded by
the two paths S1 and v2, v3, v4, v5. However, any edge between the vertices bounding
this region creates either a triangle, which is impossible, or two 4-cycles A1 and A2.
In all cases, every vertex of A1 and A2 is distance at least 2 from w1, so A1 and A2

dominate their interiors. Thus, for some i and j in {1, 2}, the cycles Ci and Aj are a
pair of dislocated 4-cycles that share at least two vertices. By Theorem 6.3, we have
n ≤ 3∆− 1, proving the claim.

Because dG(y1, w2) ≤ 3, and since I ∪ S1 is an induced subgraph of G, there
exists some vertex y2 in r5−{x, y1} such that G contains the path S2 : y1, y2, v3. Let
I ′′ = I ∪S1∪S2, and note that the paths S1 and S2 divide r5 into three sub-regions:
r6 = Int(v1, v2, x, y1, v5), r7 = Int(v2, v3, y2, y1, x) and r8 = Int(v3, y2, y1, v5, v4). We
show that any vertex in G−I ′′ is adjacent to one of v1, v3 or v5. Since G is triangle-
free, and every face of I ′′ is bounded by a 5-cycle, I ′′ is an induced subgraph of G.
As such, the only vertices on the boundary of r6 within distance 2 of w2 are v1 and v2.
The region r6 is empty by Lemma 4.1, as it is dominated by two adjacent vertices.
Similarly r7 is empty, as the only vertices on the boundary of r7 within distance 2 of
w1 are the adjacent pair v2 and v3. Any vertex in r8 is adjacent to either v3 or v5, as
it is distance at most 3 from w1. Any vertex in r0 is adjacent to one of v1, v3 or v5 as
it is distance at most 3 from x. Note that I ′′ has 14 vertices, and that dI′′(v1) = 4,
dI′′(v3) = 7 and dI′′(v5) = 5. Any vertex of G−I ′′ is adjacent to one of v1, v2 or v3,
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so we can bound the order of G:

n ≤ 14 + (d(v1)− 4) + (d(v3)− 7) + (d(v5)− 5) ≤ 3∆− 2.

In every case, we have derived a contradiction, completing the proof.

Theorem 6.5 follows immediately from Lemma 6.1, Theorem 6.3 and Lemma 6.4.

Theorem 6.5. Let G be a pentagulation of diameter 3, order n and maximum degree
∆ ≥ 8. If G contains either a dominating 4-cycle, or two dislocated 4-cycles, then
n ≤ 3∆− 1.

7 Bounding the order, part II: The lonely 4-cycle

We show that if a pentagulation contains some 4-cycle, but no dislocated pair of them,
then it satisfies n ≤ 3∆− 1. Throughout this section, we work with pentagulations
of diameter 3 that contain some 4-cycle C. Assume without loss of generality that C
dominates its interior. This motivates the following terminology. The 4-cycle C of
a plane graph is interior maximal if it dominates its interior, and there does not
exist any other 4-cycle C ′ such that C ′ dominates its interior, and Int(C) ⊂ Int(C ′).

Lemma 7.1. Let G be a pentagulation of diameter 3 that does not contain two
dislocated 4-cycles, and let C be an interior maximal 4-cycle of G. If D is any cycle
in Ext[C] of length at most 7, then D is chordless.

Proof. Assume to the contrary D has some chord e. By Corollary 3.6, D∪{e} has no
3-cycle, so D ∪ {e} induces a 4-cycle. Either this 4-cycle contradicts the maximality
of C, or is dislocated from C, and both cases yield a contradiction.

Lemma 7.2. Let G be a pentagulation of diameter 3 that does not contain two
dislocated 4-cycles, and let C be an interior maximal 4-cycle of G. If D is any 5-
cycle in G such that both Int(D) ⊂ Ext(C) and Int(D) is dominated by two or fewer
vertices of D, then Int(D) does not contain any vertex of G.

Proof. By Lemma 4.1, the interior of D is not dominated by either a single vertex of
D, or an adjacent pair of vertices in D. Assume to the contrary that there is a vertex
w in Int(D), and let u and v be two non-adjacent vertices of D that dominate Int(D).
By Corollary 4.5, the vertex w is adjacent to both u and v. Thus, there exists some
4-cycle A in Int[D] that dominates its interior. The cycle A either contradicts the
maximality of C, or A and C are dislocated.

Theorem 7.3. Let G be a pentagulation of diameter 3, order n and maximum degree
∆ ≥ 8. If G contains a 4-cycle, then n ≤ 3∆− 1.

Proof. Assume to the contrary that G contains a 4-cycle C1 = v1, v2, v3, v4, and has
order n > 3∆ − 1. By Theorem 6.5, there are no two dislocated 4-cycles in G.
Assume without loss of generality that C1 is interior maximal, and that Int(C1) is
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dominated by {v1, v3}. By Theorem 4.7, there exist vertices w1 and w2 in Int(C1)
such that P1 : v1, w1, w2, v3 is a path in G. If every vertex of G is adjacent to either
v1 or v3, then n ≤ 2∆ < 3∆− 1, so there exists some vertex of G in Ext(C1) which
is not adjacent to v1 or to v3. We consider two cases, according to whether or not
the vertices v2 and v4 have neighbors in Ext(C1).

v1

v3

v2v4
w1

w2 y1 y2

(1)

v1

v3

v2v4
w1

w2 y1 y2

y3

y4

(2)

Figure 11: In Case 1, since the vertex y1 is not an end-vertex, there exists some
neighbor y2 of y1 (1). Since the diameter of G is 3, it contains y2−w1 and y2−w2

paths, forcing the subgraph G (2).

Case 1: The vertex v2 has at least one neighbor in Ext(C1).
Let y1 be a vertex in the exterior of C1 that is adjacent to v2. The vertex y1 is not
adjacent to either v1 or v3 as this induces a triangle, contradicting Corollary 3.6.
Further, y1 is not adjacent to v4 as this induces a 4-cycle on the vertices v2, y1, v3, v4,
contradicting the fact that G does not contain two dislocated 4-cycles. Since G is
2-connected, there is some vertex y2 in Ext(C1) to which y1 is adjacent (see Fig-
ure 11 (1)).

G K

Figure 12: If G is a diameter 3 pentagulation that contains some 4-cycle, but no
two dislocated 4-cycles, it must contain one of G or K as a subgraph, by Cases 1
and 2 respectively in the proof of Theorem 7.3. The black vertices of K are not
adjacent to any vertices of G−K.

Note that d(y2) ≥ 2, and there exist y2 − w1 and y2 − w2 paths of length at
most 3. Since G is triangle-free, the vertices y2 and v2 are not adjacent. Further,
y2 is not adjacent to either v1 or v3, as this induces a 4-cycle dislocated from C1 on
the vertices v1, v2, y1, y2 or v3, v2, y1, y2 respectively. Finally, y1 is not adjacent to v4,
as this induces H as a subgraph of G, which yields a contradiction by Lemma 6.2.
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Since no y2−w1 or y2−w2 geodesic can be formed with the vertices mentioned thus
far, there exist vertices y3 and y4 in Ext(C1) such that y2y3, y3v1, y2y4 and y4v3 are
edges in G (see Figure 11 (2)). Note that y3 6= y4, as this would again induce H as a
subgraph of G. Let G denote the subgraph of G constructed thus far (see Figure 12).
Applying Lemma 7.1, we deduce that G is an induced subgraph of G. Thus, the only
two vertices of the 5-cycle C3 : v1, v2, y1, y2, y3 within distance 2 of w2 are v1 and v2,
so {v1, v2} dominates Int(C2). Hence, by Lemma 4.1, there is no vertex in Int(C).
Similarly, there is no vertex in the region bounded by the cycle C4 : v2, y1, y2, y4, v3.
Any vertex of G not adjacent to v1 or v3 for which we have not yet accounted lies
in the external region of the cycle C2 : v1, y3, y2, y4, v3, v4. There are four subcases to
consider.

Case 1.1: There exists some vertex u1 in Ext(C2) adjacent to v4.
Since G is triangle-free, u1 is not adjacent to either v1 or v3. Because G does not
contain two dislocated 4-cycles, u1 is adjacent to neither y3 nor y4. Thus, any u1−y1
geodesic contains the vertex y2. Either u1 is adjacent to y2, or there exists a vertex
u2 in the exterior of C2 such that P2 : u1, u2, y2, y1 is a geodesic in G. If u1 and y2
are adjacent, then Ext(C2) is subdivided into 2 regions: the region r1 with vertices
u1, v4, v1, y3 and y2 on its boundary, and the region r2 with u1, v4, v3, y4 and y2 on
its boundary. The subgraph G ∪ {u1, u1v4, u1y2} is an induced subgraph of G, so the
only vertices on the boundary of r1 within distance 2 of w2 are the adjacent pair v1
and v4. The region r1 is dominated by two adjacent vertices of the 5-cycle bounding
it, so by Lemma 4.1, r1 is empty. Similarly, the region r2 is empty, so every vertex
of G not yet mentioned is adjacent to either v1 or v3, and we can bound the order
of G:

n = |V (G) ∪ {u1}|+ |V (G)− V (G)− {u1}|

≤ 11 + (d(v1)− 4) + (d(v3)− 4) ≤ 2∆ + 3 ≤ 3∆− 1.

This contradicts our assumption, and so the geodesic contains u2 (see Figure 13).
Let G ′ = G ∪ P2 ∪ {u1v4}. By Lemma 7.1, G ′ is an induced subgraph of G. Since
d(u2, w1) ≤ 3, there is some vertex u3 that is adjacent to both u2 and v1. Similarly,
because d(u2, w2) ≤ 3, there exists a vertex u4 6= u3 that is adjacent to u2 and v4
(see Figure 13).

The region Ext(C2) is divided into four subregions, all of which are bounded by
5-cycles. Label these regions: r1 = Int(u1, v4, v1, u3, u2), r2 = Int(v1, u3, u2, y2, y3),
r3 = Ext(u1, v4, v3, u4, u2), r4 = Int(v3, y4, y2, u2, u4) (see Figure 13). The only two
vertices on the boundary of r1 within distance 2 of w2 are v1 and v4. Thus the
adjacent pair {v1, v4} dominates r1, and by Lemma 4.1, r1 is empty. Similarly, r3 is
empty. The only vertex on the boundary of r2 within distance 2 of w2 is v1, and so r2
is dominated by v1. By Lemma 4.1, the regions r2 and r4 are empty. We deduce that
all vertices of G not yet mentioned lie in the interior of C1, and hence are adjacent
to either v1 or v3. This allows us to bound the order of G:

n = |V (G ′) ∪ {u3, u4}|+ |V (G)− V (G ′)− {u3, u4}|

≤ 14 + (d(v1)− 5) + (d(v3)− 5) ≤ 2∆ + 4 ≤ 3∆− 1.
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Figure 13: In Case 1.1 of the proof of Theorem 7.3, we assume that there is a
vertex u1 adjacent to v4. As a result, we obtain first that G′ is a subgraph of G
(left), and then that G also contains the vertices u3 and u4 (right).

Case 1.2: There is some vertex u1 in Ext(C2) that is adjacent to y2, but no vertex
in Ext(C2) adjacent to v4.
Since G is triangle-free, u1 is adjacent to neither y3 nor y4. Because G does not con-
tain two dislocated 4-cycles, u1 is adjacent to neither v1 nor v3. Because d(u1, w1) ≤ 3
and d(u1, w2) ≤ 3, there are vertices u2 and u3 in Ext(C2) such that Q1 : u1, u2, v1
and Q2 : u1, u3, v3 are paths in G. Note that u2 6= u3, as this would induce a 4-cycle
on the vertex set {u2, v1, v4, v3}. This 4-cycle is either dislocated from C1, contra-
dicting our assumption, or it is not dislocated from C1, contradicting the maximality
of C1. Denote by G∗ the graph G∪Q1∪Q2∪{y2u1}, and observe that G∗ is chordless
by Lemma 7.1 (see Figure 14).

Consider the cycle C5 : v1, u2, u1, y2, y3. The only vertex on the boundary of
Int(C5) that is within distance 2 of w2 is v1, so v1 dominates Int(C5). By Lemma 4.1,
Int(C5) is empty. Similarly, the interior of the cycle C6 : v3, u3, u1, y2, y4 is empty.
Observe that if every vertex of G − G∗ were adjacent to v1 or v3, then the order of
G would be bounded as follows:

n = |V (G∗)|+ |V (G)− V (G∗)|

n ≤ 13 + (d(v1)− 5) + (d(v3)− 5) ≤ 2∆ + 3 ≤ 3∆− 1.

This contradicts our assumption, and thus there is a vertex x1 of G−G∗ not adjacent
to v1 or v3. This vertex lies in the face of G∗ bounded by C7 = u2, u1, u3, v3, v4, v1,
which we will refer to, without loss of generality, as the exterior of C7. Since G∗ is
an induced subgraph of G, the distance dG(y1, C7) = 2, and {v1, v3, u1} is the set of
vertices of C7 that are at distance exactly 2 from y1. Because G has diameter 3, we
conclude that x1 is adjacent to u1. Since G is both triangle-free and does not contain
a pair of dislocated 4-cycles, the vertex x1 is not adjacent to any of the vertices of
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Figure 14: In Case 1.2, we obtain first that G∗, and then G∗∗, are subgraphs of G.
The black vertex v4 does not have any neighbors in G besides v1 and v3.

V (C7) − {u1}. As dG(x1, w1) ≤ 3 and dG(x1, w2) ≤ 3, there exist vertices x2 and
x3 in Ext(C7) such that Q3 : x1, x2, v1 and Q4 : x1, x3, v3 are paths in G. These
two vertices are distinct, for if they were not, the 4-cycle on x2, v1, v4, v3 would be
dislocated from C1, a contradiction. Let G∗∗ = G∗ ∪ Q3 ∪ Q4 (see Figure 14 (G∗∗)).
We now label the regions of G∗∗ as follows. Let r1 = Int(v1, x2, x1, u1, u2), r2 =
Int(v1, u2, u1, y2, y3), r3 = Int(v3, u3, u1, y2, y4), r4 = Int(v3, x3, x1, u1, u3) and r0 =
Ext(v1, x2, x1, x3, v3, v4). Other than r0, all of these regions are bounded by 5-cycles.
The regions r1 and r2 are both empty, as the only vertex on either of their boundaries
within distance 2 of w2 is v1, and by Lemma 4.1, no single vertex of a Jordan
separating 5-cycle dominates the interior of that cycle. Similarly, the regions r3 and
r4 are empty as the only vertex on their boundaries within distance 2 of w1 is v3.
Any vertex of r0 is adjacent to one of v1 or v3, as these are the only two vertices on
the boundary of r0 within distance 2 of y1. Thus all vertices of G−G∗∗ are adjacent
to either v1 or v3. This yields the following contradiction, and shows that no vertex
of Ext(C2) is adjacent to y2:

n = |V (G∗∗)|+ |V (G)− V (G∗∗)|

≤ 16 + (d(v1)− 6) + (d(v3)− 6)) ≤ 2∆− 4 ≤ 3∆− 1.

Case 1.3: There exists some vertex u1 in Ext(C2) that is adjacent to y3, and no
vertex of Ext(C2) is adjacent to either y2 or v4.
Since G contains neither any 3-cycles, nor any pair of dislocated 4-cycles, the vertex
u1 is not adjacent to any vertex of C2 − {v3}. Thus there are only two ways we can
have d(u1, w2) ≤ 3: either G contains the edge u1v3, or there is some vertex u2 in
Ext(C2) such that S1 : y3, u1, u2, v3 is a path in G (see Figure 15).

Suppose that u1 and v3 are adjacent. Denote by S2 the path y3, u1, v3, and
let G♭ = G ∪ S2. By Lemma 7.1, G♭ is an induced subgraph of G. The path S2
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Figure 15: Case 1.3 assumes that there is a vertex u1 adjacent to y1. In this case,
either G♭ or G♯ is a subgraph of G. The black vertices may not have neighbors in
G not shown in the diagrams.

divides Ext(C2) into two regions bounded by 5-cycles, r0 = Ext(v1, y3, u1, v3, v4) and
r1 = Int(y3, u1, v3, y4, y2). The only vertices on the boundary of r0 within distance
2 of y1 are v1, v3 and y3, so any vertex in r0 is adjacent to one of these three. The
only vertices on the boundary of r1 within distance 2 of w1 are v3 and y3, so the set
{v3, y3} dominates r1, and we can bound the order of G.

n = |V (G♭)|+ |V (G)− V (G♭)|

≤ 11 + (d(v1)− 4) + (d(v3)− 5) + (d(y3)− 3) ≤ 3∆− 1.

Since this contradicts our assumption, the graph G contains the path S1. Let
G♯ = G ∪ S1, and observe by Lemma 7.1 that G♯ is an induced subgraph of G.
The region Ext(C2) is divided into two sub-regions bounded by 6-cycles, r0 =
Ext(v1, y3, u1, u2, v3, v4) and r1 = Int(y3, u1, u2, v3, y4, y2). The are only two ver-
tices, y3 and v3, on the 6-cycle bounding r1 within distance 2 of w1. Thus {y3, v3}
dominates r1, and so by Lemma 4.4, there is some vertex u3 in r1 that is adjacent to
both y3 and v3. Let G♯♯ = G♯ ∪ {u3, u3y3, u3v3}. The only vertices on the boundary
of r0 within distance 2 of y1 are v1, v3 and y3, so every vertex of r0 is adjacent to one
of these three vertices. Thus:

n = |V (G♯♯)|+ |V (G)− V (G♯♯)|

≤ 13 + (d(v1)− 4) + (d(v3)− 6) + (d(y3)− 4) ≤ 3∆− 1.

This contradicts our assumption, and hence y3 does not have a neighbor in Ext(C2).
By the same argument, the vertex y4 also does not have a neighbor in Ext(C2).

Case 1.4: The vertices v4, y2, y3 and y4 do not have any neighbors in Ext(C2).
By cases 1.1 to 1.3, the only vertices of C2 that can have neighbors in Ext(C2) are v1
and v3. Further, both v1 and v3 are at distance 2 from y1, so any vertex in Ext(C2)
is adjacent to either v1 or v3 in order to be within distance 3 of y1. Hence we get the
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following bound on n:

n = |V (G)|+ |V (G)− V (G)|

≤ 10 + (d(v1)− 4) + (d(v3)− 4) ≤ 2∆ + 2 ≤ 3∆− 1.

In all subcases, n ≤ 3∆−1, and so the vertex v2 does not have a neighbor in Ext(C1).
By symmetry, we further conclude that v4 does not have any neighbors in Ext(C1).

Case 2: Neither v2 nor v4 have any neighbors in G besides v1 and v3.
As n > 3∆− 1, there is some vertex y1 in G that is not adjacent to either v1 or v3.
Note that d(y1, C1) > 1, but d(y1, w1) ≤ 3 and d(y1, w2) ≤ 3. Therefore, there exist
vertices y2 and y3 in the exterior of C1 such that P2 : y1, y2, v1 and P3 : y1, y3, v3
are paths in G (see Figure 16 (K)). Note that y2 6= y3. If y2 = y3, then there is a
4-cycle on y2, v1, v2, v3, contradicting either the maximality of C1, or the assumption
that G does not contain two dislocated 4-cycles. Let K = C1 ∪ P1 ∪ P2 ∪ P3, and
name the cycle C2 : v1, y2, y1, y3, v3, v4 (see Figure 16). Observe that, by Lemma 7.1,
the subgraph K is an induced subgraph of G. Since n > 3∆ − 1 by assumption,
there exists some vertex u1 in G−K that is not adjacent to either v1 or v3. We may
assume without loss of generality that u1 is in Ext(C2). The vertex u1 is not adjacent
to both of y2 and y3 as this creates a 4-cycle dislocated from C1, contradicting our
assumption. There are two cases to consider.

Case 2.1: The vertex u1 is adjacent to y2.
Since G contains neither triangles nor dislocated 4-cycles, u1 is not adjacent to any
vertex of C2 − {y}. Since dG(u1, w2) ≤ 3, there is some vertex u2 in Ext(C2) such
that Q1 : y2, u1, u2, v3 is a path in G. By Lemma 7.1, the graph K∪Q1 is an induced
subgraph of G. Thus the interior of the 6-cycle C3 : y2, u1, u2, v3, y3, y1 is dominated
by y2 and v3, as these are the only vertices of the cycle within distance 2 of w1. By
Lemma 4.4, there exists a vertex u3 in Int(C3) such that Q2 : y2, u3, v3 is a path in G.
The path Q2 divides the region bounded by C3 into two regions, each bounded by a
5-cycle. By Corollary 4.5, neither region contains any vertex of G. Let K′ denote the
graph K ∪Q1 ∪Q2 (see Figure 16), and observe by Lemma 7.1 that it is an induced
subgraph of G.
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Figure 16: In Case 2, neither v4 nor v2 have neighbors other than v1 and v3. In
this Case, G contains K as a subgraph. In Case 2.1, G contains K′ as a subgraph.

If every vertex of G − K′ is adjacent to one of v1, v3 or y2, then we obtain the
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following contradiction:

n ≤ 12 + (d(v1)− 4) + (d(v3)− 6) + (d(y2)− 4) ≤ 3∆− 2.

So there exists some vertex x1 not adjacent to any of v1, v3 or y2. Noting the
symmetry between the interior of the cycle C4 : v1, y2, y1, y3, v3, v2 and the exterior
of the cycle C5 : v1, y2, u1, u2, v3, v4, we may assume without loss of generality that
x1 is in the interior of C4.
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Figure 17: In Case 2.1.1, G has the graph K′′ as a subgraph. In Case 2.1.2, the
graph K′′′ is a subgraph of G.

Case 2.1.1: The vertex x1 is adjacent to y1.
Since G contains neither triangles nor dislocated 4-cycles, x1 has no neighbors in
C4 −{y1}. Since there exist x1 −w1 and x1 −w2 geodesics, there are vertices x2 and
x3 in Int(C4) such that Q3 : y1, x1, x2, v1 and Q4 : y1, x1, x3, v3 are paths in G. Since
C1 is maximal and G does not contain dislocated 4-cycles, the vertices x2 and x3 are
distinct. Denote K′′ = K′ ∪Q3 ∪Q4 (see Figure 17).

The exterior of the cycle on v1, y2, u1, u2, v3, v4 is dominated by {v1, v3, y2}, as
these are the only vertices of the cycle within distance 2 of x1. The two regions
bounded by the 5-cycles on v1, y2, y1, x1, x2 and v3, y3, y1, x1, x3 do not contain any
vertices by Lemma 4.1, as only v1 of the former cycle is within distance 2 of w2, and
only v3 of the latter is within distance 2 of w1. Finally, the 6-cycle on the vertices
v1, x2, x1, x3, v3, v2 is dominated by v1 and v3, as these are the only two vertices of
the cycle within distance 2 of u1. Thus every vertex of G−K′′ is adjacent to v1, v3
or y2, and we obtain a contradiction:

n = |V (K′′)|+ |V (G)− V (K′′)|

≤ 15 + (d(v1)− 5) + (d(v3)− 7) + (d(y2)− 4) ≤ 3∆− 1.

Case 2.1.2: The vertex x1 is adjacent to y3.
The vertex x1 is not adjacent to any vertex of K−{y3}. Since dG(x1, w1) ≤ 3, there
exists a vertex x2 such that Q5 : y3, x1, x2, v1 is a path in G. Consider the 6-cycle
C6 : v1, y2, y1, y3, x1, x2. The only vertices of C6 within distance 2 of w2 are v1 and
y3. So by Lemma 4.4, there is a vertex x3 in Int(C6) such that Q6 : v1, x3, y3 is a
path in G. The path Q6 divides Int(C6) into two regions bounded by 5-cycles, both
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dominated by {v1, y3}. Denote C7 : v1, y2, u1, u2, v3, v4. The only vertices of C7 within
distance 2 of x1 are v1 and v3, so Ext(C7) is dominated by {v1, v3}. The interior of
the 6-cycle on v1, x2, x1, y3, v3, v2 is dominated by v1 and v3, as these are the only
two vertices of the cycle within distance 2 of u1. Thus, letting K′′′ = K′ ∪ Q5 ∪ Q6

(see Figure 17), we derive a contradiction:

n = |V (K′′′)|+ |V (G)− V (K′′′)|

≤ 15 + (d(v1) + 6) + (d(v3)− 6) + (d(y3)− 4) ≤ 3∆− 1.

Case 2.1.3: The vertex x1 is not adjacent to any vertex of K′.
By the same argument as in Case 2.1.1, there are distinct vertices x1 and x2 in Int(C2)
such that Q7 : x1, x2, v1 and Q8 : x1, x3, v3 are paths in G. Denote K∗ = K′∪Q7∪Q8

and consider the cycle C8 : x1, x2, v1, y2, y1, y3, v3, x3. By Lemma 7.1, the interior of C8

is the only region of K∗ that may contain a chord of K∗. Because G contains neither
triangles nor dislocated 4-cycles, and x1 is not adjacent to y1, the only possible chords
of K∗ are x2y3 and x3y2. Since d(u1, x1) ≤ 3, either x3 is adjacent to y2, or there is
some vertex y4 adjacent to both x1 and y2.
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Figure 18: In the first sub-case of 2.1.3, the vertices y2 and x3 are adjacent, and
G contains the subgraph K♭. In the second sub-case, there is a vertex x4 adjacent
to both x1 and y2, and G contains the subgraph K♯.

Subcase 2.1.3 - 1: The vertices x3 and y2 are adjacent.
Observe by Lemma 7.1 that K∗ ∪ {x3y2} is an induced subgraph of G. Since
d(x2, y3) ≤ 3, there is a vertex x4 adjacent to both v3 and x2. Denote K♭ =
K∗ ∪ {x4, x3y2, v3x4, x2x4}. The exterior of the cycle on v1, y2, u1, u2, v3, v4 is domi-
nated by v1, v3 and y2, as these are the only vertices of the cycle within distance 2 of
x1. The interior of the 5-cycle on v1, x2, x4, v3, v2 is dominated by v1 and v3, as only
these vertices of the cycle are within distance 2 of u1. The cycle on x2, x1, x3, v3, x4

is dominated by x3 and v3 as these are the only two vertices within distance 2 of u1,
and so by Lemma 4.1 the interior of this cycle contains no vertices. The interior of
the 5-cycle on y2, y1, y3, v3, x3 is dominated by v3 and y2, as only these vertices of
the cycle are at distance 2 from w1. The interior of the 5-cycle on v1, y2, x3, x1, x2 is
also empty by Lemma 4.1, as only y2 and x3 are within distance 2 of y3. Since the
vertices of G not in K♭ are all adjacent to one of v1, v3 or y2, we can bound the order
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of G.

n = |V (K♭)|+ |V (G)− V (K♭)|

≤ 16 + (d(v1)− 5) + (d(v3)− 8) + (d(y2)− 5) ≤ 3∆− 2.

Subcase 2.1.3 - 2: The graph G contains a vertex x4 that is adjacent to x1 and y2.
Let K♯ be the subgraph K∗ ∪ {x4, x1x4, y2x4} of G, and observe by Lemma 7.1 that
K♯ is an induced subgraph of G. The exterior of the cycle on v1, y2, u1, u2, v3, v4
is dominated by v1, v3 and y2, as these are the only vertices of the cycle within
distance 2 of x1. The 7-cycle on y2, y1, y3, v3, x3, x1, x4 is dominated by y2 and v3 as
these are the only vertices within distance 2 of w1. The interior of the 5-cycle on
v1, y2, x4, x1, x2 is empty by Lemma 4.1, as it is dominated by v1, the only vertex of
the cycle within distance 2 of w2. The interior of the 6-cycle on v1, x2, x1, x3, v3, v2 is
dominated by v1 and v3, the only vertices of the cycle within distance 2 of u1. Every
vertex of G that is not in K♯ is adjacent to one of v1, v3 or y2, so the order of G is
bounded above:

n = |V (K♯)|+ |V (G)− V (K♯)|

≤ 16 + (d(v1)− 5) + (d(v3)− 7) + (d(y2)− 5) ≤ 3∆− 1.

Case 2.2: The vertex u1 is not adjacent to y2 or y3.
Since dG(u1, w1) ≤ 3 and dG(u1, w2) ≤ 3, there exist vertices u2 and u3 in G such that
S1 : u1, u2, v1 and S2 : u1, u3, v3 are paths in G. The vertices u2 and u3 are distinct,
by the maximality of C1 and the fact that G contains no dislocated 4-cycles. By Case
2.1, neither y2 nor y3 can have a neighbor in G−K which is not adjacent to v1 or to
v3. By symmetry, neither u2 nor u3 can have any neighbor in G − {u1} that is not
adjacent to v1 or to v3. Since G contains neither triangles nor dislocated 4-cycles,
the only possible chords of the cycle on v1, u2, u1, u3, v3, y3, y1, y2 are y1u1, y2u3 and
y3u2. Up to symmetry, this leaves three possible ways to construct a u1−y1 geodesic
in G: with the edge y2u3, with the edge u1y1, or by (possibly repeated) subdivision
of the edge u1y1. We let L = K ∪ S1 ∪ S2 (see Figure 19).

Case 2.2.1: The vertices y2 and u3 are adjacent.
By Lemma 7.1, the subgraph L ∪ {y2u3} is an induced subgraph of G. Since
dG(y3, u2) ≤ 3, there exists some vertex x1 in G such that either S3 : y3, x1, v1
or S4 : y3, v3, x1, u2 is a path in G. Up to relabeling of the vertices and choosing
the region bounded by v1, y2, y1, y3, v3, v2 to be the exterior region of our subgraph,
these possibilities are the same. Hence we assume without loss of generality that S3

is a y3 − u2 geodesic, and we denote by L′ the graph L ∪ {y2u3} ∪ S3 (see Figure
19). The interior of the 5-cycle on v1, v2, v3, y3, x1 is dominated by v1 and v3 as these
are the only vertices of the cycle within distance 2 of u1. The interiors of the two
5-cycles on v1, y2, y1, y3, x1 and v1, u2, u1, u3, y2 are dominated by the pairs v1, y3 and
v1, u3 respectively, as these are the only vertices on the cycles within distance 2 of
w2. The interior of the 5-cycle on y2, u3, v3, y3, y1 is dominated by y2 and v3, these
being the only vertices of the cycle within distance 2 of w1. By Lemma 7.2, all four
of the regions mentioned are empty. All vertices of G not in L′ lie in the exterior of
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Figure 19: The graph G contains the subgraph L in Case 2.2. It contains the
subgraph L′ in Case 2.2.1.

the cycle on v1, u2, u1, u3, v3, v4. The vertices of this cycle within distance 2 of y1 are
v1, v3 and u3. Hence:

n = |V (L′)|+ |V (G)− (V (L′))|

≤ 13 + (d(v1)− 6) + (d(v3)− 5) + (d(u3)− 3) ≤ 3∆− 1.

This contradicts our assumption, so y2 and u3 are not adjacent. By symmetry, y3
and u2 are not adjacent.

Case 2.2.2: The vertices u1 and y1 are adjacent.
Note the interiors of the two 5-cycles on v1, u2, u1, y1, y2 and v3, u3, u1, y1, y3 are dom-
inated by only the vertices v1 and v3 respectively, these being the only vertices of the
cycles within distance 2 of w2 and w1 respectively. Thus by Lemma 4.1, both interiors
are empty. Since n > 3∆−1, there exists some vertex x1 in G−L that is not adjacent
to v1 or v3. By symmetry between the exterior of the cycle on v1, u2, u1, u3, v3, v4 and
the interior of the cycle on v1, y2, y1, y3, v3, v2, we assume without loss of generality
that x1 is in the interior of the latter cycle. By Case 2.1, the vertex x1 is not adjacent
to y2 or y3. By the same argument as the one at the start of Case 2.2, there exist
distinct vertices x2 and x3 in G such that S5 : x1, x2, v1 and S6 : x1, x3, v3 are paths
in G. Let L′′ denote the graph L∪{y1u1}∪S5∪S6. Using both Lemma 7.1, and the
fact that G contains neither triangles nor dislocated 4-cycles, we see that the only
possible chords of L′′ are x1y1, x2y3 and x3y2. The only possibilities for an x1 − u1

geodesic of length at most 3 require that G contains the edge x1y1, or path x1, z1, y1,
containing some new vertex z1. Let L

♭ = L′′ ∪ {x1y1} and L♯ = L′′ ∪ {z1, x1z1, z1y1}
(see Figure 20).

Suppose that G contains the path x1, z1, y1. By Lemma 7.1, the subgraph L♯ is an
induced subgraph of G. Since dG(z1, w1) ≤ 3 and dG(z1, w2) ≤ 3, there exist vertices
z2 and z3 such that S7 : z1, z2, v1 and S8 : z1, z3, v3 are paths in G. By swapping the
labels z1 ↔ x1, z2 ↔ x2 and z3 ↔ x3, we obtain L♭ as a subgraph of G. Thus to
complete the proof of Case 2.2.2, it suffices to prove the following claim.
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Figure 20: In Cases 2.2.2 and 2.2.3, the graph G always contains L♭ as a subgraph.
If, in Case 2.2.2, G contains L♯ as a subgraph, it will inevitably also have a L♭

subgraph.

Claim: If G contains L♭ as a subgraph, then n ≤ 3∆− 1.

Consider the subgraph L♭, and note that it is an induced subgraph of G by Lemma
7.1. There exist x2 − u3 and x3 − u2 geodesics of length at most 3 in G. Since L♭

is an induced subgraph of G, there are only two possible x2 − u3 geodesics, both of
which use some vertex t1 in G − L♭. These possible geodesics are X1 : x2, v1, t1, u3

and X2 : x2, t1, v3, u3. Up to relabeling of the vertices, and making the face of L♭

bounded by v1, x2, x1, x3, v3, v2 the outer face of the graph, the two plane graphs
L♭ ∪X1 and L♭ ∪X2 are the same. Thus we assume without loss of generality that
X1 is a geodesic in G. By Lemma 7.1, the subgraph L♭ ∪X1 is an induced subgraph
of G. The only possible x3 − u2 geodesic is X3 : x3, t2, v1, u2, where t2 is not among
the vertices mentioned thus far. Let L∗ = L♭ ∪ X1 ∪ X2, and observe that it is an
induced subgraph of G by Lemma 7.1. The interior of the 5-cycle on v1, t2, x3, v3, v2
is dominated by v1 and v3, these being the only vertices of the cycle within distance
2 of u1. The interior of the 5-cycle on v1, x2, x1, x3, t2 is dominated by v1 and x3, as
these are the only vertices of the cycle within distance 2 of w2. Similarly, the two
regions bounded by 5-cycles that contain the vertex t1 are also dominated by just
two vertices. The interiors of the two 5-cycles on v1, y2, y1, x1, x2 and v3, y3, y1, x1, x3

are dominated by only v1 and v3 respectively, these being the only vertices of each
cycle within distance 2 of w1 and w1, respectively. Thus, all the regions mentioned
above are empty by Lemma 7.2. As such, every vertex of G−L∗ is in the interior of
C1, and hence adjacent to v1 or to v3. Hence we prove the claim with the following
contradiction:

n = |V (L∗)|+ |V (G)− V (L∗)|

≤ 17 + (d(v1)− 8) + (d(v3)− 6)

≤ 2∆ + 3 ≤ 3∆− 1.
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Case 2.2.3: The y1 − u1 geodesic is the single edge y1u1, subdivided either once or
twice into a path of length 2 or 3 respectively. Assume there exists some vertex x1 in
G−L on the path Y1 : y1, x1, u1 in G, and note that L∪Y1 is an induced subgraph of
G by Lemma 7.1. Since the distance between x1 and the vertices w1 and w2 is at most
3, there are paths x1, x2, v1 and x1, x3, v3 in G. But now we see that L♭ is a subgraph
of G, and n ≤ 3∆ − 1 by the claim in Case 2.2.2. If we instead assume that there
are vertices x1 and z1 on the path Y2 : y1, x1, z1, u1, we again see that L ∪ Y2 is an
induced subgraph of G, and that G contains paths x1, x2, v1 and x1, x3, v3. Similarly,
the graph G will also have paths z1, z2, v1 and z1, z3, v3, and we see that G contains
L♭ as a subgraph. Again invoke the claim in Case 2.2.2 to complete the proof.

8 Bounding the order, part III: Not a 4-cycle in sight

In this section, we show that a pentagulation G of diameter 3, order n and maximum
degree ∆ ≥ 8 contains at least one 4-cycle. The restriction ∆ ≥ 8 is used heavily.
As demonstrated by the rightmost graph in Figure 33, pentagulations of diameter 3
and ∆ ≤ 6 need not have 4-cycles.

Lemma 8.1. Let G be a pentagulation with girth 5, and let v be a vertex of G. Then
N(v) is an independent set, every vertex of N2(v) has a unique neighbor in N(v),
and every vertex of N(v) has at least one neighbor in N2(v).

Proof. Since G contains no triangles, N(v) is an independent set. Because G contains
no 4-cycles, any vertex of N2(v) has exactly one neighbor in N(v). As G is 2-
connected and triangle-free, every vertex of N(u) has a neighbor in N2(v).

Lemma 8.2. If G is a pentagulation of girth 5, then G is either the cycle C5, or G

does not contain two adjacent vertices of degree 2.

Proof. Assume to the contrary that G is a pentagulation of girth 5 other than C5

that contains two adjacent vertices x and y of degree 2. Let w be the single vertex
of N1(x) − {y} and z the vertex of N1(y) − {x}. The path P : w, x, y, z lies on the
boundary of two distinct faces f1 and f2 of G, each bounded by 5-cycles. Thus there
exist two distinct vertices u and v that are both adjacent to w and z. Hence there
is a 4-cycle u, w, v, x, contradicting the girth of G.

Consider a vertex v in a pentagulation G. Let F be the subgraph of G consisting
of the edges and vertices that lie on the boundary of any face incident with v. Given
two vertices x and y of N2(v), call an x − y path Q of length k a k-chord (with
respect to v) if both (Q− {x, y}) ∩N2(v) = ∅ and E(Q) ∩ E(F) = ∅.

For example, consider the subgraph of a girth 5 pentagulation shown in Figure 21.
The path P : w1, w5 is a 1-chord with respect to v, while Q : w5, z, w8 is a 2-chord.
The edge w1w2 is not a 1-chord, since it belongs to F . Notice that F ∪ P contains
a cycle CP : w1, w5, u3, v, u1 formed by taking the union of the w1 − w5 1-chord P
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Figure 21: A vertex v in a pentagulation of girth five, and some of the edges and
vertices near it. The dashed lines indicate some edges to parts of the graph not
shown.

and the two unique v − w1 and v − w5 geodesics. One can construct another cycle
CQ : w5, z, w8, u5, v, u3 in the same fashion.

As the next lemma demonstrates, 1-chords and 2-chords with respect to some
vertex will always induce cycles in the same manner that P and Q induce CP and CQ.

Lemma 8.3. Let G be a pentagulation with girth 5, and let v be a vertex of G such
that d(v) ≥ 8. Given distinct vertices x and y of N2(v), let P : x, . . . , y be a k-chord
of v, and let ux and uy denote the unique vertices in N(v) ∩N(x) and N(v) ∩N(y)
respectively. If k ≤ 2, then ux and uy are distinct, and P, uy, v, ux is a Jordan
separating cycle.

Proof. There are unique vertices ux and uy as described, by Lemma 8.1. Assume to
the contrary that k ≤ 2, but that ux = uy. The cycle P, uy has length k + 2 < 5,
which contradicts the fact that g(G) = 5. Thus ux 6= uy, and so CP : P, uy, v, ux is a
cycle. It remains to show that CP is Jordan separating. Since CP is a cycle of length
5 or 6, and E(P )∩E(F) = ∅, the cycle CP is neither a facial cycle (P does not share
an edge with a face incident to v), nor does it have any chords (as the girth of G
is 5). Thus CP is a Jordan separating cycle.

Let v be a vertex of a girth 5 pentagulation, and let the path Q : x, . . . , y be a
k-chord, for k ∈ {1, 2}, with respect to v. If ux and uy are the unique vertices of
N(v) adjacent to x and y respectively, then the cycle CQ : Q, uy, v, ux is the cycle
under Q. The chord Q is said to be minimal if CQ dominates its interior, and there
does not exist any k-chord (of the same length) Q′ such that Int(CQ′) ⊂ Int(CQ).

Theorem 8.4. Let G be a diameter 3, girth 5 pentagulation of maximum degree ∆,
and let v be a vertex of G with maximum degree. If ∆ ≥ 8, then there do not exist
any 1-chords with respect to v.

Proof. We assume to the contrary that there exist vertices w′
0 and w′

j in N2(v),
and some 1-chord Q′ : w′

1, w
′
j with respect to v. Label the vertices of N(v) =
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{u′
0, u

′
1, . . . , u

′
∆−1} in clockwise order, so that u′

i and u′
i+1 always lie on the boundary

of the same face (subscripts taken modulo ∆). Let u′
0 and u′

j be the unique, distinct
neighbors of w′

0 and w′
j respectively (these exist by Lemmas 8.1 and 8.3). Let CQ′

denote the cycle under Q′ with respect to v. By Lemma 8.3, CQ′ is a Jordan separat-
ing cycle. Since the diameter of G is 3, the cycle CQ′ dominates either its interior or
its exterior. Embed G such that CQ′ dominates its interior, and let Q be a minimal
1-chord in Int[CQ′ ] (it is possible that Q = Q′). Relabel the vertices of N(v) and
N2(v) so that the start and end vertices of Q are labeled w0 and wj respectively, the
neighbors ui of N(v) are still in clockwise order, and w0u0, wjuj are edges of E(G).
Let fi be the face incident with v that has vertices ui and ui+1 on its boundary.

Claim 1: The inequality j < 3 holds (i.e., the interior of CQ contains at most two
faces incident with v).

We first assume to the contrary that j ≥ 4 (see Figure 22). Let w2 be a vertex of
N2(v) ∩N(u2) (which exists by Lemma 8.1). Since CQ dominates its interior, w2 is
adjacent to some vertex of CQ. Because G has girth 5, w2 is not adjacent to any
of u0, v or uj. By the minimality of Q, w2 is not adjacent to either w0 or wj, a
contradiction.

vu0

u1

u2

u3

ujw0

w1

w2

w3

wj

Q : w0, wj

Figure 22: This figure shows Claim 1 of Theorem 8.4. The cycle CQ under the
1-chord Q is bold, and the unique N2(v) neighbor w2 of u2 is grey.

Now suppose for the sake of contradiction that j = 3. Let w1 be a vertex of
N(u1) ∩ N2(v), and w2 a vertex of N(u2) ∩ N2(v). By minimality of Q, w1 is not
adjacent to wj. Since G has girth 5, w1 is not adjacent to u0, v or uj. Because CQ

dominates its interior, w1 is adjacent to w0. Similarly, w2 is adjacent to wj, but not
to w0. This leaves two cases to consider.

Claim 1, Case 1: The degrees of u1 and u2 satisfy d(u1) = d(u2) = 2.
The path w1, u1, v, u2, w2 lies along the boundary of a face of G, so w1 and w2

are adjacent (see Figure 23 (1)). Thus the vertices w0, w1, w2, wj lie on a 4-cycle,
contradicting the girth of G.

Claim 1, Case 2: either u1 or u2 has degree at least three.
Assume without loss of generality that u1 has a vertex w′

1 of N(u1) ∩ N2(v) other
than w1 (see Figure 23 (2)). Since CQ dominates its interior and G has no cycles of
length 3 or 4, w′

1 is adjacent to either w0 or wj. The cycle under either the chord
w0w

′
1 or the chord wjw

′
1 is contained strictly in Int[CQ], contradicting the minimality
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Figure 23: If j = 3 in the proof of Claim 1, there are two possibilities. Either
both u1 and u2 have degree two (1), as in Claim 1 Case 1, or one of them has
degree at least three (2), as in Claim 1 Case 2.

of Q and proving Claim 1.

Since j < 3, there are at least five neighbors u3, u4, . . . , u∆−1 of v in Ext(CQ).
We consider cases, according to whether or not w0 and wj have neighbors in Int(CQ).

Case 1: Neither w0 nor wj have any neighbors in Int(CQ).
In Int[CQ], the only neighbors of w0 are u0 and wj, and the only neighbors of wj are
uj and w0. Thus the path P : u0, w0, wj, uj lies on the boundary of a face contained
in Int(CQ), so there is a vertex x such that the cycle P, x bounds a face. By the
assumption that w0wj is a 1-chord with respect to v, we have x 6= v. Thus there is
a 4-cycle on v, u0, x, uj , a contradiction (see Figure 24).

v

u0 uj

w0 wj

x

Q

Case 1
v

u0 uj

w0 wj

x y

Q

Case 2

Figure 24: In Case 1, we assume that neither w0 nor wj has neighbors in Int(CQ)
(and colour these vertices black to indicate this). In Case 2, we assume that w0

has a neighbor in Int(CQ), but wj does not.

Case 2: Either w0 or wj has a neighbor in Int(CQ), but not both.
Assume without loss of generality that there is a vertex x in Int(CQ) that is adjacent
to w0. If there are multiple vertices in N1(w0)∩Int(CQ), choose x such that the edges
w0wj and w0x lie on the boundary of a common face. Because wj has no neighbor in
Int(CQ), the path P : uj, wj, w0, x lies on the boundary of some face f in the interior
of CQ. Thus there is some vertex y in Int[CQ] such that the cycle P, y bounds f . As
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G has girth 5, the vertex y is in N2(v) (see Figure 24). There are a number of cases
to consider, based on the structure of the faces fj and fj+1.

Case 2.1: There is some vertex s in N1(wj) ∩N1(uj+1), and d(uj+1) = 2.
Let t be the neighbor of s on the boundary of the face fj+1, and observe that t and
uj+2 are adjacent (see Figure 25). Since the girth of G is 5, we observe the following:

(1) the vertex wj has no neighbors in the cycle v, uj, wj , s, uj+1 besides v and wj;

(2) the vertex t is not adjacent to either w0 or wj;

(3) the vertex y is not adjacent to u0, w0 or wj.

Thus there is no possible y − t path of length 3 or less, a contradiction.

v
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wj

x
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uj+2
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Q

Case 2.1
v

u0
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w0

wj

x

y
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s

t

z

Q
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Figure 25: The diagram on the left illustrates Case 2.1, in which d(uj+1) = 2 and
the vertex of N2(v)∩N(uj+1) is adjacent to wj . On the right is Case 2.2, in which
d(uj+1) > 2, and some vertex of N2(v) ∩N(uj+1) is adjacent to wj .

Case 2.2: There is a vertex s in N1(wj) ∩N1(uj+1), and d(uj+1) ≥ 3.
Since uj+1 has at least two neighbors in N2(v), the neighbor t of uj+1 on the boundary
of fj+1 that is at distance 2 from v is distinct from s. Let z be the vertex ofN2(v)−{t}
incident with fj+1 (see Figure 25). Since G has girth 5, t is not adjacent to wj. Since
d(t, y) ≤ 3, the vertices t and w0 are adjacent.

Because the diameter of G is 3, the vertices t and w0 are adjacent to ensure
that d(t, y) ≤ 3. The vertex z is not adjacent to any vertex within distance 2 of y
by planarity, and the fact that G has girth 5. Thus d(z, y) > 3, contradicting the
diameter of G.

Case 2.3: There is no vertex in N1(wj) ∩N1(uj+1).
Let s and t be the vertices of N2(v), incident with fj, and adjacent to uj and uj+1

respectively. Note that s and t are adjacent. If t is incident with the face fj+1, then
t has a neighbor z in N(uj+2) that is also incident with fj+1 (see Figure 26 (1)). If t
is not incident with fj+1, then there is a vertex z′ in N(uj+1)− {t} that is incident
with fj+1 (see Figure 26 (2)). There are three ways to construct a t− x geodesic of
length at most 3.
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Figure 26: In Case 2.3, either d(uj+1) = 2, and t has some neighbor z incident
with fj+1 (1), or d(uj+1) > 2, and uj+1 has some neighbor z′ other than t that is
incident with fj+1.

Case 2.3.1: The vertices t and w0 are adjacent.
In this case, t, w0, x is a geodesic. The graph G contains one of the vertices z or z′

described above, and has girth 5, and so either d(z, y) > 3 or d(z′, y) > 3, respectively.

Case 2.3.2: There is a vertex w∆−1 that is adjacent to t, w0 and u∆−1.
The path t, w∆−1, w0, x is a t−x geodesic (see Figure 27). One of z or z′ is present in
G, so by the planarity and girth constraints of G, either d(z, y) > 3 or d(z′, y) > 3.
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Figure 27: The left figure illustrates Case 2.3.2 in which t and w∆−1 are adjacent.
The right figure shows Case 2.3.3, under the assumption that G contains the
vertex z′ that is not adjacent to t.

Case 2.3.3: There is some vertex b, that is not adjacent to u∆−1, but that is adjacent
to both t and w0. Thus the t − x geodesic is t, b, w0, x. If G contains z, which is
adjacent to t, then z is not adjacent to w0 as this induces a 4-cycle on z, w0, b and t.
Thus, if G contains z, we have the contradiction d(z, y) > 3. Therefore z′ is a vertex
of G. Let a be the vertex of N2(v) ∩N(z′) that is incident with fj+1 (see Figure 27,
Case 2.3.3). The only possible y−z′ geodesic is z′, w0, x, y, so z′ and w0 are adjacent.
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As G is triangle-free, a and w0 are not adjacent. Therefore d(a, y) > 3, concluding
Case 2.

Case 3: The vertices w0 and wj each have a neighbor in Int(CQ).
Let x and y be vertices in Int(CQ) that are adjacent to w0 and wj, respectively. Since
G has girth 5, x is not adjacent to any vertex of CQ apart from w0, and y is not
adjacent to any vertex of CQ besides wj. There are two subcases to consider.

Case 3.1: At least one of the vertices u0 and uj has a neighbor in Ext(CQ).
Assume without loss of generality that u0 is adjacent to some vertex in Ext(CQ). Let
s be the neighbor of u0 in Ext(CQ) that is incident with the face f∆−1, and let t be
the other neighbor of s that is also incident with f∆−1. Note that s is not adjacent
to wj, as this induces a 4-cycle on the vertices s, wj, w0 and u0. There are two ways
that G may contain an s − y path of length at most 3, and we consider both as
subcases.
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Figure 28: In Case 3.1.1, there is an s−y path s, a, wj , y containing some vertex a

in N2(v)∪N3(v)−{t}. In Case 3.1.2, the vertex t is adjacent to wj , and s, t, wj , y

is an s− y path of length 3.

Case 3.1.1: There is some vertex a 6= t that is adjacent to both s and wj.
The path s, a, wj , y is the s − y geodesic (see Figure 28). Since G has girth 5,
d(t, x) > 3, a contradiction.

Case 3.1.2: The vertices t and wj are adjacent.
The s − y geodesic is s, t, wj, y (see Figure 28). We consider the face f∆−2. Either
the vertex t is incident with this face, and there is a vertex z in N1(t) ∩ N1(u∆−2),
or t is not incident with this face, and there is a vertex z′ in N1(u∆−1) ∩ N2(v). In
both cases we derive a contradiction, as either d(z, x) > 3 or d(z′, x) > 3.

Since Case 3.1 yields a contradiction, we may assume that neither u0 nor uj has
a neighbor in Ext(CQ). Since u0 has no neighbor in Ext(CQ), w0 is incident with the
face f∆−1. Similarly, wj is incident with fj. Let s be the vertex of N1(w0)−{u0} that
is incident with f∆−1, and let wj+1 be the vertex of N1(wj) − {uj} that is incident
with fj.



B. DU PREEZ/AUSTRALAS. J. COMBIN. 91 (1) (2025), 104–147 140

Case 3.2: The vertex u∆−1 has degree at least 3.
In this case, s is only incident with the face f∆−1, and not the face f∆−2. Let t

denote the neighbor of u∆−1 that is incident with f∆−2, and we let z be the vertex
of N(t)− {u∆−1} that is incident with f∆−2 (see Figure 29).

v
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w0 wjx y

u∆−1

u∆−2
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t

z

wj+1

uj+1

Q

Case 3.2
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wj+1
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Q
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Figure 29: If d(u∆−1) > 2, then distinct neighbors s and t of u∆−1 are incident
with the faces f∆−1 and f∆−2, respectively (Case 3.2). In Case 3.2.1, we consider
the possibility that there is a t− y path of the form t, wj , y.

Considering the girth and planarity of G, there are only three possibilities for a
y − t geodesic.

Case 3.2.1: The vertices t and wj are adjacent.
The t − y geodesic is t, wj, y (see Figure 29). Since G has girth 5, there is no z − x

path of length 3 or less, a contradiction.

Case 3.2.2: There is some vertex a 6= z that is adjacent to both t and wj.
It is possible that a = wj+1, but this does not affect the argument. The t−y geodesic
is t, a, wj , y. Similar to Case 3.2.1, d(z, x) > 3.

Case 3.2.3: The vertices z and wj are adjacent.
The t − y geodesic is t, z, wj , y. Consider the vertex uj+1. If it has degree 2, then
there is a vertex b 6= uj+1 that adjacent to wj+1 and incident with the face fj+1. If
d(uj+1) ≥ 3, then there exists a vertex b′ 6= wj+1 that is adjacent to uj+1 and incident
with fj+1. In either case, the vertex b or b′ is not adjacent to wj since G has girth
5. Whether G contains b or b′, we obtain a contradiction, since either d(b, x) > 3 or
d(b′, x) > 3.

Case 3.3: The vertex u∆−1 has degree 2.
The vertex s is the only neighbor of u∆−1 besides v. Denote by t the vertex of
N1(s)−{u∆−1} that is incident with the face f∆−2. Since G is a plane graph of girth
5, t is not adjacent to either w0 or wj. There are two subcases to consider: one for
each way that G can exhibit a t− y geodesic.

Case 3.3.1: The vertices t and wj+1 are adjacent.
The t− y path is t, wj+1, wj , y. Either t or u∆−2 has some neighbor z in N2(v) that
has not yet been mentioned. We obtain a contradiction as d(z, x) > 3 (see Figure 30).
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Figure 30: In Case 3.3, we assume that u∆−1 has only two neighbors. In subcase
3.3.1, we consider what happens when the vertices t and wj+1 are adjacent.

Case 3.3.2: There is some vertex b 6= wj+1 that is adjacent to both t and wj.
We have the y− t geodesic t, b, wj , y. Either d(uj+1) = 2, and so wj+1 has a neighbor
in N2(v) incident with fj+1, or d(uj+1) ≥ 3 and uj+1 has a neighbor in N2(v)−{wj+1}
incident with fj+1. In either case, call this neighbor a, and note that d(a, x) > 3.

In all cases, we derive a contradiction, completing the proof.

Theorem 8.5. Let G be a pentagulation of diameter 3, girth 5 and maximum degree
∆, and let v be a vertex of G with maximum degree. If ∆ ≥ 8, then G does not have
any 2-chords with respect to v.

Proof. Assume for the sake of contradiction that there does exist some 2-chord with
respect to v. Repeat the argument used at the start of the proof of Theorem 8.4,
and adopt the same labeling convention for the vertices of N(v) and N2(v), and for
the faces incident with the vertex v. There is a minimal 2-chord Q : w0, a, wj , where
w0 and wj are vertices of N2(v), the vertex a lies in N3(v), and the cycle CQ under Q
dominates its interior. The vertices u0 and uj are the unique vertices of N(v)∩N(w0)
and N(v) ∩N(wj), respectively.

Claim 1: The index j satisfies j < 4.
Assume to the contrary that j ≥ 4, and observe by Lemma 8.1 that u2 has some
neighbor w2 in N2(v). By Theorem 8.4, the vertex w2 is adjacent to neither w0 nor
wj. Since G has girth 5, w2 is not adjacent to either u0 or uj. Since CQ dominates
its interior, w2 is adjacent to a. Thus w2, a, w0 is a 2-chord, which contradicts the
minimality of Q and proves Claim 1.

Claim 2: It is not possible that both w0 and wj have neighbors in Int(CQ).
Assume to the contrary that w0 has some neighbor x in Int(CQ) and wj has a neighbor
y in Int(CQ). We have x 6= y: were x = y, there would be a 4-cycle on the vertices
w0, x, wj , a. Since G has girth 5, x is not adjacent to a or wj, and y is not adjacent
to a or w0. The face fj+2 is bounded by the 5-cycle v, uj+2, s, t, uj+3, where s and
t are vertices of N2(v). Note that d(t, y) ≤ 3. By Theorem 8.4, the vertex t is not
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adjacent to any vertices of N2(v) apart from s, and possibly one other vertex that
is incident with the face fj+3. Hence G can only exhibit a t − y path in one of two
ways (see Figure 31):

(1) the vertices a and t are adjacent, and the geodesic is t, a, wj , y, or

(2) there is some vertex b in N3(v) that is adjacent to both t and wj, yielding a
geodesic t, b, wj, y.

vu0

uj
uj+2

uj+3

uj+4w0

wj s

t

wj+4

x

y
a

Q

(1)
vu0

uj
uj+2

uj+3

uj+4w0

wj s

t

wj+4

x

y
a

b

Q

(2)

Figure 31: In Claim 2, since N2(v) has no 1-chords but G has diameter 3, either
t, a, wj , y is a t − y path (shown on the left), or t, b, wj , y is a t − y path (shown
right).

Since G has girth 5, and by Theorem 8.4, there are no 1-chords with respect to v.
Thus in both case (1) and (2), d(s, x) > 3, proving Claim 2.

Claim 3: j < 3.
By Claim 1, we need only show that j 6= 3. Suppose that j = 3. By Lemma 8.1, u1

and u2 each have some neighbor, say w1 and w2 respectively, in Int(CQ). By Theorem
8.4, there are no 1-chords across v, so w1 is not adjacent to wj. By the minimality
of Q, w1 and a are not adjacent, and since G has girth 5, w1 is not adjacent to v, u0

or uj. Similarly, w2 is not adjacent to any of w0, a, v, u0 or uj. Since CQ dominates
its interior, w1 is adjacent to w0 and w2 is adjacent to w3. By Claim 2, this is not
possible, proving Claim 3.

There remain two cases to consider.

Case 1: Exactly one of w0 or wj has a neighbor in Int(CQ).
Assume without loss of generality that w0 has some neighbor, call it x, in Int(CQ).
The vertex v has d(v) ≥ 8, and by Claim 3, at most one neighbor of v is contained
in Int(CQ). Thus v has at least five neighbors in the exterior of CQ. The face fj+2 is
bounded by a 5-cycle v, uj+2, s, t, uj+3, where s and t are vertices of N2(v). Both s

and t are within distance 3 of x. It is possible that x is adjacent to uj. However, x
is not adjacent to any other vertex of V (CQ) − {w0}, since G has girth 5. As there
are no 1-chords across v by Theorem 8.4, there are two ways that G may exhibit a
t− x geodesic.

Case 1.1: The vertices t and a are adjacent.
This case yields the path t, a, w0, x (see Figure 32). Since G has girth 5, s is not



B. DU PREEZ/AUSTRALAS. J. COMBIN. 91 (1) (2025), 104–147 143

vu0

uj

uj+2

uj+5w0

wj

s

t

wj+5

xa
Q

Case 1.1
vu0

uj

uj+2

uj+5w0

wj
y s

t

z

xa

b

Case 1.2

Figure 32: There are two possibilities in Case 1, either t, a, w0, x is a t − x path,
as in subcase 1.1, or t, b, w0, x is, as in subcase 1.2.

adjacent to a, b or wj. Because there are no 1-chords across v by Theorem 8.4, t is
not adjacent to w0 (no neighbor of s is adjacent to w0). Thus d(s, x) > 3.

Case 1.2: There is a vertex b in N3(v) that is adjacent to both w0 and t.
We have the t− x geodesic t, b, w0, x (see Figure 32). There are two possibilities for
an s− x path of length at most 3.

(1) either s and a are adjacent, or

(2) there is some vertex c in N3(v) that is adjacent to both s and w0.

In either case, let y and z be vertices of N1(uj+1) ∩ N2(v) and N1(uj+5) ∩ N2(v),
respectively. Observe that d(y, z) > 3, completing Case 1.

Case 2: Neither w0 nor wj has a neighbor in Int(CQ).
We claim that both u0 and uj have neighbors in Int(CQ). Assume to the contrary
and without loss of generality that u0 has no neighbor in Int(CQ). Since w0 has
no neighbor in Int(CQ), the path a, w0, u0, v lies on the boundary of some face f in
Int(CQ). Since f is bounded by a 5-cycle, there is some vertex z that is adjacent to
both a and v. Thus v, z, a is a v−a path of length 2, which contradicts the fact that
Q : w0, a, wj is a 2-chord (i.e., a is in N3(v)). Hence there exist vertices x and y in
Int(CQ) that are adjacent to u0 and uj respectively. Since G contains no 4-cycles,
x 6= y, and neither x nor y is adjacent to a. The face fj+2 is bounded by a 5-cycle
v, uj+2, s, t, uj+3, where s and t are vertices of N2(v). Because there are no 1-chords
across v (by Theorem 8.4), s is not adjacent to any vertex of N2(v) ∩ N1(u0) or
N2(v)∩N1(uj). As d(s, x) ≤ 3, s is adjacent to a (and there is some vertex adjacent
to both a and x). Similarly, since d(t, x) ≤ 3, t is adjacent to a. However, we have a
triangle on a, s and t, a contradiction that completes the proof.

Theorem 8.6. There does not exist a pentagulation with diameter 3, girth 5 and
maximum degree greater than or equal to 8.

Proof. Assume to the contrary that G is a pentagulation of girth 5, diameter 3 and
maximum degree ∆ ≥ 8. Let v be a vertex of G with maximum degree, and label
the neighbors u1, u2, . . . , u∆ of v such that each path ui, v, ui+1 lies on the boundary
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of a face (subscripts taken mod ∆). By Lemma 8.1, for each i in {1, 2, . . . ,∆}, there
is a vertex wi in N(ui) ∩ N2(v). Note that each vertex wi is not adjacent to uj for
any j 6= i, and d(w0, w4) ≤ 3.

We claim that any w0 − w4 geodesic Q is a 3-chord across v, i.e., the path Q

is of the form w0, a, b, w4, where a and b are vertices of N3(v). By Theorem 8.4,
there are no 1-chords across v, so w0 and w4 are not adjacent. Similarly, there
are no 2-chords across v by Theorem 8.5, so Q is not of the form w0, c, w4, where
c is some vertex of N3(v). The vertex v is not in Q, since Q has length at most
3 and d(v, x0) = d(v, x4) = 2. The path Q does not contain any vertex of N(v):
If Q contains a vertex uj of N(v), and Q had length 2, then Q is of the form
Q : w0, uj , w4, which is impossible. If Q contains uj and has length 3, it is either
of the form w0, uj, x, w4 or w0, x, uj , w4, where x is some vertex of N2(v). But then
either xw4 or w0x is a 1-chord across v, which is impossible, so V (Q)∩N(v) = ∅. To
complete the proof of the claim, it suffices to show that V (Q) ∩ N2(v) = {w0, w4}.
Assume to the contrary that there is a vertex x of Q, that is not w0 or w4, in N2(v).
If Q has length 2, then it is of the form w0, x, w4. Since there are no 1-chords across
v, x is adjacent to u1 or u∆−1, so xw4 is a 1-chord across v, a contradiction. If Q has
length 3, then it is either w0, x, y, w4 or w0, y, x, w4, where y is a vertex of N2(v) (y
is not in N3(v), since there are no 2-chords across v). By symmetry, we may assume
without loss of generality that Q : w0, x, y, w4. Since there are no 1-chords across v,
x is a neighbor of u1 or u∆−1, and y is a neighbor of u3 or u5. In all possible cases,
xy is a 1-chord across v, which proves the claim.

The cycle CQ : w0, a, b, w4, u4, v, u0 under Q : w0, a, b, w4 is a separating cycle that
dominates either its interior or exterior. Thus either w2 or w6 is adjacent to a vertex
of CQ. Suppose w2 is adjacent to a vertex of CQ (the proof for w6 is identical). As G
has girth 5, w2 is not adjacent to any of u0, v or u4. Because G contains no 1-chords
across v, w2 is not adjacent to either w0 or w4. Thus w2 is adjacent to a or b. If
w2 is adjacent to a, then w2, a, w0 is a 2-chord across v, and if w2 is adjacent to b,
then w2, b, w4 is a 2-chord. In either case we obtain a contradiction, completing the
proof.

The main result follows immediately from Corollary 3.6, Theorem 8.6 and The-
orem 7.3.

Theorem 8.7. Let G be a pentagulation of diameter 3, order n and maximum degree
∆ ≥ 8. The order of G satisfies n ≤ 3∆− 1.

The bound in Theorem 8.7 is sharp for odd ∆. Consider the graph H in Figure 3.
We create a graph G(∆) of maximum degree ∆ = 2k + 1 from H as follows: replace
each white-vertex path of length 3 by a collection of internally disjoint paths: k

paths of length 3 and k − 1 paths of length 2 (so H itself is G(3)). By embedding
the length 2 and length 3 paths in an alternating pattern, we see that G(∆) can be
embedded such that each face is bounded by a 5-cycle, and that it has diameter 3,
maximum degree ∆ and n = 3∆− 1 vertices.
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9 Conclusion

Theorem 8.7 and the sharpness example below it largely solve the degree-diameter
problem for diameter 3 pentagulations. Between Theorem 8.7 and the results of
[3, 8, 17], the degree-diameter problem has been solved exactly for all plane graphs
of diameter 3 in which all faces are bounded by cycles of the same length. A rough
summary of the upper bounds is given in Table 1.

ρ = 3 ρ = 4 ρ = 5 ρ = 6 ρ = 7

d = 2 3
2
∆+ 1∗ ∆+ 2 5 — —

d = 3 unknown 3∆− 1† 3∆− 1∗† 2∆ + 2 7

Table 1: Table of maximum orders n(∆, d) among plane graphs in which each face
is bounded by a cycle of length ρ. Bounds with an asterisk ∗ are sharp for ∆ odd,
others are always sharp. Bounds with a dagger † are sharp only for ∆ ≥ 8.

We have not addressed diameter 3 pentagulations in which ∆ < 8. For ∆ = 5
and ∆ = 7, the largest diameter 3 pentagulations the author has found are G(5)
and G(7) (constructed at the end of Section 8), with orders 14 and 20 respectively.
For pentagulations with ∆ ∈ {3, 4, 6}, see Figure 33. It seems possible that the
n ≤ 3∆ − 1 bound is not sharp for even values of ∆ ≥ 8. However, improving the
n ≤ 3∆ − 1 bound for ∆ even appears extremely involved (if possible at all). This
leaves two questions to consider:

• For each ∆ in {3, 4, 5, 6, 7}, what is the maximum order n of a pentagulation
with diameter 3 and maximum degree ∆?

• Do there exist diameter 3 pentagulations with even degree ∆ ≥ 8 and order
n = 3∆− 1? If not, what are the largest such pentagulations?

∆ = 3, n = 11 ∆ = 4, n = 11 ∆ = 6, n = 14

Figure 33: Largest known pentagulations with diameter 3, and ∆ ∈ {3, 4, 6}.

For large diameter, getting exact bounds is both difficult and tedious. The last
likely tractable exact bound still unknown is the bound for diameter 3 triangulations
(d = ρ = 3). We end with some further problems:

• What is the maximum order of a diameter 3 triangulation?
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• Let µ denote the size of the smallest face of a plane graph. What is the smallest
function µ(d) such that every plane graph of diameter d and smallest face size
µ(d) has order O(∆)?

• Find bounds on n(∆, d) in plane graphs where every face has the same size ρ,
or where every face has at least minimum size µ.
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