The degree-diameter problem for plane graphs with pentagonal faces

BRANDON DU PREEZ

Laboratory for Discrete Mathematics and Theoretical Computer Science Department of Mathematics and Applied Mathematics University of Cape Town Cape Town, South Africa brandon.dupreez@uct.ac.za

Abstract

The degree-diameter problem consists of finding the maximum number of vertices n of a graph with diameter d and maximum degree Δ . This problem is well studied, and has been solved for plane graphs of low diameter in which every face is bounded by a 3-cycle (triangulations), and plane graphs in which every face is bounded by a 4-cycle (quadrangulations). In this paper, we solve the degree diameter problem for plane graphs of diameter 3 in which every face is bounded by a 5-cycle (pentagulations). We prove that if $\Delta \geq 8$, then $n \leq 3\Delta - 1$ for such graphs. This bound is sharp for Δ odd.

1 Introduction

The well-known **degree-diameter problem** asks for the maximum order $n(\Delta, d)$ of a graph with maximum degree Δ and diameter d. By considering a Δ -regular breadth-first tree, we easily obtain a trivial upper bound on $n(\Delta, d)$ known as the **Moore Bound**. The graphs attaining this bound for $\Delta > 2$ and d > 1 are called **Moore Graphs**, and there are only finitely many of them: the Petersen graph, the Hoffman-Singleton graph and, conjecturally, some 'missing' Moore graph(s) of diameter 2 and maximum degree 57 [1,4,11,15]. These Moore graphs are not planar, and the upper bounds attained on $n(\Delta, d)$ for planar graphs are substantially smaller than the Moore bound.

In [10], Hell and Seyffarth exactly solve the degree-diameter problem for planar graphs of diameter 2, showing that $n(\Delta, 2) = \frac{3}{2}\Delta + 1$ for such graphs. Further results for planar graphs are obtained in [9] by Fellows, Hell and Seyffarth. They give bounds on $n(\Delta, 3)$ and show that for each fixed diameter d, there exists some constant c such that $n(\Delta, d) \leq c\Delta^{\lfloor d/2 \rfloor}$. For planar graphs with even diameter and large maximum degree, the degree-diameter problem was solved exactly by Tishchenko in [19]. In [16],

Nevo, Pineda-Villavicencio and Wood extend the result of [19] to all diameters. They also improve the state of the art in the degree-diameter for graphs embedded on surfaces by showing that for a graph with large Δ embedded in a surface of genus g, there is some constant c and a function f(g) such that $n(\Delta, d) \leq cf(g)(\Delta - 1)^{\lfloor d/2 \rfloor}$.

Further refining the problem, we consider plane graphs in which every face is bounded by a circuit or cycle of the same length ρ . When $\rho = 3$, we obtain the well-studied maximal planar graphs / triangulations. Seyffarth proved in [17] that a triangulation of diameter 2 and $\Delta \geq 8$ has at most $\frac{3}{2}\Delta + 1$ vertices, and this bound is sharp. Interestingly, the bound is the same as the bound for general planar graphs obtained in [10], and this fact is critical to the proof in [10]. Plane graphs with $\rho = 4$ are maximal planar bipartite graphs, or quadrangulations. For quadrangulations, Dalfó, Huemer and Salas prove the sharp bounds $n(\Delta, 2) = \Delta + 2$, $n(\Delta, 3) = 3\Delta - 1$ when Δ is odd and $n(\Delta, 3) = 3\Delta - 2$ when Δ is even [3]. They also give approximate bounds on $n(\Delta, d)$ for quadrangulations with d > 3 and Δ large. In [8], the present author considered plane graphs in which ρ was (almost) as large as possible for fixed diameter d, obtaining the following sharp bounds: $n(\Delta, d) = 2d + 1$ when $\rho = 2d + 1$ and $n(\Delta, d) = \Delta(d - 1) + 2$ when $\rho = 2d$. The extremal graphs were also characterized.

The degree-diameter problem has been studied for graphs and triangulations on other surfaces, see [14, 18], as well as for highly structured graphs such as triangular and honeycomb networks [12, 13]. In recent work, the problem was tackled for outerplanar graphs [5], and a generalization of the degree-diameter problem is the subject of the 2022 paper [20]. For a comprehensive overview of the degree-diameter problem, see Miller and Širáň's survey [15]. For the early version of this work, and related research, see [7].

We call a plane graph in which every face is bounded by a cycle of length 5 a **pentagulation**. In this paper, we prove that $n(\Delta, 3) = 3\Delta - 1$ for pentagulations with $\Delta \geq 8$. The paper begins with definitions and basic lemmas in Section 2. In Section 3, we prove that a diameter 3 pentagulation is triangle-free. The structure of 4-cycles and separating 5-cycles is explored in Section 4. Section 5 introduces the notion of dislocated 4-cycles, a concept central to the proof of the main theorem. The proof that $n(\Delta, 3) \leq 3\Delta - 1$ for pentagulations is very involved, so we split it into three sections. Section 6 considers pentagulations with a pair of dislocated 4-cycles, Section 7 proves the bound for pentagulations with a 4-cycle, but no dislocated pair, and Section 8 proves that a diameter 3 pentagulation with $\Delta \geq 8$ contains at least one 4-cycle, and gives examples to show the bound is sharp for Δ odd. We conclude and give some further questions in Section 9.

2 Preliminaries

For most definitions used, see [6]. Let G = (V, E) be a graph, and S, T two subsets of V. The distance between vertices u and v is denoted d(u, v), and we let $d(u, S) = \min\{d(u, w) : w \in S\}$. For a subgraph H, we overload notation and de-

note d(u, H) = d(u, V(H)). We say S dominates T if every vertex of T is adjacent to some vertex of S, and S dominates the whole graph G if S dominates V. Let $N_i(v)$ be the set of vertices at distance i from v. A cycle C in a plane graph Gpartitions the plane into an interior bounded region denoted Int (C), an exterior unbounded region Ext (C), and the cycle C itself. Denote Int $[C] = Int(C) \cup C$, and Ext $[C] = Ext(C) \cup C$. If both Int(C) and Ext(C) contain vertices, then C is a Jordan separating cycle. Consider a subgraph H of a graph G. A chord of Hin G is an edge uv such that $u, v \in V(G)$ and $uv \in E(G) - E(H)$. The girth of a graph is the length of its shortest cycle.

It is well known that a plane graph is 2-connected if and only if each face is bounded by a cycle, so all pentagulations are 2-connected.

Lemma 2.1. Let G be a pentagulation of diameter 3, and C a cycle of G. If C is a Jordan separating cycle, then C dominates its interior, or dominates its exterior. Further, if C has length 3 or 4, then it is a Jordan separating cycle.

Proof. Suppose that C is a Jordan separating cycle, and that $u \in \text{Int}(C)$, $v \in \text{Ext}(C)$ are two vertices not dominated by C. Any u - v geodesic contains at least one vertex of C, so $d(u, v) \ge 4$, contradicting the diameter of G.

Suppose C has length 3 or 4. Its interior and exterior both contain at least one face. Since a facial cycle has five vertices, we have $|V(\text{Int}[C])| \ge 5$ and $|V(\text{Ext}[C])| \ge 5$. Thus Int(C) and Ext(C) both contain at least one vertex, so C is a Jordan separating cycle.

Lemma 2.2. Every cycle of length 6 or 7 in a pentagulation is a Jordan separating cycle.

Proof. Let C be a cycle of length 6 or 7 in a pentagulation G. The cycle C does not bound any face of G, so its interior either contains a vertex, or has some chord e. Since the length of C is at most 7, $C \cup \{e\}$ induces a cycle of length 3 or 4. Applying Lemma 2.1, we see that Int(C) contains some vertex. Similarly, Ext(C) contains a vertex.

For a cycle C of length 5 in a pentagolation G, there are three distinct possibilities:

- 1. The cycle C Jordan separates G,
- 2. C is a facial cycle that separates G, but necessarily does not Jordan separate G,
- 3. C is a facial cycle that does not separate G.

3 There are no 3-cycles

The following lemmas show that no 3-cycle in a pentagulation dominates its interior (or exterior). We phrase our lemmas in terms of cycle interiors, but the same results are easily seen to hold for exteriors.

Lemma 3.1. Let G be a pentagulation. If C is a 3-cycle in G, then no single vertex of C dominates the interior of C.

Proof. For the sake of contradiction, let $C : v_1, v_2, v_3$ be a 3-cycle, the interior of which is dominated by the single vertex v_1 . Choose C to be minimal, so there is no 3-cycle C' such that v_1 dominates the interior of C', and for which $\operatorname{Int}(C') \subset \operatorname{Int}(C)$. By Lemma 2.1, the cycle C Jordan separates G, so there is some vertex $u \in \operatorname{Int}(C)$. By assumption, u and v_1 are adjacent. As G is a pentagulation, and thus 2-connected, the vertex u has some neighbor other than v_1 in $\operatorname{Int}[C]$. This neighbor is not v_2 , as then v_1, v_2, u is a 3-cycle, contradicting the minimality of C. Similarly, u and v_3 are not adjacent. (see Figure 1).

Figure 1: Some steps in the proof of Lemma 3.1.

Thus there is some other vertex w in Int(C) that is adjacent to u. Since v_1 dominates Int(C), the vertices v_1 , u and w form a 3-cycle, contradicting the minimality of C.

Lemma 3.2. Let G be a pentagulation, and let C be a 3-cycle in G. The interior of C is not dominated by any two vertices of C.

Proof. Let $C = v_1, v_2, v_3$ be a 3-cycle. Assume to the contrary and without loss of generality that every vertex in Int(C) is dominated by $\{v_1, v_2\}$. We claim that no vertex in Int(C) is adjacent to v_3 . Assume to the contrary there is a vertex v adjacent to v_3 . Without loss of generality, v is adjacent to v_1 as well, since $\{v_1, v_2\}$ dominates Int(C). Thus the triangle v_1, v, v_3 is dominated by v_1 , contradicting Lemma 3.1 and proving the claim.

The edge v_1v_2 lies on the boundary of two faces, one of which is in the interior of C. Call this interior face f, and note that the boundary of f is a 5-cycle. By Lemma 3.1, the interior of C is not dominated by a single vertex, so both v_1 and v_2 have some neighbor in Int(C). Thus the cycle bounding f is of the form u, v_1, v_2, w, x , where u, w and x are vertices in the interior of C. As $\{v_1, v_2\}$ dominates Int(C), the vertex x is adjacent to either v_1 or v_2 . If x is adjacent to v_1 , then u, x, v_1 is a triangle whose interior is dominated by v_1 , and similarly if x is adjacent to v_2 then w, x, v_2 is a triangle whose interior is dominated by v_2 . Both possibilities contradict Lemma 3.1, completing the proof.

Lemma 3.3. Let G be a pentagulation and C be a 4-cycle in G. Then no vertex of C dominates Int(C).

Proof. Let $C = v_1, v_2, v_3, v_4$ be a 4-cycle. Assume for the sake of contradiction that v_1 dominates Int(C), and choose C to be minimal, i.e., there is no 4-cycle C' dominated by v_1 such that $Int(C') \subset Int(C)$. By Lemma 2.1, $Int(C) \neq \emptyset$. Let u be the neighbor of v_1 in the interior of C such that uv_1 and v_1v_2 both lie on the boundary of some common face. Since G is 2-connected, u is adjacent to some vertex w in $Int[C] - \{v_1\}$. Up to symmetry, there are three possible choices for the vertex w.

Case 1: $w = v_2$ or $w = v_4$.

If $w = v_2$, we obtain a 3-cycle v_1, u, v_2 , the interior of which is dominated by v_1 , contradicting Lemma 3.1. The situation is similar if u is adjacent to v_4 .

Case 2: $w = v_3$.

The interior of the 4-cycle v_1, u, v_3, v_2 is dominated by v_1 , contradicting minimality of C.

Case 3: w is a vertex in Int(C).

By assumption, the vertex v_1 dominates Int(C), so v_1 and w are adjacent. Thus v_1, u, w is a 3-cycle whose interior is dominated by v_1 , contradicting Lemma 3.1. \Box

Lemma 3.4. Let C be a 4-cycle in a pentagulation. No pair of vertices of C, that are adjacent in C, dominate Int(C).

Proof. Assume for the sake of contradiction that $C = v_1, v_2, v_3, v_4$ is a 4-cycle in a pentagulation whose interior is dominated by $\{v_1, v_2\}$. By Lemma 3.3, both v_1 and v_2 have at least one neighbor in Int(C) — for if one of these two vertices had no neighbor in Int(C), the other would dominate Int(C). Thus there is a face f in the interior of C, bounded by a 5-cycle of the form u, v_1, v_2, w, x , where u and ware vertices in Int(C) and x is a vertex in Int[C]. If x is either v_3 or v_4 , then Int[C]contains a triangle whose interior is dominated by v_1 or v_2 respectively, contradicting Lemma 3.1. If x lies in Int(C), then it is adjacent to either v_1 or v_2 . If x is adjacent to v_1 , then v_1, u, x is a triangle whose interior is dominated by v_1 , and if x is adjacent to v_2 , then the interior of the triangle v_2, w, x is dominated by v_2 . In any case, we obtain a triangle whose interior is dominated by a single vertex, contradicting Lemma 3.1.

Lemma 3.5. A 3-cycle in a pentagulation does not dominate its interior (or exterior).

Proof. Let $C: v_1, v_2, v_3$ be a 3-cycle in a pentagulation G. Assume for the sake of contradiction that C dominates its interior. By Lemmas 3.1 and 3.2, no proper subset of V(C) dominates Int(C), so every vertex of C has at least one neighbor in Int(C). Thus there exists a neighbor u of v_1 in Int(C). Since G is 2-connected, the vertex u has some neighbor w in $Int[C] - \{v_1\}$. By Lemma 3.2, the vertex wis neither v_2 nor v_3 , as this induces a 3-cycle whose interior is dominated by two vertices. By Lemma 3.1, w is not adjacent to v_1 , as this creates a 3-cycle whose interior is dominated by v_1 . By Lemma 3.4, neither v_2 nor v_3 is adjacent to w, since this induces a 4-cycle, the interior of which is dominated by two adjacent vertices. Thus u does not have a neighbor in $Int[C] - \{v_1\}$, a contradiction.

Lemma 3.5 and Lemma 2.1 easily yield the following corollary, which we make extensive use of.

Corollary 3.6. Pentagulations of diameter 3 contain no 3-cycles.

4 The structure of separating cycles

We have shown that diameter 3 pentagulations do not contain 3-cycles (and, hence, that any 4-cycle or 5-cycle in a such a pentagulation is chordless). In this section, we describe the structure of 4-cycles and separating 5-cycles in diameter 3 pentagulations.

Lemma 4.1. If a pentagulation contains a Jordan separating 5-cycle C, then the interior of C is dominated by neither a single vertex of C, nor by an adjacent pair of vertices in C.

Proof. Let $C = v_1, v_2, v_3, v_4, v_5$ be a Jordan separating cycle of a pentagulation G. We first prove that Int(C) is not dominated by a single vertex of C. Assume to the contrary that v_1 dominates Int(C), and let u be a neighbor of v_1 in Int(C). Since G is 2-connected, u has some neighbor in $Int[C] - \{v_1\}$. If u is adjacent to any neighbor of v_1 (including v_2 and v_5), then G contains a triangle, contradicting Corollary 3.6. If u is adjacent to v_3 or v_4 , we obtain a 4-cycle whose interior is dominated by the single vertex v_1 , contradicting Lemma 3.3. Thus u has no neighbor in $Int[C] - \{v_1\}$, a contradiction.

Now assume to the contrary that $\{v_1, v_2\}$ dominates Int(C). Let u be a neighbor of v_1 in the interior of C, and note that u has some neighbor in $Int[C] - \{v_1\}$. As in the previous argument, u is not adjacent to any neighbor of v_1 . If u is adjacent to either v_3 or v_4 , then G contains a 4-cycle whose interior is either dominated by the single vertex v_1 , or by the adjacent pair $\{v_1, v_2\}$, contradicting Lemma 3.3 or Lemma 3.4, respectively. If u is adjacent to some neighbor of v_2 , then G contains a 4-cycle whose interior is dominated by the adjacent pair $\{v_1, v_2\}$, yielding a contradiction. \Box

Lemma 4.2. Let C be a 4-cycle of a pentagulation. If C dominates its interior, then no two vertices which are adjacent in C both have neighbors in Int(C).

Proof. Let $C = v_1, v_2, v_3, v_4$ be a 4-cycle in a pentagulation, and suppose that C dominates its interior. Assume to the contrary, and without loss of generality, that both v_1 and v_2 have some neighbor in Int(C). The edge v_1v_2 lies on some face in the interior of C. This face is bounded by a 5-cycle of the form u, v_1, v_2, w, x , where u and w are neighbors of v_1 and v_2 respectively, and $x \in Int[C]$. Since C dominates its interior, the vertex x is either a vertex of C, or is adjacent to a vertex of C. If x is a

vertex of C, or if x is adjacent to v_1 or v_2 , then there is some 3-cycle in Int[C] that dominates its interior, contradicting Lemma 3.5. If x is adjacent to v_3 or v_4 , then there is some 4-cycle in Int[C] whose interior is dominated by two adjacent vertices of the 4-cycle, contradicting Lemma 3.4.

Lemma 4.3. Let C be a 6-cycle in a pentagulation. If the interior of C is dominated by two vertices u and v of C such that $d_C(u, v) = 3$, then no chord of C lies in the interior of C.

Proof. Let $C = v_1, v_2, v_3, v_4, v_5, v_6$ be a 6-cycle in a pentagulation, the interior of which is dominated by $\{v_1, v_4\}$. Assume to the contrary that $e = v_i v_j$, with $|j - i| > 1 \pmod{6}$, is a chord of C contained in $\operatorname{Int}[C]$. If |j - i| = 2, then the chord induces a 3-cycle in C that dominates its interior, contradicting Lemma 3.5. Thus |j - i| = 3. If $e = v_1 v_4$ then the chord induces a 4-cycle whose interior is dominated by two adjacent vertices, contradicting Lemma 3.4. If $e \neq v_1 v_4$, then $e = v_2 v_5$ or $e = v_3 v_6$, and $C \cup \{e\}$ either induces the 4-cycle v_2, v_3, v_4, v_5 or the 4-cycle v_3, v_4, v_5, v_6 . In either case there is a 4-cycle dominated by just v_3 , contradicting Lemma 3.3.

Lemma 4.4. Let C be a 6-cycle in a pentagulation. If Int(C) is dominated by two vertices u and v with $d_C(u, v) = 3$, then there exists some vertex in Int(C) that is adjacent to both u and v.

Proof. Let G be a pentagulation. Assume to the contrary that $C = v_1, v_2, v_3, v_4, v_5, v_6$ is a 6-cycle in G whose interior is dominated by $\{v_1, v_4\}$, and that no vertex in Int(C)is adjacent to both v_1 and v_4 . Choose C to be a minimal counterexample. That is, there is no 6-cycle C' that has its interior dominated by $\{v_1, v_4\}$, and that does not contain any neighbor of both v_1 and v_4 in Int(C'), and that satisfies $Int(C') \subset$ Int(C). The cycle C is chordless by Lemma 4.3, and is a Jordan separating cycle by Lemma 2.2, so there exists some vertex w in Int(C). Without loss of generality, the vertex w is adjacent to v_1 . Since G is 2-connected, there is some neighbor x of w in $\operatorname{Int}[C] - \{v_1, v_4\}$. The vertex x is neither v_2 nor v_6 , as this would create a triangle v_1, w, x, v_1 that dominates its interior, contradicting Lemma 3.5. Further, x is neither v_3 nor v_5 as either case induces a 4-cycle whose interior is dominated by v_1 , contradicting Lemma 3.3. So x lies in Int(C), and is adjacent to either v_1 or v_4 . If x is adjacent to v_1 , then v_1, x, w is a triangle, the interior of which is dominated by v_1 , contradicting Lemma 3.1. Thus x is adjacent to v_4 , and the two internally disjoint paths v_1, v_2, v_3, v_4 and v_1, w, x, v_4 , induce a 6-cycle in Int[C]. The interior of this 6-cycle is dominated by $\{v_1, v_4\}$, and by assumption there is not a common neighbor of both v_1 and v_4 in the interior of this cycle, contradicting the minimality of C.

Corollary 4.5. Let C be a Jordan separating 5-cycle in a pentagulation. If Int(C) is dominated by two non-adjacent vertices u and v of C, then there is some vertex in Int(C) that is adjacent to both v and u.

Proof. Let G be a pentagulation, and let $C = v_1, v_2, v_3, v_4, v_5$ be a Jordan separating 5-cycle in G whose interior is dominated by $\{v_1, v_3\}$. Since C is Jordan separating,

there exists a vertex w in Int(C) that is, without loss of generality, adjacent to v_1 . If w is adjacent to v_3 , we are done. Suppose w is not adjacent to v_3 . Since G is 2-connected, w has some neighbor x in $Int[C] - \{v_1\}$. The vertex x is not any neighbor of v_1 , as then v_1, w, x is a triangle that dominates its interior, contradicting Lemma 3.5. Note that $x \neq v_4$, as this would induce a 4-cycle dominated by v_1 , contradicting Lemma 3.3. Thus x is a vertex in Int(C) that is adjacent to v_3 . The internally disjoint paths v_1, v_5, v_4, v_3 and v_1, w, x, v_3 induce a 6-cycle whose interior is dominated by $\{v_1, v_3\}$. By Lemma 4.4, the interior of this 6-cycle contains some vertex adjacent to both v_1 and v_3 , completing the proof.

Lemma 4.6. Let G be a pentagulation. If C is a 4-cycle that dominates its interior, then every vertex u in Int(C) has degree 2.

Proof. Let G be a pentagulation, let $C = v_1, v_2, v_3, v_4$ be a 4-cycle in G that dominates its interior, and let w be a vertex in Int(C). Since C dominates its interior, we assume without loss of generality that w is adjacent to v_1 . Because G is 2-connected, w has at least one neighbor in $Int[C] - \{v_1\}$. Assume contrary to the lemma that d(w) > 2. Thus w has at least two distinct neighbors x_1 and x_2 in $Int[C] - \{v_1\}$. Neither x_1 nor x_2 is adjacent to v_1 , as this would induce a triangle in Int[C] that dominates its interior, contrary to Lemma 3.5. Therefore, each vertex x_i is either a vertex in Int(C), or the vertex v_3 .

Suppose $x_1 = v_3$, then $x_2 \neq v_3$. Up to swapping the labels on v_2 and v_4 , the vertex x_2 lies inside the cycle v_1, w, v_3, v_2 . Since C dominates its interior, x_2 is adjacent to v_1, v_2 or v_3 . If x_2 is adjacent to v_1 or v_3 , this induces a triangle. If x_2 is adjacent to v_2 , the interior of the 4-cycle v_1, w, x_2, v_2 is dominated by $\{v_1, v_2\}$, contradicting Lemma 3.4. Thus $x_1 \neq v_3$, and similarly $x_2 \neq v_3$.

Since C dominates its interior, each vertex x_i is adjacent to some vertex in $\{v_2, v_3, v_4\}$. The vertex x_1 is not adjacent to v_2 , as this induces a 4-cycle x_1, v_2, v_1, w whose interior is dominated by $\{v_1, v_2\}$, contradicting Lemma 3.4. Similarly, x_1 is not adjacent to v_4 , and x_2 is not adjacent to either v_2 or v_4 . We conclude that both x_1 and x_2 are neighbors of v_3 in Int(C). But this induces a 4-cycle x_1, w, x_2, v_3 that is dominated by v_3 , contradicting Lemma 3.3.

By Lemma 2.1, any 4-cycle in a pentagulation of diameter 3 dominates either its interior or exterior. The next theorem gives a complete description of the structure of this dominated region. An example of such a region is given by Figure 2.

Theorem 4.7. Let G be a pentagulation, and C a 4-cycle in G. If C dominates its interior, then there exist two non-adjacent vertices u and v of C, and a positive integer k such that the induced subgraph G[Int[C]] consists of exactly:

- (1) the cycle C,
- (2) k u v paths of length 3, and
- (3) k-1 u-v paths of length 2.

All the paths in (2) and (3) are internally disjoint, do not contain any vertices of $C - \{u, v\}$, and the paths of length 2 and 3 alternate.

Figure 2: A 4-cycle dominating its interior which has k = 2 paths of length 3 and k - 1 = 1 paths of length 2 between two non-adjacent vertices v_1 and v_3 , illustrating Theorem 4.7.

Proof. Let G be a pentagulation, and $C: v_1, v_2, v_3, v_4$ a 4-cycle in G that dominates its interior. By Lemmas 3.3 and 3.4, exactly two non-adjacent vertices of C have neighbors in Int(C). Suppose without loss of generality that these two vertices are v_1 and v_3 . The interior of C is chordless, as a chord would induce a 3-cycle that dominates its interior, contradicting Lemma 3.5. By Lemma 4.6, any vertex in Int(C) has degree 2. Further, any vertex in Int(C) is adjacent to either v_1 or v_3 , and there is no 3-cycle in the interior of C by Lemma 3.5. Thus every vertex in Int(C)lies on a $v_1 - v_3$ path of length 2 or 3, and these paths are internally disjoint. Since G is a pentagulation and every face is bounded by a 5-cycle, the paths of length 2 and 3 must alternate.

By Corollary 3.6, no diameter 3 pentagulation contains a triangle. Figure 3 shows two diameter 3 pentagulations containing 4-cycles.

Figure 3: Two diameter 3 pentagulations that contain 4-cycles, \mathcal{H} and \mathcal{I} . Pairs of non-adjacent grey vertices dominate regions bounded by bold 4-cycles.

5 Singling out a square with dislocated 4-cycles

In order to describe the structure of diameter 3 pentagulations, we need a new concept: dislocated 4-cycles. In Figure 2, consider the three 4-cycles $C_1: v_1, v_2, v_3, v_4$;

 $C_2: v_1, w, v_3, v_4$ and $C_3: v_1, w, v_3, v_2$. Although these three cycles are distinct, both C_2 and C_3 are just 'substructures' of C_1 , formed by C_1 and the alternating paths in its interior (Theorem 4.7). Heuristically, two 4-cycles in a pentagulation are dislocated when—unlike the cycles in Figure 2—they cannot be considered part of the same collection of alternating paths. For example, the two bold 4-cycles in Figure 3, graph \mathcal{I} are dislocated.

Consider two distinct 4-cycles, C_1 and C_2 , in a pentagulation G. We say that C_1 and C_2 are **dislocated** 4-cycles if there exist two regions $R_1 \in {\text{Int}(C_1), \text{Ext}(C_1)}$ and $R_2 \in {\text{Int}(C_2), \text{Ext}(C_2)}$, as well as two pairs of vertices ${u_1, v_1} \subset V(C_1)$ and ${u_2, v_2} \subset V(C_2)$, such that all three of the following conditions hold:

- 1. The regions R_1 and R_2 are dominated by $\{u_1, v_1\}$ and $\{u_2, v_2\}$, respectively,
- 2. The sets $\{u_1, v_1\}$ and $\{u_2, v_2\}$ are not equal,
- 3. The intersection $R_1 \cap R_2$ is empty.

Note that by Lemma 3.4, the edge u_1v_1 is not in $E(C_1)$, and u_2v_2 is not in $E(C_2)$.

Figure 4: In G, there is no pair of dislocated 4-cycles. In H, any pair of 4-cycles in which both cycles dominate their interior or exterior is dislocated.

For an example, consider Figure 4. No two of these cycles in G are dislocated, as they fail either condition (2) or (3) of the definition. In H, any pair C and D of 4-cycles such that C and D both dominate one of their two regions is a dislocated pair.

6 Bounding the order, part I: An abundance of 4-cycles

In this section, we consider pentagulations containing two or more dislocated 4-cycles. But first, we handle a simple case, for which we recall the well-known theorem stating that if a graph of order n and maximum degree Δ is dominated by γ vertices, then $n \leq \gamma(\Delta + 1)$ (see, for example, Theorem 10.6 of [2]).

Lemma 6.1. Let G be a pentagulation of order n and maximum degree $\Delta \geq 3$. If any 4-cycle of G dominates G, then $n \leq 3\Delta - 1$.

Proof. Let G be a pentagulation of order n and maximum degree Δ that is dominated by the 4-cycle $C: v_1, v_2, v_3, v_4$. Since $\operatorname{Int}(C)$ is dominated by C, we have without loss of generality, by Theorem 4.7, that every vertex of $\operatorname{Int}(C)$ lies on a $v_1 - v_3$ path of length 2 or 3. There are at most $\frac{\Delta-1}{2}$ paths of length 3 in $\operatorname{Int}(C)$, and at most $\frac{\Delta-3}{2}$ paths of length 2 in $\operatorname{Int}(C)$. Because $\operatorname{Ext}(C)$ is dominated by C, we have by Theorem 4.7 that every vertex of $\operatorname{Ext}(C)$ lies on either a $v_1 - v_3$ path, or a $v_2 - v_4$ path, and any such path has length 2 or 3. If the vertices of $\operatorname{Ext}(C)$ lies on $v_1 - v_3$ paths, then $\{v_1, v_3\}$ dominates $\operatorname{Ext}(C)$, so G is dominated by two vertices. Thus $n \leq 2\Delta + 2 \leq 3\Delta - 1$.

Therefore the vertices of $\operatorname{Ext}(C)$ lie on $v_2 - v_4$ paths. As before, the number of paths of length 3 is bounded above by $\frac{\Delta-1}{2}$, and the number of paths of length 2 is at most $\frac{\Delta-3}{2}$. Each path of length 3 in $\operatorname{Int}(C)$ ($\operatorname{Ext}(C)$) contributes 2 to the number $|V(\operatorname{Int}(C))|$ ($|V(\operatorname{Ext}(C))|$), and each path of length 2 contributes 1 to $|V(\operatorname{Int}(C))|$ ($|V(\operatorname{Int}(C))|$). Thus:

$$n = |V(C)| + |V(\operatorname{Int}(C))| + |V(\operatorname{Ext}(C))|$$

$$\leq 4 + 2\left[2\left(\frac{\Delta - 1}{2}\right) + 1\left(\frac{\Delta - 3}{2}\right)\right]$$

$$= 3\Delta - 1.$$

In the proofs of Lemmas 6.2 and 6.4 to follow, we refer to specific vertices and faces of the graphs \mathcal{H} and \mathcal{I} by the labels given in Figure 5.

Figure 5: The graphs \mathcal{H} and \mathcal{I} , with the labels used in the proofs of Lemmas 6.2 and 6.4.

Lemma 6.2. Let G be a pentagulation of diameter 3, order n and maximum degree Δ . If G contains \mathcal{H} as a subgraph, then $n \leq 3\Delta - 1$.

Proof. Assume G contains \mathcal{H} (Figure 3) as a subgraph, and let $C: v_1, v_2, v_3, v_4$ be the 4-cycle of H. Label the remaining vertices of \mathcal{H} so that v_1, w_1, w_2, v_3 and v_2, z_1, z_2, v_4

are paths of length 3 (see Figure 5), with w_1 and w_2 lying in Int(C) and z_1 and z_2 lying in Ext(C). Since G has diameter 3, we know that, without loss of generality, the cycle C dominates its interior by Lemma 2.1. Assume to the contrary that C does not dominate its exterior. Then there is a vertex $u \in Ext(C)$ such that $d(u, C) \ge 2$. If u lies in the outer face of \mathcal{H} , then $d(u, w_2) \ge 4$. If u lies in r_3 , then $d(u, w_1) \ge 4$. In either case, we obtain a contradiction, so C dominates its exterior and is thus a dominating 4-cycle. That $n \le 3\Delta - 1$ follows immediately from Lemma 6.1.

Theorem 6.3. Let G be a pentagulation of diameter 3, order n, and maximum degree $\Delta \geq 3$. If G contains two dislocated 4-cycles, C_1 and C_2 , then G contains \mathcal{I} as a subgraph (see Figure 3), or $n \leq 3\Delta - 1$.

Proof. Let G be a pentagulation of diameter 3, order n and maximum degree $\Delta \geq 3$. Suppose that G contains two dislocated 4-cycles $C_1 : v_1, v_2, v_3, v_4$ and $C_2 : u_1, u_2, u_3, u_4$. We consider all the possible configurations for the two dislocated 4-cycles. Note that if any 4-cycle dominates G, or if G contains an \mathcal{H} subgraph, then $n \leq 3\Delta - 1$ by Lemmas 6.1 and 6.2. Assume without loss of generality that C_1 dominates its interior. By Theorem 4.7, and without loss of generality, the region $\operatorname{Int}(C_1)$ is dominated by $\{v_1, v_3\}$, and there exist vertices w_1 and w_2 in $\operatorname{Int}(C_1)$ such that $P_1 : v_1, w_1, w_2, v_3$ is a path in G.

Case 1: The cycles C_1 and C_2 have exactly two adjacent vertices in common. By symmetry, we may assume without loss of generality that $v_2 = u_1$ and $v_3 = u_4$ (see Figure 6, (1)).

Figure 6: Two dislocated 4-cycles, C_1 and C_2 , that share an edge, as in Case 1 of the proof of Theorem 6.3.

Since C_1 and C_2 are dislocated, both u_2 and u_3 lie in $Ext(C_1)$. By Corollary 3.6, the pentagulation G is triangle-free, so $d_G(w_1, C_2) = 2$. Since C_2 dominates either its interior or exterior, we have that C_2 dominates its interior. By Theorem 4.7, there exist vertices z_1 and z_2 in $Int(C_2)$ such that either $P_2 : v_2, z_1, z_2, u_3$ is a path in G, or $P'_2 : u_2, z_1, z_2, v_3$ is a path in G. If G contains the path P'_2 , then there is a $z_1 - w_1$ path R of length at most 3 in G. Since G is triangle-free, the vertex w_1 is only adjacent to v_1 and w_2 , and z_1 is only adjacent to u_2 and z_2 . Thus, since G is a plane graph and $d_G(w_1, z_1) \leq 3$, v_1 and u_2 are adjacent. This induces a triangle, which is impossible. Therefore G contains the path P_2 , not the path P'_2 (see Figure 6, (2)). Since G has diameter 3, there exists some $w_1 - z_2$ path of length at most 3. By the same argument as in the prior paragraph, we deduce that v_1 and u_3 are adjacent. But now we have induced \mathcal{H} as a subgraph of G, with the 4-cycle of \mathcal{H} corresponding to the 4-cycle of G on $v_1, v_2 = u_1, v_3 = u_4, u_3$. By Lemma 6.2, we have $n \leq 3\Delta - 1$. *Case 2:* The dislocated cycles C_1 and C_2 have exactly three vertices in common. Up to symmetry, there are two different ways that C_1 could share three vertices with

 C_2 : the cycles may share both the dominating vertices v_1 and v_3 , or only one of them.

Case 2.1: The vertices v_1 and v_3 are in both C_1 and C_2 .

Assume without loss of generality that $v_1 = u_1$, $v_2 = u_4$ and $v_3 = u_3$ (see Figure 7 (1)).

Figure 7: Case 2.1 in the proof of Theorem 6.3 has the two dislocated 4-cycles C_1 and C_2 sharing v_1 , v_2 and v_3 . Case 2.2 has the cycles sharing v_2 , v_3 and v_4 .

Since C_1 and C_2 are dislocated, the set $\{u_2, v_2\}$ dominates either the interior or exterior of C_2 . We claim the set dominates the interior of C_2 . By Lemma 4.2, the vertex v_2 does not have any neighbor in $\text{Int}(C_1)$, and thus has no neighbors in $\text{Ext}(C_2)$. By Lemma 3.3, no single vertex of C_2 dominates the exterior of C_2 , so the set $\{v_2, u_2\}$ does not dominate $\text{Ext}(C_2)$, proving the claim.

Since $\{u_2, v_2\}$ dominates $\operatorname{Int}(C_2)$, there are two vertices z_1 and z_2 in $\operatorname{Int}(C_2)$ such that $P_2: v_2, z_1, z_2, u_2$ is a path in G. The vertices of $C_1 \cup C_2 \cup P_1 \cup P_2$ induce an \mathcal{H} subgraph in G. Thus $n \leq 3\Delta - 1$ by Lemma 6.2.

Case 2.2: Only one of v_1 and v_3 is common to both C_1 and C_2 .

Assume without loss of generality that $v_2 = u_2$, $v_3 = u_1$ and $v_4 = u_4$ (see Figure 7 (2)). Since G is triangle-free, the distance $d_G(w_1, C_2) = 2$, so C_2 does not dominate its exterior and thus dominates its interior. By Theorem 4.7, there are vertices z_1 and z_2 in $Int(C_2)$ such that either $P_2 : v_3, z_1, z_2, u_3$ is a path of G, or $P'_2 : v_2, z_1, z_2, v_4$ is a path of G. In the latter case, we obtain an \mathcal{H} subgraph on $C_1 \cup C_2 \cup P_1 \cup P'_2$. In the former case, we have $d(w_1, z_2) > 3$.

Case 3: The cycles C_1 and C_2 have exactly one vertex in common.

Since C_1 and C_2 only share one vertex, and G is triangle-free, either $d(w_1, V(C_2)) \ge 2$ or $d(w_2, V(C_2)) \ge 2$. As such, C_2 does not dominate its exterior, and thus dominates its interior. Up to symmetry, there are four possible cases. Case 3.1: The dislocated cycles C_1 and C_2 share the vertex $v_2 = u_4$ and $Int(C_2)$ is dominated by $\{u_1, u_3\}$ (see Figure 8 (1)).

Figure 8: In both figures, the dislocated 4-cycles C_1 and C_2 share the vertex $v_2 = u_4$. We have (1) when the interior of C_2 is dominated by $\{u_1, u_3\}$, as in Case 3.1, and we have (2) when the interior of C_2 is dominated by $\{u_2, u_4\}$, as in Case 3.2 of the proof of Theorem 6.3.

By Theorem 4.7, there is a vertex z_1 in $Int(C_2)$ that is adjacent to u_1 , but not to any other vertex of C_2 . But then $d_G(w_1, z_1) > 3$, a contradiction.

Case 3.2: The dislocated cycles C_1 and C_2 share the vertex $v_2 = u_4$ and $Int(C_2)$ is dominated by $\{u_2, u_4\}$ (see Figure 8 (2)).

By Theorem 4.7, there are two vertices z_1 and z_2 in the interior of C_2 such that $P_2: v_2, z_1, z_2, u_2$ is a path in G. Since G is a triangle-free plane graph, and both $d_G(z_2, w_1) \leq 3$ and $d_G(z_2, w_w) \leq 3$, we have that u_2 is adjacent to both v_1 and v_3 . Thus G contains \mathcal{H} as a subgraph.

Case 3.3: The dislocated cycles C_1 and C_2 share the vertex $v_3 = u_1$ and $Int(C_2)$ is dominated by $\{u_2, u_4\}$ (see Figure 9 (1)).

Figure 9: In both figures, the dislocated 4-cycles C_1 and C_2 share the vertex $v_3 = u_1$. When the interior of C_2 is dominated by u_2 and u_4 , as in Case 3.3 of the proof of Theorem 6.3, (1) occurs. When the interior of C_2 is dominated by u_1 and u_3 , as in Case 3.4, (2) occurs.

Reversing the roles of the cycles C_1 and C_2 , we observe that this case is identical to Case 3.2, hence G contains \mathcal{H} as a subgraph, so $n \leq 3\Delta - 1$.

Case 3.4: The dislocated cycles C_1 and C_2 share the vertex $v_3 = u_1$ and $Int(C_2)$ is dominated by $\{u_1, u_3\}$ (see Figure 9 (2)).

By Theorem 4.7, there are vertices z_1 and z_2 in $Int(C_2)$ such that $P_2 : v_3, z_1, z_2, u_3$ is a path in G. Since $d(w_1, z_2) \leq 3$, we have that v_1 and u_3 are adjacent. Thus \mathcal{I} is a subgraph of G.

Case 4: The dislocated cycles C_1 and C_2 are disjoint.

In this case, no vertex of C_2 is adjacent to w_1 , so C_2 dominates its interior. By Theorem 4.7, and without loss of generality, there are vertices z_1 and z_2 in the interior of C_2 and edges u_1z_1 , z_1z_2 and z_2u_3 . Since G has diameter 3, we have that $d_G(w_i, z_j) \leq 3$ for any indices i and j in $\{1, 2\}$. Since G is triangle-free, it contains all four edges of the form u_iw_k , where i and k are in $\{1, 3\}$. However, noting the 4-cycle on v_1, u_1, v_3, u_3 , we see that G contains \mathcal{H} as a subgraph.

Case 5: The dislocated cycles C_1 and C_2 share exactly two non-adjacent vertices.

Figure 10: In (1), the dislocated 4-cycles C_1 and C_2 share vertices $v_1 = u_1$ and $v_3 = u_3$, as in Case 5.1 of Theorem 6.3. In Figure (2), the cycles share vertices $v_2 = u_1$ and $v_4 = u_3$, as in Case 5.2.

Up to symmetry, there are two subcases to consider. Either $v_1 = u_1$ and $v_3 = u_3$ are common to both C_1 and C_2 , or the vertices $v_2 = u_2$ and $v_4 = u_4$ are. In both cases, since C_1 and C_2 are dislocated, the set $\{u_2, u_4\}$ of vertices dominates the interior of C_2 (it does not dominate the exterior, as neither is adjacent to w_1). Thus, in both cases, by Theorem 4.7, there are vertices z_1 and z_2 in $Int(C_2)$ such that $P_2: u_2, z_1, z_2, u_4$ is a path in G.

Case 5.1: The vertices v_1 and v_3 are common to C_1 and C_2 (see Figure 10 (1)). Consider the cycle $C : v_1, v_2, v_3, u_4$. Since z_1 is not adjacent to a vertex of C, the cycle C dominates its interior. If $\{v_1, v_3\}$ dominates Int(C), then C and C_2 are dislocated 4-cycles sharing three vertices, and by Case 2 we have that $n \leq 3\Delta - 1$. Similarly, if $\{v_2, u_4\}$ dominates Int(C), then C and C_1 are dislocated.

Case 5.2: The vertices v_2 and v_4 are common to C_1 and C_2 (see Figure 10 (2)). Denote by C' the cycle on v_2, v_3, v_4, u_4 . By the argument of the preceding paragraph, C' and C_1 are dislocated 4-cycles. Thus, by Case 2, $n \leq 3\Delta - 1$. **Lemma 6.4.** Let G be a pentagulation of diameter 3, order n and maximum degree Δ . If G contains \mathcal{I} as a subgraph, then $n \leq 3\Delta - 1$.

Proof. Let G be a pentagulation of diameter 3, order n and maximum degree Δ that contains \mathcal{I} as a subgraph. Let the vertices of \mathcal{I} be labeled as they are in Figure 5, such that the vertices w_1 and z_1 lie in the interiors of the 4-cycles $C_1 : v_1, v_2, v_3, v_7$ and $C_2 : v_3, v_4, v_5, v_6$, respectively. Since G is triangle-free (Corollary 3.6), the subgraph \mathcal{I} is an induced subgraph of G. Therefore, $d_G(z_2, C_1) = 2$, and by a similar argument, $d_G(w_1, C_2) = 2$. Hence the cycles C_1 and C_2 dominate their interiors by Lemma 2.1. In particular, the set $\{v_1, v_3\}$ dominates $\operatorname{Int}(C_1)$, and $\{v_3, v_5\}$ dominates $\operatorname{Int}(C_2)$. We refine our choice of embedding of G (or equivalently, our choice of subgraph isomorphic to \mathcal{I}), so that the interiors of the cycles C_1 and C_2 are maximal. In other words, there does not exist a 4-cycle C'_1 such that $\operatorname{Int}(C_1) \subset \operatorname{Int}(C'_1)$ and $\operatorname{Int}(C'_1)$ is dominated by $\{v_1, v_3\}$, and likewise for C_2 . Assume for the sake of contradiction that $n > 3\Delta - 1$. Suppose that every vertex of $V(G) - V(\mathcal{I})$ is adjacent to at least one of v_1, v_3 or v_5 . Then:

$$n = |V(\mathcal{I})| + |V(G) - V(\mathcal{I})|$$

$$\leq 11 + (d(v_1) - 4) + (d(v_3) - 6) + (d(v_5) - 4)$$

$$\leq 11 + 3\Delta - 14 = 3\Delta - 3 < 3\Delta - 1.$$

Thus assume that G contains vertices in $V(G) - V(\mathcal{I})$ that are not adjacent to any of v_1, v_3 or v_5 . Let x be such a vertex, and label the faces r_0, r_1, \ldots, r_5 of \mathcal{I} as they are labeled in Figure 5. The regions $r_1 \cup r_2$, and $r_3 \cup r_4$ are dominated by the 4-cycles C_1 and C_2 , respectively, and as such any vertex added to these regions is adjacent to a vertex in the set $\{v_1, v_3, v_5\}$. Thus we assume that x is not in any of the regions r_1, r_2, r_3 or r_4 . By the symmetry of r_0 and r_5 , we assume without loss of generality that x is in r_5 . If x is adjacent to v_2 and v_4 , then we induce a 4-cycle $C: v_2, x, v_4, v_3$ which shares an edge with the cycle C_1 . Since $d(w_1, C) = 2$, C dominates its interior. Thus C and C_1 are dislocated 4-cycles that share an edge, so $n \leq 3\Delta - 1$ by Theorem 6.3, a contradiction. Hence we assume that x is not adjacent to both v_2 and v_4 . There are two cases to consider.

Case 1: The vertex x is not adjacent to either v_2 or v_4 .

Since the diameter of G is 3, x is within distance 3 of each of w_1, w_2, z_1, z_2 . Thus x has neighbors y_1, y_2 and y_3 in r_5 such that y_1v_1, y_2v_3 and y_3v_5 are all edges in G. Note that $y_1 \neq y_3$ as this induces a triangle with vertex set $\{v_1, y_1, v_5\}$. We claim that $y_1 \neq y_2$. Assume to the contrary that $y_1 = y_2$, and let C be the 4-cycle on v_1, v_2, v_3, y_1, v_1 . Note that $d_G(z_2, C) = 2$, so C dominates its interior. By the maximality of C_1 , we deduce that C and C_1 are dislocated 4-cycles that share more than one vertex. Thus $n \leq 3\Delta - 1$ by Theorem 6.3, proving the claim. Similarly $y_2 \neq y_3$, so the three vertices y_1, y_2 and y_3 are distinct. The paths $Q_1 : v_1, y_1, x,$ $Q_2 : v_3, y_2, x$ and $Q_3 : v_5, y_3, x$ divide r_5 up into three sub-regions. Let r_6 denote the region with vertices $v_1, v_2, v_3, y_2, x, y_1$ on its boundary, let r_7 be bounded by $v_3, y_2, x, y_3, v_5, v_4$, and let r_8 be bounded by v_1, y_1, x, y_3, v_5 . We claim that the subgraph $\mathcal{I}' = \mathcal{I} \cup Q_1 \cup Q_2 \cup Q_3$ of G is an induced subgraph. Any edge between two vertices on the boundary of any region r_0, \ldots, r_4 induces a triangle, which is not possible since G is triangle-free. Similarly, no edge crosses r_8 . Any edge crossing r_6 either creates a triangle, which is not possible, or a 4-cycle C such that C_1 and C are two dislocated 4-cycles which share at least two vertices. By Theorem 6.3, we have $n \leq 3\Delta - 1$, contrary to assumption. The argument that no edges cross the region r_7 is similar to the argument for r_6 , just replace the role of C_1 with C_2 . This proves the claim.

If there exists a vertex in r_6 , it is adjacent to v_1 or v_3 since it is within distance 3 of z_2 . Similarly, any vertex in r_7 is adjacent to v_3 or v_5 as it is within distance 3 of w_1 . No vertex lies in r_8 , as it would be adjacent to both v_1 and v_5 to be within distance 3 of w_2 and z_1 respectively, inducing a triangle on y_4, v_1, v_5 . Any vertex of r_0 is at distance 3 or less from x, and thus is adjacent to one of v_1, v_3 or v_5 . The subgraph \mathcal{I}' has 15 vertices, and every vertex of $G - \mathcal{I}'$ is adjacent to one of v_1, v_3 or v_5 . Noting that $d_{\mathcal{I}'}(v_1) = 5$, $d_{\mathcal{I}'}(v_3) = 7$ and $d_{\mathcal{I}'}(v_5) = 5$, we can bound the order of G:

$$n \le 15 + (d(v_1) - 5) + (d(v_3) - 7) + (d(v_5) - 5)$$

$$\le 3\Delta - 2 < 3\Delta - 1.$$

Case 2: The vertex x is adjacent to v_2 .

By assumption, x is not adjacent to any of v_1 , v_3 , v_4 or v_5 , and $d(x, z_2) \leq 3$. As no two vertices on the boundary of r_5 are adjacent, there exists some vertex y_1 in r_5 such that there is a path $S_1 : v_2, x, y_1, v_5$ in G. We claim that $\mathcal{I} \cup S_1$ is an induced subgraph of G. Since G is triangle-free, no edges crosses a region bounded by a 5cycle. Thus the only possible region of $\mathcal{I} \cup S_1$ with a chord is the region bounded by the two paths S_1 and v_2, v_3, v_4, v_5 . However, any edge between the vertices bounding this region creates either a triangle, which is impossible, or two 4-cycles A_1 and A_2 . In all cases, every vertex of A_1 and A_2 is distance at least 2 from w_1 , so A_1 and A_2 dominate their interiors. Thus, for some i and j in $\{1, 2\}$, the cycles C_i and A_j are a pair of dislocated 4-cycles that share at least two vertices. By Theorem 6.3, we have $n \leq 3\Delta - 1$, proving the claim.

Because $d_G(y_1, w_2) \leq 3$, and since $\mathcal{I} \cup S_1$ is an induced subgraph of G, there exists some vertex y_2 in $r_5 - \{x, y_1\}$ such that G contains the path $S_2 : y_1, y_2, v_3$. Let $\mathcal{I}'' = \mathcal{I} \cup S_1 \cup S_2$, and note that the paths S_1 and S_2 divide r_5 into three sub-regions: $r_6 = \text{Int}(v_1, v_2, x, y_1, v_5), r_7 = \text{Int}(v_2, v_3, y_2, y_1, x)$ and $r_8 = \text{Int}(v_3, y_2, y_1, v_5, v_4)$. We show that any vertex in $G - \mathcal{I}''$ is adjacent to one of v_1, v_3 or v_5 . Since G is trianglefree, and every face of \mathcal{I}'' is bounded by a 5-cycle, \mathcal{I}'' is an induced subgraph of G. As such, the only vertices on the boundary of r_6 within distance 2 of w_2 are v_1 and v_2 . The region r_6 is empty by Lemma 4.1, as it is dominated by two adjacent vertices. Similarly r_7 is empty, as the only vertices on the boundary of r_7 within distance 2 of w_1 are the adjacent pair v_2 and v_3 . Any vertex in r_8 is adjacent to either v_3 or v_5 , as it is distance at most 3 from w_1 . Any vertex in r_0 is adjacent to one of v_1, v_3 or v_5 as it is distance at most 3 from x. Note that \mathcal{I}'' has 14 vertices, and that $d_{\mathcal{I}''}(v_1) = 4$, $d_{\mathcal{I}''}(v_3) = 7$ and $d_{\mathcal{I}''}(v_5) = 5$. Any vertex of $G - \mathcal{I}''$ is adjacent to one of v_1, v_2 or v_3 , so we can bound the order of G:

$$n \leq 14 + (d(v_1) - 4) + (d(v_3) - 7) + (d(v_5) - 5) \leq 3\Delta - 2.$$

In every case, we have derived a contradiction, completing the proof.

Theorem 6.5 follows immediately from Lemma 6.1, Theorem 6.3 and Lemma 6.4.

Theorem 6.5. Let G be a pentagulation of diameter 3, order n and maximum degree $\Delta \geq 8$. If G contains either a dominating 4-cycle, or two dislocated 4-cycles, then $n \leq 3\Delta - 1$.

7 Bounding the order, part II: The lonely 4-cycle

We show that if a pentagulation contains some 4-cycle, but no dislocated pair of them, then it satisfies $n \leq 3\Delta - 1$. Throughout this section, we work with pentagulations of diameter 3 that contain some 4-cycle C. Assume without loss of generality that Cdominates its interior. This motivates the following terminology. The 4-cycle C of a plane graph is **interior maximal** if it dominates its interior, and there does not exist any other 4-cycle C' such that C' dominates its interior, and $Int(C) \subset Int(C')$.

Lemma 7.1. Let G be a pentagulation of diameter 3 that does not contain two dislocated 4-cycles, and let C be an interior maximal 4-cycle of G. If D is any cycle in Ext[C] of length at most 7, then D is chordless.

Proof. Assume to the contrary D has some chord e. By Corollary 3.6, $D \cup \{e\}$ has no 3-cycle, so $D \cup \{e\}$ induces a 4-cycle. Either this 4-cycle contradicts the maximality of C, or is dislocated from C, and both cases yield a contradiction. \Box

Lemma 7.2. Let G be a pentagulation of diameter 3 that does not contain two dislocated 4-cycles, and let C be an interior maximal 4-cycle of G. If D is any 5-cycle in G such that both $Int(D) \subset Ext(C)$ and Int(D) is dominated by two or fewer vertices of D, then Int(D) does not contain any vertex of G.

Proof. By Lemma 4.1, the interior of D is not dominated by either a single vertex of D, or an adjacent pair of vertices in D. Assume to the contrary that there is a vertex w in Int(D), and let u and v be two non-adjacent vertices of D that dominate Int(D). By Corollary 4.5, the vertex w is adjacent to both u and v. Thus, there exists some 4-cycle A in Int[D] that dominates its interior. The cycle A either contradicts the maximality of C, or A and C are dislocated.

Theorem 7.3. Let G be a pentagulation of diameter 3, order n and maximum degree $\Delta \geq 8$. If G contains a 4-cycle, then $n \leq 3\Delta - 1$.

Proof. Assume to the contrary that G contains a 4-cycle $C_1 = v_1, v_2, v_3, v_4$, and has order $n > 3\Delta - 1$. By Theorem 6.5, there are no two dislocated 4-cycles in G. Assume without loss of generality that C_1 is interior maximal, and that $Int(C_1)$ is

dominated by $\{v_1, v_3\}$. By Theorem 4.7, there exist vertices w_1 and w_2 in $Int(C_1)$ such that $P_1: v_1, w_1, w_2, v_3$ is a path in G. If every vertex of G is adjacent to either v_1 or v_3 , then $n \leq 2\Delta < 3\Delta - 1$, so there exists some vertex of G in $Ext(C_1)$ which is not adjacent to v_1 or to v_3 . We consider two cases, according to whether or not the vertices v_2 and v_4 have neighbors in $Ext(C_1)$.

Figure 11: In Case 1, since the vertex y_1 is not an end-vertex, there exists some neighbor y_2 of y_1 (1). Since the diameter of G is 3, it contains $y_2 - w_1$ and $y_2 - w_2$ paths, forcing the subgraph \mathcal{G} (2).

Case 1: The vertex v_2 has at least one neighbor in $Ext(C_1)$.

Let y_1 be a vertex in the exterior of C_1 that is adjacent to v_2 . The vertex y_1 is not adjacent to either v_1 or v_3 as this induces a triangle, contradicting Corollary 3.6. Further, y_1 is not adjacent to v_4 as this induces a 4-cycle on the vertices v_2, y_1, v_3, v_4 , contradicting the fact that G does not contain two dislocated 4-cycles. Since G is 2-connected, there is some vertex y_2 in $\text{Ext}(C_1)$ to which y_1 is adjacent (see Figure 11 (1)).

Figure 12: If G is a diameter 3 pentagulation that contains some 4-cycle, but no two dislocated 4-cycles, it must contain one of \mathcal{G} or \mathcal{K} as a subgraph, by Cases 1 and 2 respectively in the proof of Theorem 7.3. The black vertices of \mathcal{K} are not adjacent to any vertices of $G - \mathcal{K}$.

Note that $d(y_2) \geq 2$, and there exist $y_2 - w_1$ and $y_2 - w_2$ paths of length at most 3. Since G is triangle-free, the vertices y_2 and v_2 are not adjacent. Further, y_2 is not adjacent to either v_1 or v_3 , as this induces a 4-cycle dislocated from C_1 on the vertices v_1, v_2, y_1, y_2 or v_3, v_2, y_1, y_2 respectively. Finally, y_1 is not adjacent to v_4 , as this induces \mathcal{H} as a subgraph of G, which yields a contradiction by Lemma 6.2. Since no $y_2 - w_1$ or $y_2 - w_2$ geodesic can be formed with the vertices mentioned thus far, there exist vertices y_3 and y_4 in $\text{Ext}(C_1)$ such that y_2y_3 , y_3v_1 , y_2y_4 and y_4v_3 are edges in G (see Figure 11 (2)). Note that $y_3 \neq y_4$, as this would again induce \mathcal{H} as a subgraph of G. Let \mathcal{G} denote the subgraph of G constructed thus far (see Figure 12). Applying Lemma 7.1, we deduce that \mathcal{G} is an induced subgraph of G. Thus, the only two vertices of the 5-cycle $C_3 : v_1, v_2, y_1, y_2, y_3$ within distance 2 of w_2 are v_1 and v_2 , so $\{v_1, v_2\}$ dominates $\text{Int}(C_2)$. Hence, by Lemma 4.1, there is no vertex in Int(C). Similarly, there is no vertex in the region bounded by the cycle $C_4 : v_2, y_1, y_2, y_4, v_3$. Any vertex of G not adjacent to v_1 or v_3 for which we have not yet accounted lies in the external region of the cycle $C_2 : v_1, y_3, y_2, y_4, v_3, v_4$. There are four subcases to consider.

Case 1.1: There exists some vertex u_1 in $Ext(C_2)$ adjacent to v_4 .

Since G is triangle-free, u_1 is not adjacent to either v_1 or v_3 . Because G does not contain two dislocated 4-cycles, u_1 is adjacent to neither y_3 nor y_4 . Thus, any $u_1 - y_1$ geodesic contains the vertex y_2 . Either u_1 is adjacent to y_2 , or there exists a vertex u_2 in the exterior of C_2 such that $P_2 : u_1, u_2, y_2, y_1$ is a geodesic in G. If u_1 and y_2 are adjacent, then $\text{Ext}(C_2)$ is subdivided into 2 regions: the region r_1 with vertices u_1, v_4, v_1, y_3 and y_2 on its boundary, and the region r_2 with u_1, v_4, v_3, y_4 and y_2 on its boundary. The subgraph $\mathcal{G} \cup \{u_1, u_1v_4, u_1y_2\}$ is an induced subgraph of G, so the only vertices on the boundary of r_1 within distance 2 of w_2 are the adjacent pair v_1 and v_4 . The region r_1 is dominated by two adjacent vertices of the 5-cycle bounding it, so by Lemma 4.1, r_1 is empty. Similarly, the region r_2 is empty, so every vertex of G not yet mentioned is adjacent to either v_1 or v_3 , and we can bound the order of G:

$$n = |V(\mathcal{G}) \cup \{u_1\}| + |V(G) - V(\mathcal{G}) - \{u_1\}|$$

$$\leq 11 + (d(v_1) - 4) + (d(v_3) - 4) \leq 2\Delta + 3 \leq 3\Delta - 1.$$

This contradicts our assumption, and so the geodesic contains u_2 (see Figure 13). Let $\mathcal{G}' = \mathcal{G} \cup P_2 \cup \{u_1v_4\}$. By Lemma 7.1, \mathcal{G}' is an induced subgraph of G. Since $d(u_2, w_1) \leq 3$, there is some vertex u_3 that is adjacent to both u_2 and v_1 . Similarly, because $d(u_2, w_2) \leq 3$, there exists a vertex $u_4 \neq u_3$ that is adjacent to u_2 and v_4 (see Figure 13).

The region $\operatorname{Ext}(C_2)$ is divided into four subregions, all of which are bounded by 5-cycles. Label these regions: $r_1 = \operatorname{Int}(u_1, v_4, v_1, u_3, u_2)$, $r_2 = \operatorname{Int}(v_1, u_3, u_2, y_2, y_3)$, $r_3 = \operatorname{Ext}(u_1, v_4, v_3, u_4, u_2)$, $r_4 = \operatorname{Int}(v_3, y_4, y_2, u_2, u_4)$ (see Figure 13). The only two vertices on the boundary of r_1 within distance 2 of w_2 are v_1 and v_4 . Thus the adjacent pair $\{v_1, v_4\}$ dominates r_1 , and by Lemma 4.1, r_1 is empty. Similarly, r_3 is empty. The only vertex on the boundary of r_2 within distance 2 of w_2 is v_1 , and so r_2 is dominated by v_1 . By Lemma 4.1, the regions r_2 and r_4 are empty. We deduce that all vertices of G not yet mentioned lie in the interior of C_1 , and hence are adjacent to either v_1 or v_3 . This allows us to bound the order of G:

$$n = |V(\mathcal{G}') \cup \{u_3, u_4\}| + |V(G) - V(\mathcal{G}') - \{u_3, u_4\}|$$

$$\leq 14 + (d(v_1) - 5) + (d(v_3) - 5) \leq 2\Delta + 4 \leq 3\Delta - 1$$

Figure 13: In Case 1.1 of the proof of Theorem 7.3, we assume that there is a vertex u_1 adjacent to v_4 . As a result, we obtain first that \mathcal{G}' is a subgraph of G (left), and then that G also contains the vertices u_3 and u_4 (right).

Case 1.2: There is some vertex u_1 in $Ext(C_2)$ that is adjacent to y_2 , but no vertex in $Ext(C_2)$ adjacent to v_4 .

Since G is triangle-free, u_1 is adjacent to neither y_3 nor y_4 . Because G does not contain two dislocated 4-cycles, u_1 is adjacent to neither v_1 nor v_3 . Because $d(u_1, w_1) \leq 3$ and $d(u_1, w_2) \leq 3$, there are vertices u_2 and u_3 in $\text{Ext}(C_2)$ such that $Q_1 : u_1, u_2, v_1$ and $Q_2 : u_1, u_3, v_3$ are paths in G. Note that $u_2 \neq u_3$, as this would induce a 4-cycle on the vertex set $\{u_2, v_1, v_4, v_3\}$. This 4-cycle is either dislocated from C_1 , contradicting our assumption, or it is not dislocated from C_1 , contradicting the maximality of C_1 . Denote by \mathcal{G}^* the graph $\mathcal{G} \cup Q_1 \cup Q_2 \cup \{y_2 u_1\}$, and observe that \mathcal{G}^* is chordless by Lemma 7.1 (see Figure 14).

Consider the cycle $C_5 : v_1, u_2, u_1, y_2, y_3$. The only vertex on the boundary of $\operatorname{Int}(C_5)$ that is within distance 2 of w_2 is v_1 , so v_1 dominates $\operatorname{Int}(C_5)$. By Lemma 4.1, $\operatorname{Int}(C_5)$ is empty. Similarly, the interior of the cycle $C_6 : v_3, u_3, u_1, y_2, y_4$ is empty. Observe that if every vertex of $G - \mathcal{G}^*$ were adjacent to v_1 or v_3 , then the order of G would be bounded as follows:

$$n = |V(\mathcal{G}^*)| + |V(G) - V(\mathcal{G}^*)|$$

$$n \le 13 + (d(v_1) - 5) + (d(v_3) - 5) \le 2\Delta + 3 \le 3\Delta - 1.$$

This contradicts our assumption, and thus there is a vertex x_1 of $G - \mathcal{G}^*$ not adjacent to v_1 or v_3 . This vertex lies in the face of \mathcal{G}^* bounded by $C_7 = u_2, u_1, u_3, v_3, v_4, v_1$, which we will refer to, without loss of generality, as the exterior of C_7 . Since \mathcal{G}^* is an induced subgraph of G, the distance $d_G(y_1, C_7) = 2$, and $\{v_1, v_3, u_1\}$ is the set of vertices of C_7 that are at distance exactly 2 from y_1 . Because G has diameter 3, we conclude that x_1 is adjacent to u_1 . Since G is both triangle-free and does not contain a pair of dislocated 4-cycles, the vertex x_1 is not adjacent to any of the vertices of

Figure 14: In Case 1.2, we obtain first that \mathcal{G}^* , and then \mathcal{G}^{**} , are subgraphs of G. The black vertex v_4 does not have any neighbors in G besides v_1 and v_3 .

 $V(C_7) - \{u_1\}$. As $d_G(x_1, w_1) \leq 3$ and $d_G(x_1, w_2) \leq 3$, there exist vertices x_2 and x_3 in Ext(C_7) such that $Q_3 : x_1, x_2, v_1$ and $Q_4 : x_1, x_3, v_3$ are paths in G. These two vertices are distinct, for if they were not, the 4-cycle on x_2, v_1, v_4, v_3 would be dislocated from C_1 , a contradiction. Let $\mathcal{G}^{**} = \mathcal{G}^* \cup Q_3 \cup Q_4$ (see Figure 14 (\mathcal{G}^{**})). We now label the regions of \mathcal{G}^{**} as follows. Let $r_1 = \text{Int}(v_1, x_2, x_1, u_1, u_2), r_2 = \text{Int}(v_1, u_2, u_1, y_2, y_3), r_3 = \text{Int}(v_3, u_3, u_1, y_2, y_4), r_4 = \text{Int}(v_3, x_3, x_1, u_1, u_3)$ and $r_0 = \text{Ext}(v_1, x_2, x_1, x_3, v_3, v_4)$. Other than r_0 , all of these regions are bounded by 5-cycles. The regions r_1 and r_2 are both empty, as the only vertex on either of their boundaries within distance 2 of w_2 is v_1 , and by Lemma 4.1, no single vertex of a Jordan separating 5-cycle dominates the interior of that cycle. Similarly, the regions r_3 and r_4 are empty as the only vertex on their boundaries within distance 2 of w_1 is v_3 . Any vertex of r_0 is adjacent to one of v_1 or v_3 , as these are the only two vertices on the boundary of r_0 within distance 2 of y_1 . Thus all vertices of $G - \mathcal{G}^{**}$ are adjacent to either v_1 or v_3 . This yields the following contradiction, and shows that no vertex of Ext(C_2) is adjacent to y_2 :

$$n = |V(\mathcal{G}^{**})| + |V(G) - V(\mathcal{G}^{**})|$$

$$\leq 16 + (d(v_1) - 6) + (d(v_3) - 6)) \leq 2\Delta - 4 \leq 3\Delta - 1.$$

Case 1.3: There exists some vertex u_1 in $Ext(C_2)$ that is adjacent to y_3 , and no vertex of $Ext(C_2)$ is adjacent to either y_2 or v_4 .

Since G contains neither any 3-cycles, nor any pair of dislocated 4-cycles, the vertex u_1 is not adjacent to any vertex of $C_2 - \{v_3\}$. Thus there are only two ways we can have $d(u_1, w_2) \leq 3$: either G contains the edge u_1v_3 , or there is some vertex u_2 in $\text{Ext}(C_2)$ such that $S_1 : y_3, u_1, u_2, v_3$ is a path in G (see Figure 15).

Suppose that u_1 and v_3 are adjacent. Denote by S_2 the path y_3, u_1, v_3 , and let $\mathcal{G}^{\flat} = \mathcal{G} \cup S_2$. By Lemma 7.1, \mathcal{G}^{\flat} is an induced subgraph of G. The path S_2

Figure 15: Case 1.3 assumes that there is a vertex u_1 adjacent to y_1 . In this case, either \mathcal{G}^{\flat} or \mathcal{G}^{\sharp} is a subgraph of G. The black vertices may not have neighbors in G not shown in the diagrams.

divides $\operatorname{Ext}(C_2)$ into two regions bounded by 5-cycles, $r_0 = \operatorname{Ext}(v_1, y_3, u_1, v_3, v_4)$ and $r_1 = \operatorname{Int}(y_3, u_1, v_3, y_4, y_2)$. The only vertices on the boundary of r_0 within distance 2 of y_1 are v_1 , v_3 and y_3 , so any vertex in r_0 is adjacent to one of these three. The only vertices on the boundary of r_1 within distance 2 of w_1 are v_3 and y_3 , so the set $\{v_3, y_3\}$ dominates r_1 , and we can bound the order of G.

$$n = |V(\mathcal{G}^{\flat})| + |V(G) - V(\mathcal{G}^{\flat})|$$

$$\leq 11 + (d(v_1) - 4) + (d(v_3) - 5) + (d(y_3) - 3) \leq 3\Delta - 1.$$

Since this contradicts our assumption, the graph G contains the path S_1 . Let $\mathcal{G}^{\sharp} = \mathcal{G} \cup S_1$, and observe by Lemma 7.1 that \mathcal{G}^{\sharp} is an induced subgraph of G. The region $\operatorname{Ext}(C_2)$ is divided into two sub-regions bounded by 6-cycles, $r_0 = \operatorname{Ext}(v_1, y_3, u_1, u_2, v_3, v_4)$ and $r_1 = \operatorname{Int}(y_3, u_1, u_2, v_3, y_4, y_2)$. The are only two vertices, y_3 and v_3 , on the 6-cycle bounding r_1 within distance 2 of w_1 . Thus $\{y_3, v_3\}$ dominates r_1 , and so by Lemma 4.4, there is some vertex u_3 in r_1 that is adjacent to both y_3 and v_3 . Let $\mathcal{G}^{\sharp\sharp} = \mathcal{G}^{\sharp} \cup \{u_3, u_3y_3, u_3v_3\}$. The only vertices on the boundary of r_0 within distance 2 of y_1 are v_1, v_3 and y_3 , so every vertex of r_0 is adjacent to one of these three vertices. Thus:

$$n = |V(\mathcal{G}^{\sharp\sharp})| + |V(G) - V(\mathcal{G}^{\sharp\sharp})| \\\leq 13 + (d(v_1) - 4) + (d(v_3) - 6) + (d(y_3) - 4) \leq 3\Delta - 1$$

This contradicts our assumption, and hence y_3 does not have a neighbor in $\text{Ext}(C_2)$. By the same argument, the vertex y_4 also does not have a neighbor in $\text{Ext}(C_2)$.

Case 1.4: The vertices v_4 , y_2 , y_3 and y_4 do not have any neighbors in $Ext(C_2)$. By cases 1.1 to 1.3, the only vertices of C_2 that can have neighbors in $Ext(C_2)$ are v_1 and v_3 . Further, both v_1 and v_3 are at distance 2 from y_1 , so any vertex in $Ext(C_2)$ is adjacent to either v_1 or v_3 in order to be within distance 3 of y_1 . Hence we get the following bound on n:

$$n = |V(\mathcal{G})| + |V(G) - V(\mathcal{G})|$$

$$\leq 10 + (d(v_1) - 4) + (d(v_3) - 4) \leq 2\Delta + 2 \leq 3\Delta - 1.$$

In all subcases, $n \leq 3\Delta - 1$, and so the vertex v_2 does not have a neighbor in $\text{Ext}(C_1)$. By symmetry, we further conclude that v_4 does not have any neighbors in $\text{Ext}(C_1)$. Case 2: Neither v_2 nor v_4 have any neighbors in G besides v_1 and v_3 .

As $n > 3\Delta - 1$, there is some vertex y_1 in G that is not adjacent to either v_1 or v_3 . Note that $d(y_1, C_1) > 1$, but $d(y_1, w_1) \leq 3$ and $d(y_1, w_2) \leq 3$. Therefore, there exist vertices y_2 and y_3 in the exterior of C_1 such that $P_2 : y_1, y_2, v_1$ and $P_3 : y_1, y_3, v_3$ are paths in G (see Figure 16 (\mathcal{K})). Note that $y_2 \neq y_3$. If $y_2 = y_3$, then there is a 4-cycle on y_2, v_1, v_2, v_3 , contradicting either the maximality of C_1 , or the assumption that G does not contain two dislocated 4-cycles. Let $\mathcal{K} = C_1 \cup P_1 \cup P_2 \cup P_3$, and name the cycle $C_2 : v_1, y_2, y_1, y_3, v_3, v_4$ (see Figure 16). Observe that, by Lemma 7.1, the subgraph \mathcal{K} is an induced subgraph of G. Since $n > 3\Delta - 1$ by assumption, there exists some vertex u_1 in $G - \mathcal{K}$ that is not adjacent to either v_1 or v_3 . We may assume without loss of generality that u_1 is in $\text{Ext}(C_2)$. The vertex u_1 is not adjacent to both of y_2 and y_3 as this creates a 4-cycle dislocated from C_1 , contradicting our assumption. There are two cases to consider.

Case 2.1: The vertex u_1 is adjacent to y_2 .

Since G contains neither triangles nor dislocated 4-cycles, u_1 is not adjacent to any vertex of $C_2 - \{y\}$. Since $d_G(u_1, w_2) \leq 3$, there is some vertex u_2 in $\text{Ext}(C_2)$ such that $Q_1 : y_2, u_1, u_2, v_3$ is a path in G. By Lemma 7.1, the graph $\mathcal{K} \cup Q_1$ is an induced subgraph of G. Thus the interior of the 6-cycle $C_3 : y_2, u_1, u_2, v_3, y_3, y_1$ is dominated by y_2 and v_3 , as these are the only vertices of the cycle within distance 2 of w_1 . By Lemma 4.4, there exists a vertex u_3 in $\text{Int}(C_3)$ such that $Q_2 : y_2, u_3, v_3$ is a path in G. The path Q_2 divides the region bounded by C_3 into two regions, each bounded by a 5-cycle. By Corollary 4.5, neither region contains any vertex of G. Let \mathcal{K}' denote the graph $\mathcal{K} \cup Q_1 \cup Q_2$ (see Figure 16), and observe by Lemma 7.1 that it is an induced subgraph of G.

Figure 16: In Case 2, neither v_4 nor v_2 have neighbors other than v_1 and v_3 . In this Case, G contains \mathcal{K} as a subgraph. In Case 2.1, G contains \mathcal{K}' as a subgraph.

If every vertex of $G - \mathcal{K}'$ is adjacent to one of v_1, v_3 or y_2 , then we obtain the

following contradiction:

$$n \le 12 + (d(v_1) - 4) + (d(v_3) - 6) + (d(y_2) - 4) \le 3\Delta - 2.$$

So there exists some vertex x_1 not adjacent to any of v_1 , v_3 or y_2 . Noting the symmetry between the interior of the cycle $C_4 : v_1, y_2, y_1, y_3, v_3, v_2$ and the exterior of the cycle $C_5 : v_1, y_2, u_1, u_2, v_3, v_4$, we may assume without loss of generality that x_1 is in the interior of C_4 .

Figure 17: In Case 2.1.1, G has the graph \mathcal{K}'' as a subgraph. In Case 2.1.2, the graph \mathcal{K}''' is a subgraph of G.

Case 2.1.1: The vertex x_1 is adjacent to y_1 .

Since G contains neither triangles nor dislocated 4-cycles, x_1 has no neighbors in $C_4 - \{y_1\}$. Since there exist $x_1 - w_1$ and $x_1 - w_2$ geodesics, there are vertices x_2 and x_3 in $Int(C_4)$ such that $Q_3 : y_1, x_1, x_2, v_1$ and $Q_4 : y_1, x_1, x_3, v_3$ are paths in G. Since C_1 is maximal and G does not contain dislocated 4-cycles, the vertices x_2 and x_3 are distinct. Denote $\mathcal{K}'' = \mathcal{K}' \cup Q_3 \cup Q_4$ (see Figure 17).

The exterior of the cycle on $v_1, y_2, u_1, u_2, v_3, v_4$ is dominated by $\{v_1, v_3, y_2\}$, as these are the only vertices of the cycle within distance 2 of x_1 . The two regions bounded by the 5-cycles on v_1, y_2, y_1, x_1, x_2 and v_3, y_3, y_1, x_1, x_3 do not contain any vertices by Lemma 4.1, as only v_1 of the former cycle is within distance 2 of w_2 , and only v_3 of the latter is within distance 2 of w_1 . Finally, the 6-cycle on the vertices $v_1, x_2, x_1, x_3, v_3, v_2$ is dominated by v_1 and v_3 , as these are the only two vertices of the cycle within distance 2 of u_1 . Thus every vertex of $G - \mathcal{K}''$ is adjacent to v_1, v_3 or y_2 , and we obtain a contradiction:

$$n = |V(\mathcal{K}'')| + |V(G) - V(\mathcal{K}'')|$$

$$\leq 15 + (d(v_1) - 5) + (d(v_3) - 7) + (d(y_2) - 4) \leq 3\Delta - 1$$

Case 2.1.2: The vertex x_1 is adjacent to y_3 .

The vertex x_1 is not adjacent to any vertex of $\mathcal{K} - \{y_3\}$. Since $d_G(x_1, w_1) \leq 3$, there exists a vertex x_2 such that $Q_5 : y_3, x_1, x_2, v_1$ is a path in G. Consider the 6-cycle $C_6 : v_1, y_2, y_1, y_3, x_1, x_2$. The only vertices of C_6 within distance 2 of w_2 are v_1 and y_3 . So by Lemma 4.4, there is a vertex x_3 in $Int(C_6)$ such that $Q_6 : v_1, x_3, y_3$ is a path in G. The path Q_6 divides $Int(C_6)$ into two regions bounded by 5-cycles, both

dominated by $\{v_1, y_3\}$. Denote $C_7 : v_1, y_2, u_1, u_2, v_3, v_4$. The only vertices of C_7 within distance 2 of x_1 are v_1 and v_3 , so $\text{Ext}(C_7)$ is dominated by $\{v_1, v_3\}$. The interior of the 6-cycle on $v_1, x_2, x_1, y_3, v_3, v_2$ is dominated by v_1 and v_3 , as these are the only two vertices of the cycle within distance 2 of u_1 . Thus, letting $\mathcal{K}'' = \mathcal{K}' \cup Q_5 \cup Q_6$ (see Figure 17), we derive a contradiction:

$$n = |V(\mathcal{K}''')| + |V(G) - V(\mathcal{K}''')| \le 15 + (d(v_1) + 6) + (d(v_3) - 6) + (d(y_3) - 4) \le 3\Delta - 1.$$

Case 2.1.3: The vertex x_1 is not adjacent to any vertex of \mathcal{K}' .

By the same argument as in Case 2.1.1, there are distinct vertices x_1 and x_2 in $Int(C_2)$ such that $Q_7 : x_1, x_2, v_1$ and $Q_8 : x_1, x_3, v_3$ are paths in G. Denote $\mathcal{K}^* = \mathcal{K}' \cup Q_7 \cup Q_8$ and consider the cycle $C_8 : x_1, x_2, v_1, y_2, y_1, y_3, v_3, x_3$. By Lemma 7.1, the interior of C_8 is the only region of \mathcal{K}^* that may contain a chord of \mathcal{K}^* . Because G contains neither triangles nor dislocated 4-cycles, and x_1 is not adjacent to y_1 , the only possible chords of \mathcal{K}^* are x_2y_3 and x_3y_2 . Since $d(u_1, x_1) \leq 3$, either x_3 is adjacent to y_2 , or there is some vertex y_4 adjacent to both x_1 and y_2 .

Figure 18: In the first sub-case of 2.1.3, the vertices y_2 and x_3 are adjacent, and G contains the subgraph \mathcal{K}^{\flat} . In the second sub-case, there is a vertex x_4 adjacent to both x_1 and y_2 , and G contains the subgraph \mathcal{K}^{\sharp} .

Subcase 2.1.3 - 1: The vertices x_3 and y_2 are adjacent.

Observe by Lemma 7.1 that $\mathcal{K}^* \cup \{x_3y_2\}$ is an induced subgraph of G. Since $d(x_2, y_3) \leq 3$, there is a vertex x_4 adjacent to both v_3 and x_2 . Denote $\mathcal{K}^{\flat} = \mathcal{K}^* \cup \{x_4, x_3y_2, v_3x_4, x_2x_4\}$. The exterior of the cycle on $v_1, y_2, u_1, u_2, v_3, v_4$ is dominated by v_1, v_3 and y_2 , as these are the only vertices of the cycle within distance 2 of x_1 . The interior of the 5-cycle on v_1, x_2, x_4, v_3, v_2 is dominated by v_1 and v_3 , as only these vertices of the cycle are within distance 2 of u_1 . The cycle on x_2, x_1, x_3, v_3, x_4 is dominated by x_3 and v_3 as these are the only two vertices within distance 2 of u_1 , and so by Lemma 4.1 the interior of this cycle contains no vertices. The interior of the 5-cycle on y_2, y_1, y_3, v_3, x_3 is dominated by v_3 and y_2 , as only these vertices of the cycle are at distance 2 from w_1 . The interior of the 5-cycle on v_1, y_2, x_3, x_1, x_2 is also empty by Lemma 4.1, as only y_2 and x_3 are within distance 2 of y_3 . Since the vertices of G not in \mathcal{K}^{\flat} are all adjacent to one of v_1, v_3 or y_2 , we can bound the order

of G.

$$n = |V(\mathcal{K}^{\flat})| + |V(G) - V(\mathcal{K}^{\flat})|$$

$$\leq 16 + (d(v_1) - 5) + (d(v_3) - 8) + (d(y_2) - 5) \leq 3\Delta - 2$$

Subcase 2.1.3 - 2: The graph G contains a vertex x_4 that is adjacent to x_1 and y_2 . Let \mathcal{K}^{\sharp} be the subgraph $\mathcal{K}^* \cup \{x_4, x_1x_4, y_2x_4\}$ of G, and observe by Lemma 7.1 that \mathcal{K}^{\sharp} is an induced subgraph of G. The exterior of the cycle on $v_1, y_2, u_1, u_2, v_3, v_4$ is dominated by v_1 , v_3 and y_2 , as these are the only vertices of the cycle within distance 2 of x_1 . The 7-cycle on $y_2, y_1, y_3, v_3, x_3, x_1, x_4$ is dominated by y_2 and v_3 as these are the only vertices within distance 2 of w_1 . The interior of the 5-cycle on v_1, y_2, x_4, x_1, x_2 is empty by Lemma 4.1, as it is dominated by v_1 , the only vertex of the cycle within distance 2 of w_2 . The interior of the 6-cycle on $v_1, x_2, x_1, x_3, v_3, v_2$ is dominated by v_1 and v_3 , the only vertices of the cycle within distance 2 of u_1 . Every vertex of G that is not in \mathcal{K}^{\sharp} is adjacent to one of v_1, v_3 or y_2 , so the order of G is bounded above:

$$n = |V(\mathcal{K}^{\sharp})| + |V(G) - V(\mathcal{K}^{\sharp})|$$

$$\leq 16 + (d(v_1) - 5) + (d(v_3) - 7) + (d(y_2) - 5) \leq 3\Delta - 1.$$

Case 2.2: The vertex u_1 is not adjacent to y_2 or y_3 .

Since $d_G(u_1, w_1) \leq 3$ and $d_G(u_1, w_2) \leq 3$, there exist vertices u_2 and u_3 in G such that $S_1 : u_1, u_2, v_1$ and $S_2 : u_1, u_3, v_3$ are paths in G. The vertices u_2 and u_3 are distinct, by the maximality of C_1 and the fact that G contains no dislocated 4-cycles. By Case 2.1, neither y_2 nor y_3 can have a neighbor in $G - \mathcal{K}$ which is not adjacent to v_1 or to v_3 . By symmetry, neither u_2 nor u_3 can have any neighbor in $G - \{u_1\}$ that is not adjacent to v_1 or to v_3 . Since G contains neither triangles nor dislocated 4-cycles, the only possible chords of the cycle on $v_1, u_2, u_1, u_3, v_3, y_3, y_1, y_2$ are y_1u_1, y_2u_3 and y_3u_2 . Up to symmetry, this leaves three possible ways to construct a $u_1 - y_1$ geodesic in G: with the edge y_2u_3 , with the edge u_1y_1 , or by (possibly repeated) subdivision of the edge u_1y_1 . We let $\mathcal{L} = \mathcal{K} \cup S_1 \cup S_2$ (see Figure 19).

Case 2.2.1: The vertices y_2 and u_3 are adjacent.

By Lemma 7.1, the subgraph $\mathcal{L} \cup \{y_2u_3\}$ is an induced subgraph of G. Since $d_G(y_3, u_2) \leq 3$, there exists some vertex x_1 in G such that either $S_3 : y_3, x_1, v_1$ or $S_4 : y_3, v_3, x_1, u_2$ is a path in G. Up to relabeling of the vertices and choosing the region bounded by $v_1, y_2, y_1, y_3, v_3, v_2$ to be the exterior region of our subgraph, these possibilities are the same. Hence we assume without loss of generality that S_3 is a $y_3 - u_2$ geodesic, and we denote by \mathcal{L}' the graph $\mathcal{L} \cup \{y_2u_3\} \cup S_3$ (see Figure 19). The interior of the 5-cycle on v_1, v_2, v_3, y_3, x_1 is dominated by v_1 and v_3 as these are the only vertices of the cycle within distance 2 of u_1 . The interiors of the two 5-cycles on v_1, y_2, y_1, y_3, x_1 and v_1, u_2, u_1, u_3, y_2 are dominated by the pairs v_1, y_3 and v_1, u_3 respectively, as these are the only vertices on the cycles within distance 2 of w_2 . The interior of the 5-cycle on y_2, u_3, v_3, y_3, y_1 is dominated by y_2 and v_3 , these being the only vertices of the cycle within distance 2 of w_1 . By Lemma 7.2, all four of the regions mentioned are empty. All vertices of G not in \mathcal{L}' lie in the exterior of

Figure 19: The graph G contains the subgraph \mathcal{L} in Case 2.2. It contains the subgraph \mathcal{L}' in Case 2.2.1.

the cycle on $v_1, u_2, u_1, u_3, v_3, v_4$. The vertices of this cycle within distance 2 of y_1 are v_1, v_3 and u_3 . Hence:

$$n = |V(\mathcal{L}')| + |V(G) - (V(\mathcal{L}'))|$$

$$\leq 13 + (d(v_1) - 6) + (d(v_3) - 5) + (d(u_3) - 3) \leq 3\Delta - 1.$$

This contradicts our assumption, so y_2 and u_3 are not adjacent. By symmetry, y_3 and u_2 are not adjacent.

Case 2.2.2: The vertices u_1 and y_1 are adjacent.

Note the interiors of the two 5-cycles on v_1, u_2, u_1, y_1, y_2 and v_3, u_3, u_1, y_1, y_3 are dominated by only the vertices v_1 and v_3 respectively, these being the only vertices of the cycles within distance 2 of w_2 and w_1 respectively. Thus by Lemma 4.1, both interiors are empty. Since $n > 3\Delta - 1$, there exists some vertex x_1 in $G - \mathcal{L}$ that is not adjacent to v_1 or v_3 . By symmetry between the exterior of the cycle on $v_1, u_2, u_1, u_3, v_3, v_4$ and the interior of the cycle on $v_1, y_2, y_1, y_3, v_3, v_2$, we assume without loss of generality that x_1 is in the interior of the latter cycle. By Case 2.1, the vertex x_1 is not adjacent to y_2 or y_3 . By the same argument as the one at the start of Case 2.2, there exist distinct vertices x_2 and x_3 in G such that $S_5 : x_1, x_2, v_1$ and $S_6 : x_1, x_3, v_3$ are paths in G. Let \mathcal{L}'' denote the graph $\mathcal{L} \cup \{y_1 u_1\} \cup S_5 \cup S_6$. Using both Lemma 7.1, and the fact that G contains neither triangles nor dislocated 4-cycles, we see that the only possible chords of \mathcal{L}'' are x_1y_1, x_2y_3 and x_3y_2 . The only possibilities for an $x_1 - u_1$ geodesic of length at most 3 require that G contains the edge x_1y_1 , or path x_1, z_1, y_1 , containing some new vertex z_1 . Let $\mathcal{L}^b = \mathcal{L}'' \cup \{x_1y_1\}$ and $\mathcal{L}^{\sharp} = \mathcal{L}'' \cup \{z_1, x_1z_1, z_1y_1\}$ (see Figure 20).

Suppose that G contains the path x_1, z_1, y_1 . By Lemma 7.1, the subgraph \mathcal{L}^{\sharp} is an induced subgraph of G. Since $d_G(z_1, w_1) \leq 3$ and $d_G(z_1, w_2) \leq 3$, there exist vertices z_2 and z_3 such that $S_7: z_1, z_2, v_1$ and $S_8: z_1, z_3, v_3$ are paths in G. By swapping the labels $z_1 \leftrightarrow x_1, z_2 \leftrightarrow x_2$ and $z_3 \leftrightarrow x_3$, we obtain \mathcal{L}^{\flat} as a subgraph of G. Thus to complete the proof of Case 2.2.2, it suffices to prove the following claim.

Figure 20: In Cases 2.2.2 and 2.2.3, the graph G always contains \mathcal{L}^{\flat} as a subgraph. If, in Case 2.2.2, G contains \mathcal{L}^{\sharp} as a subgraph, it will inevitably also have a \mathcal{L}^{\flat} subgraph.

Claim: If G contains \mathcal{L}^{\flat} as a subgraph, then $n \leq 3\Delta - 1$.

Consider the subgraph \mathcal{L}^{\flat} , and note that it is an induced subgraph of G by Lemma 7.1. There exist $x_2 - u_3$ and $x_3 - u_2$ geodesics of length at most 3 in G. Since \mathcal{L}^{\flat} is an induced subgraph of G, there are only two possible $x_2 - u_3$ geodesics, both of which use some vertex t_1 in $G - \mathcal{L}^{\flat}$. These possible geodesics are $X_1 : x_2, v_1, t_1, u_3$ and $X_2: x_2, t_1, v_3, u_3$. Up to relabeling of the vertices, and making the face of \mathcal{L}^{\flat} bounded by $v_1, x_2, x_1, x_3, v_3, v_2$ the outer face of the graph, the two plane graphs $\mathcal{L}^{\flat} \cup X_1$ and $\mathcal{L}^{\flat} \cup X_2$ are the same. Thus we assume without loss of generality that X_1 is a geodesic in G. By Lemma 7.1, the subgraph $\mathcal{L}^{\flat} \cup X_1$ is an induced subgraph of G. The only possible $x_3 - u_2$ geodesic is $X_3 : x_3, t_2, v_1, u_2$, where t_2 is not among the vertices mentioned thus far. Let $\mathcal{L}^* = \mathcal{L}^{\flat} \cup X_1 \cup X_2$, and observe that it is an induced subgraph of G by Lemma 7.1. The interior of the 5-cycle on v_1, t_2, x_3, v_3, v_2 is dominated by v_1 and v_3 , these being the only vertices of the cycle within distance 2 of u_1 . The interior of the 5-cycle on v_1, x_2, x_1, x_3, t_2 is dominated by v_1 and x_3 , as these are the only vertices of the cycle within distance 2 of w_2 . Similarly, the two regions bounded by 5-cycles that contain the vertex t_1 are also dominated by just two vertices. The interiors of the two 5-cycles on v_1, y_2, y_1, x_1, x_2 and v_3, y_3, y_1, x_1, x_3 are dominated by only v_1 and v_3 respectively, these being the only vertices of each cycle within distance 2 of w_1 and w_1 , respectively. Thus, all the regions mentioned above are empty by Lemma 7.2. As such, every vertex of $G - \mathcal{L}^*$ is in the interior of C_1 , and hence adjacent to v_1 or to v_3 . Hence we prove the claim with the following contradiction:

$$n = |V(\mathcal{L}^*)| + |V(G) - V(\mathcal{L}^*)|$$

$$\leq 17 + (d(v_1) - 8) + (d(v_3) - 6)$$

$$\leq 2\Delta + 3 \leq 3\Delta - 1.$$

Case 2.2.3: The $y_1 - u_1$ geodesic is the single edge y_1u_1 , subdivided either once or twice into a path of length 2 or 3 respectively. Assume there exists some vertex x_1 in $G - \mathcal{L}$ on the path $Y_1 : y_1, x_1, u_1$ in G, and note that $\mathcal{L} \cup Y_1$ is an induced subgraph of G by Lemma 7.1. Since the distance between x_1 and the vertices w_1 and w_2 is at most 3, there are paths x_1, x_2, v_1 and x_1, x_3, v_3 in G. But now we see that \mathcal{L}^{\flat} is a subgraph of G, and $n \leq 3\Delta - 1$ by the claim in Case 2.2.2. If we instead assume that there are vertices x_1 and z_1 on the path $Y_2 : y_1, x_1, z_1, u_1$, we again see that $\mathcal{L} \cup Y_2$ is an induced subgraph of G, and that G contains paths x_1, x_2, v_1 and x_1, x_3, v_3 . Similarly, the graph G will also have paths z_1, z_2, v_1 and z_1, z_3, v_3 , and we see that G contains \mathcal{L}^{\flat} as a subgraph. Again invoke the claim in Case 2.2.2 to complete the proof. \Box

8 Bounding the order, part III: Not a 4-cycle in sight

In this section, we show that a pentagulation G of diameter 3, order n and maximum degree $\Delta \geq 8$ contains at least one 4-cycle. The restriction $\Delta \geq 8$ is used heavily. As demonstrated by the rightmost graph in Figure 33, pentagulations of diameter 3 and $\Delta \leq 6$ need not have 4-cycles.

Lemma 8.1. Let G be a pentagulation with girth 5, and let v be a vertex of G. Then N(v) is an independent set, every vertex of $N_2(v)$ has a unique neighbor in N(v), and every vertex of N(v) has at least one neighbor in $N_2(v)$.

Proof. Since G contains no triangles, N(v) is an independent set. Because G contains no 4-cycles, any vertex of $N_2(v)$ has exactly one neighbor in N(v). As G is 2-connected and triangle-free, every vertex of N(u) has a neighbor in $N_2(v)$.

Lemma 8.2. If G is a pentagulation of girth 5, then G is either the cycle C_5 , or G does not contain two adjacent vertices of degree 2.

Proof. Assume to the contrary that G is a pentagulation of girth 5 other than C_5 that contains two adjacent vertices x and y of degree 2. Let w be the single vertex of $N_1(x) - \{y\}$ and z the vertex of $N_1(y) - \{x\}$. The path P: w, x, y, z lies on the boundary of two distinct faces f_1 and f_2 of G, each bounded by 5-cycles. Thus there exist two distinct vertices u and v that are both adjacent to w and z. Hence there is a 4-cycle u, w, v, x, contradicting the girth of G.

Consider a vertex v in a pentagulation G. Let \mathcal{F} be the subgraph of G consisting of the edges and vertices that lie on the boundary of any face incident with v. Given two vertices x and y of $N_2(v)$, call an x - y path Q of length k a **k-chord** (with respect to v) if both $(Q - \{x, y\}) \cap N_2(v) = \emptyset$ and $E(Q) \cap E(\mathcal{F}) = \emptyset$.

For example, consider the subgraph of a girth 5 pentagulation shown in Figure 21. The path $P: w_1, w_5$ is a 1-chord with respect to v, while $Q: w_5, z, w_8$ is a 2-chord. The edge w_1w_2 is not a 1-chord, since it belongs to \mathcal{F} . Notice that $\mathcal{F} \cup P$ contains a cycle $C_P: w_1, w_5, u_3, v, u_1$ formed by taking the union of the $w_1 - w_5$ 1-chord P

Figure 21: A vertex v in a pentagulation of girth five, and some of the edges and vertices near it. The dashed lines indicate some edges to parts of the graph not shown.

and the two unique $v - w_1$ and $v - w_5$ geodesics. One can construct another cycle $C_Q: w_5, z, w_8, u_5, v, u_3$ in the same fashion.

As the next lemma demonstrates, 1-chords and 2-chords with respect to some vertex will always induce cycles in the same manner that P and Q induce C_P and C_Q .

Lemma 8.3. Let G be a pentagulation with girth 5, and let v be a vertex of G such that $d(v) \ge 8$. Given distinct vertices x and y of $N_2(v)$, let $P: x, \ldots, y$ be a k-chord of v, and let u_x and u_y denote the unique vertices in $N(v) \cap N(x)$ and $N(v) \cap N(y)$ respectively. If $k \le 2$, then u_x and u_y are distinct, and P, u_y, v, u_x is a Jordan separating cycle.

Proof. There are unique vertices u_x and u_y as described, by Lemma 8.1. Assume to the contrary that $k \leq 2$, but that $u_x = u_y$. The cycle P, u_y has length k + 2 < 5, which contradicts the fact that g(G) = 5. Thus $u_x \neq u_y$, and so $C_P : P, u_y, v, u_x$ is a cycle. It remains to show that C_P is Jordan separating. Since C_P is a cycle of length 5 or 6, and $E(P) \cap E(\mathcal{F}) = \emptyset$, the cycle C_P is neither a facial cycle (P does not share an edge with a face incident to v), nor does it have any chords (as the girth of Gis 5). Thus C_P is a Jordan separating cycle.

Let v be a vertex of a girth 5 pentagulation, and let the path $Q : x, \ldots, y$ be a k-chord, for $k \in \{1, 2\}$, with respect to v. If u_x and u_y are the unique vertices of N(v) adjacent to x and y respectively, then the cycle $C_Q : Q, u_y, v, u_x$ is the **cycle under Q**. The chord Q is said to be **minimal** if C_Q dominates its interior, and there does not exist any k-chord (of the same length) Q' such that $\operatorname{Int}(C_{Q'}) \subset \operatorname{Int}(C_Q)$.

Theorem 8.4. Let G be a diameter 3, girth 5 pentagulation of maximum degree Δ , and let v be a vertex of G with maximum degree. If $\Delta \geq 8$, then there do not exist any 1-chords with respect to v.

Proof. We assume to the contrary that there exist vertices w'_0 and w'_j in $N_2(v)$, and some 1-chord Q': w'_1, w'_j with respect to v. Label the vertices of N(v) =

 $\{u'_0, u'_1, \ldots, u'_{\Delta-1}\}$ in clockwise order, so that u'_i and u'_{i+1} always lie on the boundary of the same face (subscripts taken modulo Δ). Let u'_0 and u'_j be the unique, distinct neighbors of w'_0 and w'_j respectively (these exist by Lemmas 8.1 and 8.3). Let $C_{Q'}$ denote the cycle under Q' with respect to v. By Lemma 8.3, $C_{Q'}$ is a Jordan separating cycle. Since the diameter of G is 3, the cycle $C_{Q'}$ dominates either its interior or its exterior. Embed G such that $C_{Q'}$ dominates its interior, and let Q be a minimal 1-chord in $\operatorname{Int}[C_{Q'}]$ (it is possible that Q = Q'). Relabel the vertices of N(v) and $N_2(v)$ so that the start and end vertices of Q are labeled w_0 and w_j respectively, the neighbors u_i of N(v) are still in clockwise order, and w_0u_0, w_ju_j are edges of E(G). Let f_i be the face incident with v that has vertices u_i and u_{i+1} on its boundary.

Claim 1: The inequality j < 3 holds (i.e., the interior of C_Q contains at most two faces incident with v).

We first assume to the contrary that $j \ge 4$ (see Figure 22). Let w_2 be a vertex of $N_2(v) \cap N(u_2)$ (which exists by Lemma 8.1). Since C_Q dominates its interior, w_2 is adjacent to some vertex of C_Q . Because G has girth 5, w_2 is not adjacent to any of u_0 , v or u_j . By the minimality of Q, w_2 is not adjacent to either w_0 or w_j , a contradiction.

Figure 22: This figure shows Claim 1 of Theorem 8.4. The cycle C_Q under the 1-chord Q is bold, and the unique $N_2(v)$ neighbor w_2 of u_2 is grey.

Now suppose for the sake of contradiction that j = 3. Let w_1 be a vertex of $N(u_1) \cap N_2(v)$, and w_2 a vertex of $N(u_2) \cap N_2(v)$. By minimality of Q, w_1 is not adjacent to w_j . Since G has girth 5, w_1 is not adjacent to u_0 , v or u_j . Because C_Q dominates its interior, w_1 is adjacent to w_0 . Similarly, w_2 is adjacent to w_j , but not to w_0 . This leaves two cases to consider.

Claim 1, Case 1: The degrees of u_1 and u_2 satisfy $d(u_1) = d(u_2) = 2$.

The path w_1, u_1, v, u_2, w_2 lies along the boundary of a face of G, so w_1 and w_2 are adjacent (see Figure 23 (1)). Thus the vertices w_0, w_1, w_2, w_j lie on a 4-cycle, contradicting the girth of G.

Claim 1, Case 2: either u_1 or u_2 has degree at least three.

Assume without loss of generality that u_1 has a vertex w'_1 of $N(u_1) \cap N_2(v)$ other than w_1 (see Figure 23 (2)). Since C_Q dominates its interior and G has no cycles of length 3 or 4, w'_1 is adjacent to either w_0 or w_j . The cycle under either the chord $w_0w'_1$ or the chord $w_jw'_1$ is contained strictly in $\text{Int}[C_Q]$, contradicting the minimality

Figure 23: If j = 3 in the proof of Claim 1, there are two possibilities. Either both u_1 and u_2 have degree two (1), as in Claim 1 Case 1, or one of them has degree at least three (2), as in Claim 1 Case 2.

of Q and proving Claim 1.

Since j < 3, there are at least five neighbors $u_3, u_4, \ldots, u_{\Delta-1}$ of v in $\text{Ext}(C_Q)$. We consider cases, according to whether or not w_0 and w_j have neighbors in $\text{Int}(C_Q)$. Case 1: Neither w_0 nor w_j have any neighbors in $\text{Int}(C_Q)$.

In $\operatorname{Int}[C_Q]$, the only neighbors of w_0 are u_0 and w_j , and the only neighbors of w_j are u_j and w_0 . Thus the path $P: u_0, w_0, w_j, u_j$ lies on the boundary of a face contained in $\operatorname{Int}(C_Q)$, so there is a vertex x such that the cycle P, x bounds a face. By the assumption that w_0w_j is a 1-chord with respect to v, we have $x \neq v$. Thus there is a 4-cycle on v, u_0, x, u_j , a contradiction (see Figure 24).

Figure 24: In Case 1, we assume that neither w_0 nor w_j has neighbors in $Int(C_Q)$ (and colour these vertices black to indicate this). In Case 2, we assume that w_0 has a neighbor in $Int(C_Q)$, but w_j does not.

Case 2: Either w_0 or w_j has a neighbor in $\operatorname{Int}(C_Q)$, but not both. Assume without loss of generality that there is a vertex x in $\operatorname{Int}(C_Q)$ that is adjacent to w_0 . If there are multiple vertices in $N_1(w_0) \cap \operatorname{Int}(C_Q)$, choose x such that the edges w_0w_j and w_0x lie on the boundary of a common face. Because w_j has no neighbor in $\operatorname{Int}(C_Q)$, the path $P: u_j, w_j, w_0, x$ lies on the boundary of some face f in the interior of C_Q . Thus there is some vertex y in $\operatorname{Int}[C_Q]$ such that the cycle P, y bounds f. As G has girth 5, the vertex y is in $N_2(v)$ (see Figure 24). There are a number of cases to consider, based on the structure of the faces f_j and f_{j+1} .

Case 2.1: There is some vertex s in $N_1(w_j) \cap N_1(u_{j+1})$, and $d(u_{j+1}) = 2$.

Let t be the neighbor of s on the boundary of the face f_{j+1} , and observe that t and u_{j+2} are adjacent (see Figure 25). Since the girth of G is 5, we observe the following:

- (1) the vertex w_i has no neighbors in the cycle v, u_i, w_i, s, u_{i+1} besides v and w_i ;
- (2) the vertex t is not adjacent to either w_0 or w_i ;
- (3) the vertex y is not adjacent to u_0, w_0 or w_j .

Thus there is no possible y - t path of length 3 or less, a contradiction.

Figure 25: The diagram on the left illustrates Case 2.1, in which $d(u_{j+1}) = 2$ and the vertex of $N_2(v) \cap N(u_{j+1})$ is adjacent to w_j . On the right is Case 2.2, in which $d(u_{j+1}) > 2$, and some vertex of $N_2(v) \cap N(u_{j+1})$ is adjacent to w_j .

Case 2.2: There is a vertex s in $N_1(w_j) \cap N_1(u_{j+1})$, and $d(u_{j+1}) \ge 3$. Since u_{j+1} has at least two neighbors in $N_2(v)$, the neighbor t of u_{j+1} on the boundary of f_{j+1} that is at distance 2 from v is distinct from s. Let z be the vertex of $N_2(v) - \{t\}$ incident with f_{j+1} (see Figure 25). Since G has girth 5, t is not adjacent to w_j . Since $d(t, y) \le 3$, the vertices t and w_0 are adjacent.

Because the diameter of G is 3, the vertices t and w_0 are adjacent to ensure that $d(t, y) \leq 3$. The vertex z is not adjacent to any vertex within distance 2 of y by planarity, and the fact that G has girth 5. Thus d(z, y) > 3, contradicting the diameter of G.

Case 2.3: There is no vertex in $N_1(w_j) \cap N_1(u_{j+1})$.

Let s and t be the vertices of $N_2(v)$, incident with f_j , and adjacent to u_j and u_{j+1} respectively. Note that s and t are adjacent. If t is incident with the face f_{j+1} , then t has a neighbor z in $N(u_{j+2})$ that is also incident with f_{j+1} (see Figure 26 (1)). If t is not incident with f_{j+1} , then there is a vertex z' in $N(u_{j+1}) - \{t\}$ that is incident with f_{j+1} (see Figure 26 (2)). There are three ways to construct a t - x geodesic of length at most 3.

Figure 26: In Case 2.3, either $d(u_{j+1}) = 2$, and t has some neighbor z incident with f_{j+1} (1), or $d(u_{j+1}) > 2$, and u_{j+1} has some neighbor z' other than t that is incident with f_{j+1} .

Case 2.3.1: The vertices t and w_0 are adjacent.

In this case, t, w_0, x is a geodesic. The graph G contains one of the vertices z or z' described above, and has girth 5, and so either d(z, y) > 3 or d(z', y) > 3, respectively. *Case 2.3.2:* There is a vertex $w_{\Delta-1}$ that is adjacent to t, w_0 and $u_{\Delta-1}$. The path $t, w_{\Delta-1}, w_0, x$ is a t-x geodesic (see Figure 27). One of z or z' is present in G, so by the planarity and girth constraints of G, either d(z, y) > 3 or d(z', y) > 3.

Figure 27: The left figure illustrates Case 2.3.2 in which t and $w_{\Delta-1}$ are adjacent. The right figure shows Case 2.3.3, under the assumption that G contains the vertex z' that is not adjacent to t.

Case 2.3.3: There is some vertex b, that is not adjacent to $u_{\Delta-1}$, but that is adjacent to both t and w_0 . Thus the t - x geodesic is t, b, w_0, x . If G contains z, which is adjacent to t, then z is not adjacent to w_0 as this induces a 4-cycle on z, w_0, b and t. Thus, if G contains z, we have the contradiction d(z, y) > 3. Therefore z' is a vertex of G. Let a be the vertex of $N_2(v) \cap N(z')$ that is incident with f_{j+1} (see Figure 27, Case 2.3.3). The only possible y - z' geodesic is z', w_0, x, y , so z' and w_0 are adjacent. As G is triangle-free, a and w_0 are not adjacent. Therefore d(a, y) > 3, concluding Case 2.

Case 3: The vertices w_0 and w_i each have a neighbor in $Int(C_Q)$.

Let x and y be vertices in $Int(C_Q)$ that are adjacent to w_0 and w_j , respectively. Since G has girth 5, x is not adjacent to any vertex of C_Q apart from w_0 , and y is not adjacent to any vertex of C_Q besides w_j . There are two subcases to consider.

Case 3.1: At least one of the vertices u_0 and u_j has a neighbor in $Ext(C_Q)$.

Assume without loss of generality that u_0 is adjacent to some vertex in $\text{Ext}(C_Q)$. Let s be the neighbor of u_0 in $\text{Ext}(C_Q)$ that is incident with the face $f_{\Delta-1}$, and let t be the other neighbor of s that is also incident with $f_{\Delta-1}$. Note that s is not adjacent to w_j , as this induces a 4-cycle on the vertices s, w_j, w_0 and u_0 . There are two ways that G may contain an s - y path of length at most 3, and we consider both as subcases.

Figure 28: In Case 3.1.1, there is an s-y path s, a, w_j, y containing some vertex a in $N_2(v) \cup N_3(v) - \{t\}$. In Case 3.1.2, the vertex t is adjacent to w_j , and s, t, w_j, y is an s-y path of length 3.

Case 3.1.1: There is some vertex $a \neq t$ that is adjacent to both s and w_j . The path s, a, w_j, y is the s - y geodesic (see Figure 28). Since G has girth 5, d(t, x) > 3, a contradiction.

Case 3.1.2: The vertices t and w_i are adjacent.

The s - y geodesic is s, t, w_j, y (see Figure 28). We consider the face $f_{\Delta-2}$. Either the vertex t is incident with this face, and there is a vertex z in $N_1(t) \cap N_1(u_{\Delta-2})$, or t is not incident with this face, and there is a vertex z' in $N_1(u_{\Delta-1}) \cap N_2(v)$. In both cases we derive a contradiction, as either d(z, x) > 3 or d(z', x) > 3.

Since Case 3.1 yields a contradiction, we may assume that neither u_0 nor u_j has a neighbor in $\text{Ext}(C_Q)$. Since u_0 has no neighbor in $\text{Ext}(C_Q)$, w_0 is incident with the face $f_{\Delta-1}$. Similarly, w_j is incident with f_j . Let s be the vertex of $N_1(w_0) - \{u_0\}$ that is incident with $f_{\Delta-1}$, and let w_{j+1} be the vertex of $N_1(w_j) - \{u_j\}$ that is incident with f_j . Case 3.2: The vertex $u_{\Delta-1}$ has degree at least 3.

In this case, s is only incident with the face $f_{\Delta-1}$, and not the face $f_{\Delta-2}$. Let t denote the neighbor of $u_{\Delta-1}$ that is incident with $f_{\Delta-2}$, and we let z be the vertex of $N(t) - \{u_{\Delta-1}\}$ that is incident with $f_{\Delta-2}$ (see Figure 29).

Figure 29: If $d(u_{\Delta-1}) > 2$, then distinct neighbors s and t of $u_{\Delta-1}$ are incident with the faces $f_{\Delta-1}$ and $f_{\Delta-2}$, respectively (Case 3.2). In Case 3.2.1, we consider the possibility that there is a t - y path of the form t, w_j, y .

Considering the girth and planarity of G, there are only three possibilities for a y - t geodesic.

Case 3.2.1: The vertices t and w_i are adjacent.

The t - y geodesic is t, w_j, y (see Figure 29). Since G has girth 5, there is no z - x path of length 3 or less, a contradiction.

Case 3.2.2: There is some vertex $a \neq z$ that is adjacent to both t and w_i .

It is possible that $a = w_{j+1}$, but this does not affect the argument. The t-y geodesic is t, a, w_j, y . Similar to Case 3.2.1, d(z, x) > 3.

Case 3.2.3: The vertices z and w_i are adjacent.

The t - y geodesic is t, z, w_j, y . Consider the vertex u_{j+1} . If it has degree 2, then there is a vertex $b \neq u_{j+1}$ that adjacent to w_{j+1} and incident with the face f_{j+1} . If $d(u_{j+1}) \geq 3$, then there exists a vertex $b' \neq w_{j+1}$ that is adjacent to u_{j+1} and incident with f_{j+1} . In either case, the vertex b or b' is not adjacent to w_j since G has girth 5. Whether G contains b or b', we obtain a contradiction, since either d(b, x) > 3 or d(b', x) > 3.

Case 3.3: The vertex $u_{\Delta-1}$ has degree 2.

The vertex s is the only neighbor of $u_{\Delta-1}$ besides v. Denote by t the vertex of $N_1(s) - \{u_{\Delta-1}\}$ that is incident with the face $f_{\Delta-2}$. Since G is a plane graph of girth 5, t is not adjacent to either w_0 or w_j . There are two subcases to consider: one for each way that G can exhibit a t - y geodesic.

Case 3.3.1: The vertices t and w_{i+1} are adjacent.

The t - y path is t, w_{j+1}, w_j, y . Either t or $u_{\Delta-2}$ has some neighbor z in $N_2(v)$ that has not yet been mentioned. We obtain a contradiction as d(z, x) > 3 (see Figure 30).

Figure 30: In Case 3.3, we assume that $u_{\Delta-1}$ has only two neighbors. In subcase 3.3.1, we consider what happens when the vertices t and w_{j+1} are adjacent.

Case 3.3.2: There is some vertex $b \neq w_{j+1}$ that is adjacent to both t and w_j . We have the y-t geodesic t, b, w_j, y . Either $d(u_{j+1}) = 2$, and so w_{j+1} has a neighbor in $N_2(v)$ incident with f_{j+1} , or $d(u_{j+1}) \geq 3$ and u_{j+1} has a neighbor in $N_2(v) - \{w_{j+1}\}$ incident with f_{j+1} . In either case, call this neighbor a, and note that d(a, x) > 3.

In all cases, we derive a contradiction, completing the proof.

Theorem 8.5. Let G be a pentagulation of diameter 3, girth 5 and maximum degree Δ , and let v be a vertex of G with maximum degree. If $\Delta \geq 8$, then G does not have any 2-chords with respect to v.

Proof. Assume for the sake of contradiction that there does exist some 2-chord with respect to v. Repeat the argument used at the start of the proof of Theorem 8.4, and adopt the same labeling convention for the vertices of N(v) and $N_2(v)$, and for the faces incident with the vertex v. There is a minimal 2-chord $Q: w_0, a, w_j$, where w_0 and w_j are vertices of $N_2(v)$, the vertex a lies in $N_3(v)$, and the cycle C_Q under Q dominates its interior. The vertices u_0 and u_j are the unique vertices of $N(v) \cap N(w_0)$ and $N(v) \cap N(w_j)$, respectively.

Claim 1: The index j satisfies j < 4.

Assume to the contrary that $j \ge 4$, and observe by Lemma 8.1 that u_2 has some neighbor w_2 in $N_2(v)$. By Theorem 8.4, the vertex w_2 is adjacent to neither w_0 nor w_j . Since G has girth 5, w_2 is not adjacent to either u_0 or u_j . Since C_Q dominates its interior, w_2 is adjacent to a. Thus w_2, a, w_0 is a 2-chord, which contradicts the minimality of Q and proves Claim 1.

Claim 2: It is not possible that both w_0 and w_i have neighbors in $Int(C_Q)$.

Assume to the contrary that w_0 has some neighbor x in $Int(C_Q)$ and w_j has a neighbor y in $Int(C_Q)$. We have $x \neq y$: were x = y, there would be a 4-cycle on the vertices w_0, x, w_j, a . Since G has girth 5, x is not adjacent to a or w_j , and y is not adjacent to a or w_0 . The face f_{j+2} is bounded by the 5-cycle $v, u_{j+2}, s, t, u_{j+3}$, where s and t are vertices of $N_2(v)$. Note that $d(t, y) \leq 3$. By Theorem 8.4, the vertex t is not

adjacent to any vertices of $N_2(v)$ apart from s, and possibly one other vertex that is incident with the face f_{j+3} . Hence G can only exhibit a t - y path in one of two ways (see Figure 31):

- (1) the vertices a and t are adjacent, and the geodesic is t, a, w_j, y , or
- (2) there is some vertex b in $N_3(v)$ that is adjacent to both t and w_j , yielding a geodesic t, b, w_j, y .

Figure 31: In Claim 2, since $N_2(v)$ has no 1-chords but G has diameter 3, either t, a, w_j, y is a t - y path (shown on the left), or t, b, w_j, y is a t - y path (shown right).

Since G has girth 5, and by Theorem 8.4, there are no 1-chords with respect to v. Thus in both case (1) and (2), d(s, x) > 3, proving Claim 2. Claim 3: j < 3.

By Claim 1, we need only show that $j \neq 3$. Suppose that j = 3. By Lemma 8.1, u_1 and u_2 each have some neighbor, say w_1 and w_2 respectively, in $Int(C_Q)$. By Theorem 8.4, there are no 1-chords across v, so w_1 is not adjacent to w_j . By the minimality of Q, w_1 and a are not adjacent, and since G has girth 5, w_1 is not adjacent to v, u_0 or u_j . Similarly, w_2 is not adjacent to any of w_0 , a, v, u_0 or u_j . Since C_Q dominates its interior, w_1 is adjacent to w_0 and w_2 is adjacent to w_3 . By Claim 2, this is not possible, proving Claim 3.

There remain two cases to consider.

Case 1: Exactly one of w_0 or w_j has a neighbor in $Int(C_Q)$.

Assume without loss of generality that w_0 has some neighbor, call it x, in $Int(C_Q)$. The vertex v has $d(v) \geq 8$, and by Claim 3, at most one neighbor of v is contained in $Int(C_Q)$. Thus v has at least five neighbors in the exterior of C_Q . The face f_{j+2} is bounded by a 5-cycle $v, u_{j+2}, s, t, u_{j+3}$, where s and t are vertices of $N_2(v)$. Both sand t are within distance 3 of x. It is possible that x is adjacent to u_j . However, xis not adjacent to any other vertex of $V(C_Q) - \{w_0\}$, since G has girth 5. As there are no 1-chords across v by Theorem 8.4, there are two ways that G may exhibit a t - x geodesic.

Case 1.1: The vertices t and a are adjacent.

This case yields the path t, a, w_0, x (see Figure 32). Since G has girth 5, s is not

Figure 32: There are two possibilities in Case 1, either t, a, w_0, x is a t - x path, as in subcase 1.1, or t, b, w_0, x is, as in subcase 1.2.

adjacent to a, b or w_j . Because there are no 1-chords across v by Theorem 8.4, t is not adjacent to w_0 (no neighbor of s is adjacent to w_0). Thus d(s, x) > 3. *Case 1.2:* There is a vertex b in $N_3(v)$ that is adjacent to both w_0 and t. We have the t - x geodesic t, b, w_0, x (see Figure 32). There are two possibilities for an s - x path of length at most 3.

- (1) either s and a are adjacent, or
- (2) there is some vertex c in $N_3(v)$ that is adjacent to both s and w_0 .

In either case, let y and z be vertices of $N_1(u_{j+1}) \cap N_2(v)$ and $N_1(u_{j+5}) \cap N_2(v)$, respectively. Observe that d(y, z) > 3, completing Case 1.

Case 2: Neither w_0 nor w_i has a neighbor in $Int(C_Q)$.

We claim that both u_0 and u_j have neighbors in $\operatorname{Int}(C_Q)$. Assume to the contrary and without loss of generality that u_0 has no neighbor in $\operatorname{Int}(C_Q)$. Since w_0 has no neighbor in $\operatorname{Int}(C_Q)$, the path a, w_0, u_0, v lies on the boundary of some face f in $\operatorname{Int}(C_Q)$. Since f is bounded by a 5-cycle, there is some vertex z that is adjacent to both a and v. Thus v, z, a is a v - a path of length 2, which contradicts the fact that $Q: w_0, a, w_j$ is a 2-chord (i.e., a is in $N_3(v)$). Hence there exist vertices x and y in $\operatorname{Int}(C_Q)$ that are adjacent to u_0 and u_j respectively. Since G contains no 4-cycles, $x \neq y$, and neither x nor y is adjacent to a. The face f_{j+2} is bounded by a 5-cycle $v, u_{j+2}, s, t, u_{j+3}$, where s and t are vertices of $N_2(v)$. Because there are no 1-chords across v (by Theorem 8.4), s is not adjacent to a (and there is some vertex adjacent to both a and x). Similarly, since $d(t, x) \leq 3$, t is adjacent to a. However, we have a triangle on a, s and t, a contradiction that completes the proof.

Theorem 8.6. There does not exist a pentagulation with diameter 3, girth 5 and maximum degree greater than or equal to 8.

Proof. Assume to the contrary that G is a pentagulation of girth 5, diameter 3 and maximum degree $\Delta \geq 8$. Let v be a vertex of G with maximum degree, and label the neighbors $u_1, u_2, \ldots, u_{\Delta}$ of v such that each path u_i, v, u_{i+1} lies on the boundary

of a face (subscripts taken mod Δ). By Lemma 8.1, for each i in $\{1, 2, \ldots, \Delta\}$, there is a vertex w_i in $N(u_i) \cap N_2(v)$. Note that each vertex w_i is not adjacent to u_j for any $j \neq i$, and $d(w_0, w_4) \leq 3$.

We claim that any $w_0 - w_4$ geodesic Q is a 3-chord across v, i.e., the path Q is of the form w_0, a, b, w_4 , where a and b are vertices of $N_3(v)$. By Theorem 8.4, there are no 1-chords across v, so w_0 and w_4 are not adjacent. Similarly, there are no 2-chords across v by Theorem 8.5, so Q is not of the form w_0, c, w_4 , where c is some vertex of $N_3(v)$. The vertex v is not in Q, since Q has length at most 3 and $d(v, x_0) = d(v, x_4) = 2$. The path Q does not contain any vertex of N(v): If Q contains a vertex u_i of N(v), and Q had length 2, then Q is of the form $Q: w_0, u_i, w_4$, which is impossible. If Q contains u_i and has length 3, it is either of the form w_0, u_i, x, w_4 or w_0, x, u_i, w_4 , where x is some vertex of $N_2(v)$. But then either xw_4 or w_0x is a 1-chord across v, which is impossible, so $V(Q) \cap N(v) = \emptyset$. To complete the proof of the claim, it suffices to show that $V(Q) \cap N_2(v) = \{w_0, w_4\}$. Assume to the contrary that there is a vertex x of Q, that is not w_0 or w_4 , in $N_2(v)$. If Q has length 2, then it is of the form w_0, x, w_4 . Since there are no 1-chords across v, x is adjacent to u_1 or $u_{\Delta-1}$, so xw_4 is a 1-chord across v, a contradiction. If Q has length 3, then it is either w_0, x, y, w_4 or w_0, y, x, w_4 , where y is a vertex of $N_2(v)$ (y is not in $N_3(v)$, since there are no 2-chords across v). By symmetry, we may assume without loss of generality that $Q: w_0, x, y, w_4$. Since there are no 1-chords across v, x is a neighbor of u_1 or $u_{\Delta-1}$, and y is a neighbor of u_3 or u_5 . In all possible cases, xy is a 1-chord across v, which proves the claim.

The cycle $C_Q : w_0, a, b, w_4, u_4, v, u_0$ under $Q : w_0, a, b, w_4$ is a separating cycle that dominates either its interior or exterior. Thus either w_2 or w_6 is adjacent to a vertex of C_Q . Suppose w_2 is adjacent to a vertex of C_Q (the proof for w_6 is identical). As Ghas girth 5, w_2 is not adjacent to any of u_0, v or u_4 . Because G contains no 1-chords across v, w_2 is not adjacent to either w_0 or w_4 . Thus w_2 is adjacent to a or b. If w_2 is adjacent to a, then w_2, a, w_0 is a 2-chord across v, and if w_2 is adjacent to b, then w_2, b, w_4 is a 2-chord. In either case we obtain a contradiction, completing the proof.

The main result follows immediately from Corollary 3.6, Theorem 8.6 and Theorem 7.3.

Theorem 8.7. Let G be a pentagulation of diameter 3, order n and maximum degree $\Delta \geq 8$. The order of G satisfies $n \leq 3\Delta - 1$.

The bound in Theorem 8.7 is sharp for odd Δ . Consider the graph \mathcal{H} in Figure 3. We create a graph $G(\Delta)$ of maximum degree $\Delta = 2k + 1$ from \mathcal{H} as follows: replace each white-vertex path of length 3 by a collection of internally disjoint paths: kpaths of length 3 and k - 1 paths of length 2 (so \mathcal{H} itself is G(3)). By embedding the length 2 and length 3 paths in an alternating pattern, we see that $G(\Delta)$ can be embedded such that each face is bounded by a 5-cycle, and that it has diameter 3, maximum degree Δ and $n = 3\Delta - 1$ vertices.

9 Conclusion

Theorem 8.7 and the sharpness example below it largely solve the degree-diameter problem for diameter 3 pentagulations. Between Theorem 8.7 and the results of [3, 8, 17], the degree-diameter problem has been solved exactly for all plane graphs of diameter 3 in which all faces are bounded by cycles of the same length. A rough summary of the upper bounds is given in Table 1.

	$\rho = 3$	$\rho = 4$	$\rho = 5$	$\rho = 6$	$\rho = 7$
d=2	$\frac{3}{2}\Delta + 1^*$	$\Delta + 2$	5		
d = 3	unknown	$3\Delta - 1^{\dagger}$	$3\Delta - 1^{*\dagger}$	$2\Delta + 2$	7

Table 1: Table of maximum orders $n(\Delta, d)$ among plane graphs in which each face is bounded by a cycle of length ρ . Bounds with an asterisk * are sharp for Δ odd, others are always sharp. Bounds with a dagger \dagger are sharp only for $\Delta \geq 8$.

We have not addressed diameter 3 pentagulations in which $\Delta < 8$. For $\Delta = 5$ and $\Delta = 7$, the largest diameter 3 pentagulations the author has found are G(5)and G(7) (constructed at the end of Section 8), with orders 14 and 20 respectively. For pentagulations with $\Delta \in \{3, 4, 6\}$, see Figure 33. It seems possible that the $n \leq 3\Delta - 1$ bound is not sharp for even values of $\Delta \geq 8$. However, improving the $n \leq 3\Delta - 1$ bound for Δ even appears extremely involved (if possible at all). This leaves two questions to consider:

- For each Δ in $\{3, 4, 5, 6, 7\}$, what is the maximum order *n* of a pentagulation with diameter 3 and maximum degree Δ ?
- Do there exist diameter 3 pentagulations with even degree $\Delta \ge 8$ and order $n = 3\Delta 1$? If not, what are the largest such pentagulations?

Figure 33: Largest known pentagulations with diameter 3, and $\Delta \in \{3, 4, 6\}$.

For large diameter, getting exact bounds is both difficult and tedious. The last likely tractable exact bound still unknown is the bound for diameter 3 triangulations $(d = \rho = 3)$. We end with some further problems:

• What is the maximum order of a diameter 3 triangulation?

- Let μ denote the size of the smallest face of a plane graph. What is the smallest function $\mu(d)$ such that every plane graph of diameter d and smallest face size $\mu(d)$ has order $\mathcal{O}(\Delta)$?
- Find bounds on $n(\Delta, d)$ in plane graphs where every face has the same size ρ , or where every face has at least minimum size μ .

Acknowledgments

This research was supported by the South African NRF, Grant number 120104. Thank you to David Erwin for valuable discussion.

References

- E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci. Univ. Tokyo, Sect. 1A, Math. 20 (1973), 191–208.
- [2] G. Chartrand and L. Lesniak, *Graphs and Digraphs*, Chapman and Hall, 3rd edition, 1996.
- [3] C. Dalfó, C. Huemer and J. Salas, The degree/diameter problem in maximal planar bipartite graphs, *Electron. J. Combin.* 23(1) (2016).
- [4] R. M. Damerell, On Moore graphs, Math. Proc. Cambridge Philos. Soc. 74 (1973) 227–236.
- [5] P. Dankelmann, E. Jonck and T. Vetrik, The degree-diameter problem for outerplanar graphs, *Discuss. Math. Graph Theory* 37 (2017).
- [6] R. Diestel, *Graph Theory*, Springer-Verlag, Heidelberg, New York, 3rd edition, 2005.
- [7] B. Du Preez, *Distances in Planar Graphs*, PhD Thesis, The University of Cape Town, Faculty of Science, Department of Mathematics and Applied Mathematics, 2021.
- [8] B. Du Preez, Plane graphs with large faces and small diameter, Australas. J. Combin. 80(3) (2021), 401–418.
- [9] M. Fellows, P. Hell and K. Seyffarth, Large planar graphs with given diameter and maximum degree, *Discrete Appl. Math.* 61 (1995), 133–153.
- [10] P. Hell and K. Seyffarth, Largest planar graphs of diameter two and fixed maximum degree, *Discrete Math.* 111 (1993), 313–322.
- [11] A. J. Hoffman and R. R. Singleton, On Moore graphs with diameters 2 and 3, IBM J. Res. Dev. 4(5) (1960), 497–504.

- [12] P. Holub, M. Miller, H. Pérez-Rosés and J. Ryan, Degree diameter problem on honeycomb networks, *Discrete Appl. Math.* 179 (2014), 139–151.
- [13] P. Holub and J. Ryan, Degree diameter problem on triangular networks, Australas. J. Combin. 63 (2015), 333–345.
- [14] M. Knor and J. Siráň, Extremal graphs of diameter two and given maximum degree, embeddable in a fixed surface, J. Graph Theory 24(1) (1997), 1–8.
- [15] M. Miller and J. Siráň, Moore graphs and beyond: A survey of the degree/diameter problem, *Electron. J. Combin.* 20(2) (2013).
- [16] E. Nevo, G. Pineda-Villavicencio, and D. R. Wood, On the maximum order of graphs embedded in surfaces, J. Combin. Theory Ser. B 119 (2016), 28–41.
- [17] K. Seyffarth, Maximal planar graphs of diameter two, J. Graph Theory 13 (1989), 619–648.
- [18] J. Šiagiová and R. Simanjuntak, A note on a Moore bound for graphs embedded in surfaces, Acta Math. Univ. Comenian. (N.S.) 73 (2004).
- [19] S. A. Tishchenko, Maximum size of a planar graph with given degree and even diameter, *European J. Combin.* 33(3) (2012), 380–396.
- [20] J. Tuite and G. Erskine, On networks with order close to the Moore bound, Graphs Combin. 38 (2022), 143.

(Received 29 Jan 2024; revised 17 Sep 2024, 12 Nov 2024)