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Abstract

The design spectrum of a simple graph G is the set of positive integers n
such that there exists an edgewise decomposition of the complete graph
Kn into n(n− 1)/(2|E(G)|) copies of G. We compute the design spectra
for 7788 6-regular graphs with 12 vertices.

1 Introduction

There are 7849 6-regular graphs with 12 vertices. Of these, 7848 are available
online as complements of the connected 12-vertex, 5-regular graphs constructed
by Meringer, [23]. Throughout this paper we refer to them by their positions in
Meringer’s list. Thus graph n, 1 ≤ n ≤ 7848, denotes the complement of the n-th
graph in the list of the edge sets of all connected 12-vertex, 5-regular graphs at [24].
To the list we append the complete bipartite graph K6,6 as number 7849.

If F and G are simple graphs, an edgewise decomposition of F into G, which we
also refer to as a G-decomposition of F , is a partition E of the edges of F such that
each E ∈ E is the edge set of a graph isomorphic to G. If F is the complete graph
Kn, we usually refer to the decomposition as a G-design of order n. The design
spectrum of G is the set of positive integers n for which a G-design of order n exists.
If G is d-regular, the necessary conditions for the existence of a G-design are

n ≥ |V (G)| or n = 1,

n(n− 1) ≡ 0 (mod 2|E(G)|), (1)

n− 1 ≡ 0 (mod d).

Given a d-regular graph G, by a theorem of Wilson, [28], the conditions (1)
are sufficient for all sufficiently large n, and hence the determination of G’s design
spectrum is actually a finite problem. However, it is usually impossible to resolve all
of the cases not covered by ‘sufficiently large’ whenever d or the chromatic number is
large. Nevertheless, design spectra have been computed for many graphs, including
some infinite classes. For example, from the early history of design theory we know
the spectrum for the complete graph Kk when k = 2 (trivial), k = 3 (Kirkman,
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1847, [19]) and k = 4, 5 (Hanani, 1961, [17]), but there are unresolved cases when
k ≥ 6. The Platonic graphs have also received attention. Apart from the icosahedron
they are either 3- or 4-regular and their design spectra have been completely resolved,
[3, 6, 8, 16, 17, 20, 21]. On the other hand, the icosahedron is 5-regular and the partial
solution of its design spectrum leaves 6 unresolved cases, [4, 9]. A major barrier seems
to be the graph’s chromatic number. In the successful examples mentioned above the
chromatic number is at most 5, and we are not aware of any (6 or more)-chromatic
graph for which the design spectrum has been determined. For a survey of the
subject to the year 2008, the reader is referred to [5].

We summarize our results. When G is 6-regular and has 12 vertices the necessary
conditions (1) simplify to

n ≡ 1 (mod 72). (2)

In Section 5 we prove that the condition (2) is sufficient (and therefore the design
spectrum is determined) for 7788 graphs:

(i) the 2-chromatic graph, 7849;

(ii) all of the forty-nine 3-chromatic graphs, 1, 2, 3, 4, 17, 18, 20, 22, 23, 24, 201,
203, 206, 207, 228, 312, 527, 529, 590, 599, 601, 850, 1106, 1233, 1261, 1698,
1702, 1825, 1835, 1839, 2040, 2045, 2051, 2053, 2471, 2562, 2563, 2574, 2581,
3179, 3191, 3193, 3241, 3243, 6383, 6385, 6390, 6397, 6401;

(iii) 6487 of the 6498 4-chromatic graphs;

(iv) 1251 of the 1299 5-chromatic graphs.

Also we note that graph 7849 has already been solved by Rosa, [25], [5, Theorem
5.3]. The 61 graphs where we are not entirely successful are as follows.

(i) For eleven 4-chromatic graphs, 10, 13, 59, 130, 211, 432, 551, 3281, 6729, 7679,
7743, and forty-three 5-chromatic graphs, 16, 163, 424, 635, 659, 670, 671, 687,
692, 701, 702, 707, 722, 733, 1063, 1438, 3101, 3443, 3447, 4001, 4069, 4070,
4074, 4096, 4108, 4317, 4764, 4778, 5701, 5859, 5913, 6339, 6391, 6657, 6751,
7353, 7421, 7531, 7603, 7667, 7752, 7761, 7803, the necessary condition (2) is
sufficient with the possible exception of order 505.

(ii) There are five 5-chromatic graphs where we were unable to obtain a key de-
composition, namely that of the complete multipartite graph K185 , and so we
fall somewhat short of obtaining their design spectra: graphs 672, 716, 6187,
6196, 7824.

(iii) We made no attempt to address the two 6-chromatic graphs: 703 and 7848.

It is obvious to us that providing detailed proofs for all of the 7788 successful
cases would overload the main part of this paper with an enormous amount of data.
Instead we focus our attention on the eleven graphs that are 3- or 4-chromatic and
vertex-transitive (see [22]),

201, 6383, 6397, 6401, 6406, 6408, 6753, 7677, 7754, 7845, 7847,
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as well as a few graphs that require slightly special treatment,

1513, 3470, 6713, 7700, 7840.

These sixteen graphs are the subject of Theorem 5.1. In Section 2 we specify the
graphs as used for our analysis. They are illustrated in Figures 1–3, where the
positioning of the vertices around the circles has been adjusted to make the pictures
of the vertex-transitive ones look pretty. The only other vertex-transitive graphs are
7848 and 7849, [22].

For all other graphs where we have been successful, the construction details have
been placed in the appendix, which is present only in this paper’s preprint at

https://arxiv.org/abs/2401.02846. (3)

The purpose of the appendix is to provide material that the interested reader can use
to verify our claims with the aid of a computer. The appendix contains the details
for each graph G that satisfies one of these conditions:

(A) a G-decomposition of K244 is available, 6311 graphs;

(B) G-decompositions of K185 , K67 and K99 are available but not K244 , 1471 graphs;

(C) G-decompositions of K185 and K99 are available but not K244 , K184 , K67 or
K727 , 54 graphs.

They are the subject of Theorems 5.2 and 5.3.
The proofs in Section 5 employ a technique of design theory known as Wilson’s

fundamental construction, [27]. The method uses group divisible designs to build
large graph decompositions from small ones. In Section 3 we give the definition of
a group divisible design that is relevant to our paper, and in Lemma 3.1 we collect
together known existence results for the types that we require. The sequence of
lemmas in Section 4 provides the details of direct constructions for decompositions
of certain small complete and complete multipartite graphs into the 12-vertex 6-
regular graphs of Section 2. Our main theorems are in Section 5, and we finish the
paper with some informal remarks in Section 6.

1.1 Terminology and techniques

We conclude this section with a discussion of our terminology and some of the tech-
niques that we have employed in the rest of the paper.

The expression Kab with an explicit superscript always denotes the complete
multipartite graph with ab vertices partitioned into b parts of size a. On the other
hand, Ka with no superscript is the complete graph on a vertices.

The expression x mod y always denotes the integer in {0, 1, . . . , y − 1} that is
congruent to x modulo y.

For the benefit of non-specialists, we explain in detail how to construct a typical
G-decomposition of F from a labelled graph G and a set M of mappings. Take
Lemma 4.1, graph 201, for example. Here, F is the complete multipartite graph

https://arxiv.org/abs/2401.02846
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K244 , G is graph 201, and M = {x 7→ x + d mod 96 : d = 0, 1, . . . , 95}. Suppose
the vertices (1, 2, . . . , 12) of graph 201, as defined in Section 2 or as illustrated on
page 99, are labelled

(17, 33, 57, 41, 63, 39, 6, 54, 3, 67, 10, 58).

Applying elements of M creates 96 labelled versions of graph 201:

(17, 33, 57, 41, 63, 39, 6, 54, 3, 67, 10, 58),

(18, 34, 58, 42, 64, 40, 7, 55, 4, 68, 11, 59),

(19, 35, 59, 43, 65, 41, 8, 56, 5, 69, 12, 60),

. . . ,

(16, 32, 56, 40, 62, 38, 5, 53, 2, 66, 9, 57),

which form the decomposition of K244 into graph 201. Indeed, a straightforward
computation confirms that the edges of these 96 labelled 6-regular 12-vertex graphs
generate 96 · 36 = 3456 distinct unordered pairs that correspond precisely to the
3456 edges of K244 with its vertices labelled 0, 1, . . . , 95 partitioned by residue class
modulo 4 into 4 parts of size 24.

The proofs of the propositions in Section 5 employ Wilson’s fundamental con-
struction, which we now explain—again by an example. Take the construction of
a G-design of order 144t + 1 for t ≥ 5 in Proposition 5.1. Start with a 4-GDD of
type 6t. This has 6t points and 3t(t − 1) blocks of size 4 each containing 6 pairs.
Inflate by a factor of 24. Thus each point becomes 24 points, each group now has
144 points, and each block becomes a K244 . Assuming a G-decomposition of K244

exists, we can regard each K244 of our new structure as decomposed into copies of G.
Next, we add a new point, z say, to increase the point count to 144t+ 1. Assuming a
G-design of order 145 exists, we can regard each inflated group, appended with the
common point z, as a decomposition of K145 into G. The result is a decomposition of
K144t+1 into G. One can verify that the pair counts agree. The original 4-GDD has
18t(t−1) pairs. After the inflation this becomes pH = 3456 ·3t(t−1) = 10368t(t−1)
pairs. Also, t G-decompositions of K145 with one common point have altogether
pV = t · 145 · 144/2 = 10440t pairs. The number of pairs in a G-design of order
144t+ 1 is (144t+ 1)(144t)/2 = pH + pV.

2 Graphs

Here we specify the graphs that we deal with in Sections 4 and 5. A graph is
coded as an ordered 11-tuple (a1, a2, . . . , a11), where the binary digits of ai constitute
row i of the above-diagonal part of the adjacency matrix, i = 1, 2, . . . , 11. The
chromatic number is indicated by χ. The ‘L’ number refers to the corresponding
vertex-transitive graph in McKay’s list, [22].

201 (63,63,207,207,51,51,12,12,0,0,0), χ = 3, L26, circulant-12-2-3-4.

1513 (63,95,175,243,45,30,17,2,4,0,0), χ = 4.
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3470 (63,95,399,179,92,51,28,0,4,0,1), χ = 4.

6383 (63,207,243,252,21,42,5,10,1,2,0), χ = 3, L30, circulant-12-1-2-5.

6397 (63,207,243,252,69,10,21,10,4,0,1), χ = 3, L32, circulant-12-1-4-5.

6401 (63,207,243,252,69,18,26,4,5,0,1), χ = 3, L29, circulant-12-2-4-5.

6406 (63,207,343,91,93,33,30,2,4,0,0), χ = 4, L35, complement of (octahedron ×
K2).

6408 (63,207,343,91,93,34,30,4,1,0,0), χ = 4, L31.

6713 (63,207,343,121,122,36,3,6,5,0,0), χ = 4.

6753 (63,207,343,171,53,57,6,10,4,0,0), χ = 4, L37, complement of the icosahedron.

7677 (63,207,371,211,116,36,24,8,5,2,1), χ = 4, L27.

7700 (63,207,371,213,92,48,26,0,6,1,1), χ = 4.

7754 (63,207,371,220,116,40,17,2,6,1,1), χ = 4, L36, circulant-12-3-4-5.

7840 (63,207,497,242,84,40,24,4,3,3,1), χ = 4.

7845 (63,455,504,75,116,12,21,10,2,1,1), χ = 4, L33, line graph of the octahedron.

7847 (63,455,504,195,73,24,30,12,0,3,1), χ = 4, L28, circulant-12-2-3-5.

3 Group divisible designs

For the purpose of this paper, a group divisible design, K-GDD, of type gu1
1 g

u2
2 . . . gur

r

is an ordered triple (V,G,B) where

(i) V is a set of u1g1 + u2g2 + · · ·+ urgr points,

(ii) G is a partition of V into ui subsets of size gi, i = 1, 2, . . . , r, called groups, and

(iii) B is a collection of subsets of cardinalities k ∈ K, called blocks, which has the
property that each pair of points from distinct groups occurs in precisely one
block but a pair of distinct points from the same group does not occur in any
block.

We usually refer to a {k}-GDD as k-GDD. A parallel class in a group divisible design
is a subset of blocks that precisely covers the point set. A k-GDD is called resolvable,
and denoted by k-RGDD, if the entire set of blocks can be partitioned into parallel
classes.

Our first lemma asserts the existence of the group divisible designs that we require
in Section 5.

Lemma 3.1 ([1, 2, 7, 12, 13, 14, 15, 18, 26])

(i) There exists a 4-GDD of type gu if u ≥ 4, g(u−1) ≡ 0 (mod 3) and g2u(u−1) ≡
0 (mod 12), except for (g, u) ∈ {(2, 4), (6, 4)}.

(ii) There exists a 4-GDD of type 6u31 if u ≥ 4.

(iii) There exists a 4-GDD of type 3561.

(iv) There exists a {4, 5}-GDD of type 43t+1m1 for m ≥ 0 and t ≥ m/4.

(v) If g ∈ {4, 8}, there exist 5-GDDs of types g5t and g5t+1 for t ≥ 1.
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(vi) There exists

a 5-GDD of type 45t81 for t ≥ 3,

a 5-GDD of type 45t121 for t ≥ 2, and

a 5-GDD of type 45t161 for t ≥ 4.

(vii) There exists a 5-GDD of type 125161.

(viii) There exist 7-GDDs of types 17 and 127.

(ix) There exists a 9-GDD of type 89.

Proof. (i)–(iii) See [7] or [12].

(iv) There exists a 4-RGDD of type 43t+1 whenever t ≥ 1, [18], see also [15, Theorem
IV.5.44]. There are 4t parallel classes, P1, P2, . . . , P4t, say. If m = 0, we are done. If
1 ≤ m ≤ 4t, we add an extra group {x1, x2, . . . , xm} of size m and we augment each
block of Pi with xi, i = 1, 2, . . . , m. The result is a {4, 5}-GDD of type 43t+1m1.

(v) See [14] or [26] or [12, Theorem IV.4.16].

(vi) See [2]. A (v, {5, w∗}, 1)-PBD is a pairwise balanced design on v points where
one block has size w and all others have size 5. The blocks have the ‘balanced’
property—each pair of points occurs in precisely one block. Theorems 1 and 30 of
[2] together assert the existence of

a (20t+ 9, {5, 9∗}, 1)-PBD for t ≥ 3,

a (20t+ 13, {5, 13∗}, 1)-PBD for t ≥ 2 and

a (20t+ 17, {5, 17∗}, 1)-PBD for t ≥ 4.

Remove a point from the block of size w ∈ {9, 13, 17}. The resulting blocks of sizes
4 and w − 1 form the groups of a 5-GDD of type 45t(w − 1)1.

(vii) See [13] or [12, Theorem IV.4.17].

(viii) The 7-GDD of type 127 is constructed from 5 mutually orthogonal Latin
squares of side 12; see [1, Table III.3.87]. The other one is trivial.

(ix) This follows from the existence of a projective plane of order 8. 2

4 Graph designs: direct constructions

In a sequence of lemmas we give the direct constructions of G-decompositions that
we require for our proofs in Section 5.

For graph n, the set of labelled graphs that form the decomposition is generated
from one or two base blocks by a specified mapping. A base block is a subscripted
ordered 12-tuple (`1, `2, . . . , `12)n where, for i ∈ {1, 2, . . . , 12}, label `i is attached to
vertex i of graph n as defined in Section 2 or in the appendix (3).



A.D. FORBES AND C.G. RUTHERFORD/AUSTRALAS. J. COMBIN. 91 (1) (2025), 84–103 90

Lemma 4.1 For each of the 12-vertex, 6-regular graphs

201, 6383, 6397, 6401, 6753, 7677, 7754,

there exists an edgewise decomposition of the complete multipartite graph K244 into
96 copies of the graph.

Proof. The point set is Z96 partitioned by residue class modulo 4. The base blocks
are developed by x 7→ x+ d mod 96, 0 ≤ d < 96.

(17, 33, 57, 41, 63, 39, 6, 54, 3, 67, 10, 58)201
(35, 24, 95, 39, 9, 10, 4, 82, 81, 42, 61, 26)6383
(53, 69, 61, 76, 59, 10, 67, 54, 15, 26, 35, 38)6397
(31, 8, 80, 4, 85, 71, 10, 69, 65, 82, 81, 38)6401
(91, 44, 29, 59, 57, 43, 68, 0, 17, 50, 10, 94)6753
(3, 91, 20, 27, 40, 10, 1, 74, 36, 9, 94, 73)7677
(38, 86, 78, 19, 57, 0, 27, 92, 93, 40, 87, 53)7754 2

Lemma 4.2 For each of the 12-vertex, 6-regular graphs

1513, 3470, 6406, 6408, 6713, 7700, 7840, 7845, 7847,

there exists an edgewise decomposition of K185 into 90 copies of the graph.

Proof. The point set is Z90 partitioned by residue class modulo 5. The base blocks
are developed by x 7→ x+ d mod 90, 0 ≤ d < 90.

(22, 82, 27, 57, 86, 39, 50, 38, 0, 48, 25, 33)1513
(27, 41, 81, 74, 57, 84, 71, 63, 23, 80, 43, 55)3470
(19, 45, 9, 35, 22, 6, 25, 26, 88, 11, 57, 63)6406
(14, 9, 78, 29, 47, 21, 7, 5, 76, 41, 10, 60)6408
(72, 56, 54, 52, 47, 48, 35, 36, 14, 75, 13, 28)6713
(2, 10, 81, 25, 79, 72, 15, 73, 61, 63, 78, 14)7700
(60, 0, 69, 46, 3, 17, 33, 67, 79, 9, 42, 1)7840
(22, 27, 7, 20, 61, 78, 4, 30, 31, 0, 68, 6)7845
(3, 53, 58, 72, 25, 74, 34, 40, 47, 2, 11, 89)7847 2

Lemma 4.3 For each of the 12-vertex, 6-regular graphs

6406, 6408, 7845,

there exists an edgewise decomposition of K67 into 21 copies of the graph.

Proof. The point set is Z42 partitioned by residue class modulo 7. The base blocks
are developed by x 7→ x+ 2d mod 42, 0 ≤ d < 21.

(0, 2, 34, 39, 1, 35, 17, 37, 27, 4, 8, 24)6406
(41, 40, 20, 17, 27, 14, 26, 21, 8, 9, 18, 25)6408
(26, 19, 27, 7, 24, 25, 18, 28, 10, 9, 15, 38)7845 2



A.D. FORBES AND C.G. RUTHERFORD/AUSTRALAS. J. COMBIN. 91 (1) (2025), 84–103 91

Lemma 4.4 For each of the 12-vertex, 6-regular graphs

1513, 3470, 6406, 6408, 6713, 7700, 7840, 7845, 7847,

there exists an edgewise decomposition of K99 into 81 copies of the graph.

Proof. The point set is Z81 partitioned by residue class modulo 9. The base blocks
are developed by x 7→ x+ d mod 81, 0 ≤ d < 81.

(36, 37, 76, 45, 77, 20, 64, 16, 6, 79, 60, 71)1513
(72, 49, 40, 21, 17, 47, 5, 55, 12, 37, 62, 73)3470
(58, 20, 27, 59, 23, 75, 11, 51, 79, 21, 16, 8)6406
(60, 53, 8, 1, 28, 58, 38, 72, 12, 57, 0, 14)6408
(76, 2, 20, 30, 60, 13, 0, 32, 44, 75, 35, 24)6713
(21, 6, 12, 76, 32, 65, 61, 9, 22, 52, 27, 14)7700
(0, 62, 31, 79, 12, 23, 35, 15, 22, 5, 28, 60)7840
(80, 10, 70, 33, 29, 23, 68, 37, 48, 3, 34, 63)7845
(32, 23, 78, 71, 58, 1, 26, 79, 63, 40, 0, 2)7847 2

Lemma 4.5 For each of the 12-vertex, 6-regular graphs

1513, 3470, 6713,

there exists an edgewise decomposition of K184 into 54 copies of the graph.

Proof. The point set is Z72 partitioned by residue class modulo 3 for points {0, 1, . . . ,
53}, and {54, 55, . . . , 71}. The base blocks are developed by x 7→ x + d mod 54 for
0 ≤ x < 54, x 7→ (x+ d mod 18) + 54 for 54 ≤ x < 72, 0 ≤ d < 54.

(6, 54, 58, 60, 48, 33, 16, 20, 5, 25, 4, 53)1513
(29, 26, 50, 6, 64, 9, 68, 4, 3, 37, 10, 62)3470
(68, 56, 54, 49, 22, 8, 6, 3, 0, 37, 29, 50)6713 2

Lemma 4.6 For each of the 12-vertex, 6-regular graphs

7700, 7840, 7847,

there exists an edgewise decomposition of K727 into 3024 copies of the graph.

Proof. The point set is Z504 partitioned by residue class modulo 7. There are two
base blocks for each graph. They are developed by x 7→ 25ex+d mod 504, 0 ≤ e < 3,
0 ≤ d < 504.

(341, 413, 36, 142, 235, 339, 156, 111, 99, 335, 270, 178)7700
(358, 386, 268, 470, 154, 263, 231, 166, 73, 333, 137, 412)7700
(292, 246, 10, 196, 453, 261, 167, 130, 343, 364, 160, 452)7840
(131, 29, 120, 150, 226, 385, 130, 363, 318, 122, 172, 128)7840
(368, 0, 249, 149, 281, 306, 335, 225, 262, 338, 320, 52)7847
(346, 206, 111, 393, 285, 478, 151, 362, 0, 218, 268, 83)7847 2
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Lemma 4.7 For each of the 12-vertex, 6-regular graphs

201, 1513, 3470, 6383, 6397, 6401, 6406, 6408,

6713, 6753, 7677, 7700, 7754, 7840, 7845, 7847,

there exist designs of orders 73, 145, 217, 289, 433, 577 and 1009.

Proof. For a design of order n, the point set is Zn. The blocks are developed from a
single base block by x 7→ ωex+ d mod n, 0 ≤ e < (n− 1)/72, 0 ≤ d < n, where ω is
a specified parameter.

Order 73, ω = 1:

(0, 1, 2, 3, 4, 23, 32, 67, 40, 62, 19, 26)201
(0, 1, 2, 3, 4, 50, 25, 31, 41, 70, 58, 63)1513
(0, 1, 2, 3, 12, 4, 47, 49, 62, 69, 21, 35)3470
(0, 1, 2, 3, 4, 24, 18, 68, 20, 63, 36, 44)6383
(0, 1, 2, 3, 4, 70, 28, 41, 55, 65, 24, 44)6397
(0, 1, 2, 3, 4, 15, 7, 51, 41, 20, 65, 47)6401
(0, 1, 2, 3, 4, 8, 10, 33, 28, 36, 22, 17)6406
(0, 1, 2, 3, 4, 19, 10, 41, 54, 8, 62, 49)6408
(0, 1, 2, 3, 4, 18, 69, 52, 46, 20, 64, 40)6713
(0, 1, 2, 3, 5, 9, 44, 45, 51, 54, 18, 14)6753
(0, 1, 2, 3, 6, 58, 13, 67, 23, 43, 41, 27)7677
(0, 1, 2, 3, 5, 10, 53, 26, 11, 40, 56, 15)7700
(0, 1, 2, 3, 5, 12, 27, 70, 50, 34, 14, 55)7754
(0, 1, 2, 3, 5, 10, 37, 63, 53, 19, 25, 42)7840
(0, 1, 2, 3, 5, 54, 32, 63, 19, 60, 26, 65)7845
(0, 1, 2, 3, 7, 30, 26, 12, 37, 9, 42, 22)7847

Order 145, ω = 12:

(0, 1, 2, 3, 4, 6, 19, 60, 125, 139, 104, 117)201
(0, 1, 2, 3, 4, 12, 8, 31, 22, 88, 112, 55)1513
(0, 1, 2, 3, 5, 12, 97, 28, 31, 40, 20, 93)3470
(0, 1, 2, 3, 4, 8, 106, 48, 23, 68, 19, 115)6383
(0, 1, 2, 3, 4, 8, 132, 114, 65, 95, 124, 46)6397
(0, 1, 2, 3, 4, 9, 41, 117, 18, 98, 54, 120)6401
(0, 1, 2, 3, 4, 9, 110, 34, 81, 129, 123, 108)6406
(0, 1, 2, 3, 4, 8, 76, 121, 53, 108, 18, 83)6408
(0, 1, 2, 3, 4, 8, 120, 132, 24, 42, 83, 94)6713
(0, 1, 2, 3, 5, 7, 87, 137, 37, 104, 54, 23)6753
(0, 1, 2, 3, 5, 8, 67, 125, 33, 137, 102, 71)7677
(0, 1, 2, 3, 5, 8, 47, 130, 137, 94, 116, 28)7700
(0, 1, 2, 3, 5, 10, 21, 31, 105, 70, 34, 93)7754
(0, 1, 2, 3, 5, 10, 72, 130, 26, 107, 66, 53)7840
(0, 1, 2, 3, 5, 18, 10, 82, 40, 89, 102, 116)7845
(0, 1, 2, 3, 6, 12, 131, 64, 86, 96, 42, 117)7847
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Order 217, ω = 25:

(0, 1, 2, 3, 4, 6, 115, 206, 157, 196, 40, 90)201
(0, 1, 2, 3, 4, 6, 49, 147, 157, 208, 118, 183)1513
(0, 1, 2, 3, 5, 9, 40, 24, 12, 120, 147, 152)3470
(0, 1, 2, 3, 4, 7, 20, 58, 30, 127, 43, 136)6383
(0, 1, 2, 3, 4, 8, 112, 14, 172, 201, 38, 81)6397
(0, 1, 2, 3, 4, 8, 40, 124, 154, 47, 19, 55)6401
(0, 1, 2, 3, 4, 8, 40, 123, 199, 48, 73, 31)6406
(0, 1, 2, 3, 4, 8, 21, 48, 201, 188, 149, 138)6408
(0, 1, 2, 3, 4, 8, 101, 15, 147, 168, 47, 200)6713
(0, 1, 2, 3, 5, 7, 14, 123, 186, 198, 172, 146)6753
(0, 1, 2, 3, 5, 8, 38, 166, 107, 85, 21, 124)7677
(0, 1, 2, 3, 5, 8, 47, 65, 136, 33, 205, 196)7700
(0, 1, 2, 3, 5, 8, 36, 163, 179, 134, 196, 145)7754
(0, 1, 2, 3, 5, 12, 40, 93, 150, 158, 134, 163)7840
(0, 1, 2, 3, 5, 12, 73, 155, 133, 24, 115, 161)7845
(0, 1, 2, 3, 6, 12, 74, 183, 101, 164, 94, 45)7847

Order 289, ω = 110:

(0, 1, 2, 3, 4, 6, 40, 99, 56, 232, 173, 211)201
(0, 1, 2, 3, 4, 6, 88, 184, 48, 225, 129, 27)1513
(0, 1, 2, 3, 5, 9, 43, 59, 37, 144, 99, 172)3470
(0, 1, 2, 3, 4, 7, 27, 135, 279, 192, 170, 243)6383
(0, 1, 2, 3, 4, 8, 67, 11, 88, 245, 182, 18)6397
(0, 1, 2, 3, 4, 8, 12, 224, 96, 107, 264, 242)6401
(0, 1, 2, 3, 4, 8, 10, 160, 205, 241, 174, 273)6406
(0, 1, 2, 3, 4, 8, 80, 260, 187, 245, 169, 69)6408
(0, 1, 2, 3, 4, 8, 21, 188, 112, 123, 48, 88)6713
(0, 1, 2, 3, 5, 7, 23, 277, 240, 132, 117, 206)6753
(0, 1, 2, 3, 5, 8, 24, 240, 136, 123, 133, 90)7677
(0, 1, 2, 3, 5, 8, 17, 219, 150, 278, 254, 108)7700
(0, 1, 2, 3, 5, 8, 17, 232, 19, 96, 210, 171)7754
(0, 1, 2, 3, 5, 10, 34, 59, 127, 19, 228, 212)7840
(0, 1, 2, 3, 5, 10, 29, 49, 214, 154, 196, 259)7845
(0, 1, 2, 3, 6, 12, 108, 266, 227, 13, 157, 33)7847

Order 433, ω = 64:

(0, 1, 2, 3, 4, 6, 19, 140, 157, 266, 32, 208)201
(0, 1, 2, 3, 4, 6, 20, 85, 187, 401, 342, 70)1513
(0, 1, 2, 3, 5, 9, 26, 58, 183, 419, 145, 240)3470
(0, 1, 2, 3, 4, 7, 14, 155, 207, 317, 393, 147)6383
(0, 1, 2, 3, 4, 8, 12, 216, 171, 34, 133, 97)6397
(0, 1, 2, 3, 4, 8, 11, 250, 393, 222, 342, 67)6401
(0, 1, 2, 3, 4, 8, 10, 221, 290, 380, 262, 240)6406
(0, 1, 2, 3, 4, 8, 17, 103, 188, 79, 394, 298)6408
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(0, 1, 2, 3, 4, 8, 16, 336, 302, 394, 265, 206)6713
(0, 1, 2, 3, 5, 7, 15, 169, 63, 195, 33, 393)6753
(0, 1, 2, 3, 5, 8, 19, 265, 327, 138, 43, 53)7677
(0, 1, 2, 3, 5, 8, 19, 394, 206, 290, 282, 191)7700
(0, 1, 2, 3, 5, 8, 16, 44, 152, 171, 334, 222)7754
(0, 1, 2, 3, 5, 10, 20, 122, 247, 202, 391, 111)7840
(0, 1, 2, 3, 5, 10, 33, 185, 108, 136, 341, 410)7845
(0, 1, 2, 3, 6, 12, 14, 339, 300, 69, 160, 253)7847

Order 577, ω = 27:

(0, 1, 2, 3, 4, 6, 14, 501, 69, 300, 402, 539)201
(0, 1, 2, 3, 4, 6, 10, 115, 283, 323, 210, 348)1513
(0, 1, 2, 3, 5, 9, 15, 315, 190, 509, 115, 250)3470
(0, 1, 2, 3, 4, 7, 14, 60, 533, 231, 209, 445)6383
(0, 1, 2, 3, 4, 8, 12, 360, 52, 371, 494, 298)6397
(0, 1, 2, 3, 4, 8, 14, 348, 419, 295, 34, 212)6401
(0, 1, 2, 3, 4, 8, 10, 348, 62, 115, 201, 322)6406
(0, 1, 2, 3, 4, 8, 17, 307, 176, 565, 47, 141)6408
(0, 1, 2, 3, 4, 8, 16, 360, 308, 210, 283, 53)6713
(0, 1, 2, 3, 5, 7, 14, 49, 310, 179, 198, 331)6753
(0, 1, 2, 3, 5, 8, 16, 105, 266, 34, 421, 288)7677
(0, 1, 2, 3, 5, 8, 16, 181, 256, 50, 139, 37)7700
(0, 1, 2, 3, 5, 8, 16, 272, 231, 477, 549, 452)7754
(0, 1, 2, 3, 5, 12, 17, 253, 75, 478, 42, 465)7840
(0, 1, 2, 3, 5, 12, 17, 417, 356, 479, 158, 249)7845
(0, 1, 2, 3, 6, 12, 14, 271, 51, 191, 114, 237)7847

Order 1009, ω = 139:

(0, 1, 2, 3, 4, 6, 13, 982, 338, 658, 314, 547)201
(0, 1, 2, 3, 4, 6, 13, 76, 538, 779, 663, 978)1513
(0, 1, 2, 3, 5, 10, 14, 277, 428, 808, 934, 949)3470
(0, 1, 2, 3, 4, 7, 14, 79, 88, 182, 965, 738)6383
(0, 1, 2, 3, 4, 8, 14, 100, 62, 530, 986, 322)6397
(0, 1, 2, 3, 4, 8, 14, 45, 771, 428, 924, 652)6401
(0, 1, 2, 3, 4, 8, 17, 55, 80, 117, 659, 232)6406
(0, 1, 2, 3, 4, 8, 17, 54, 947, 123, 468, 85)6408
(0, 1, 2, 3, 4, 8, 17, 182, 463, 312, 866, 597)6713
(0, 1, 2, 3, 5, 7, 14, 59, 240, 979, 613, 86)6753
(0, 1, 2, 3, 5, 8, 17, 115, 330, 154, 22, 488)7677
(0, 1, 2, 3, 5, 8, 17, 68, 121, 481, 425, 189)7700
(0, 1, 2, 3, 5, 8, 17, 55, 987, 894, 658, 855)7754
(0, 1, 2, 3, 5, 14, 19, 33, 320, 363, 166, 523)7840
(0, 1, 2, 3, 5, 14, 19, 50, 351, 842, 86, 40)7845
(0, 1, 2, 3, 6, 12, 14, 33, 132, 231, 524, 972)7847 2
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5 Graph designs: general constructions

In Propositions 5.1–5.3 we describe some general constructions for 12-vertex, 6-
regular graph designs. We refer to Lemma 3.1 for the existence of the various group
divisible designs mentioned. Observe that a G-design of order 1 always exists—it is
the empty set. In what follows we tacitly assume this trivial case.

Proposition 5.1 Let G be a 12-vertex, 6-regular graph. Suppose there exists a G-
decomposition of the complete multipartite graph K244. Suppose also that there exist
G-designs of orders 73, 145, 217 and 433. Then there exist G-designs of order n for
all positive integers n ≡ 1 (mod 72).

Proof. Let t ≥ 5 and u ≥ 4 be integers.

Take a 4-GDD of type 6t, inflate its points by a factor of 24 and replace its blocks
by G-decompositions of K244 . Add a new point and overlay each group plus the new
point with a G-design of order 145. The result is a G-design of order 144t + 1 for
t ≥ 5.

Take a 4-GDD of type 6u31, inflate its points by a factor of 24 and replace its blocks
by G-decompositions of K244 . Add a new point and overlay each group plus the new
point with a G-design of order 73 or 145, as appropriate. The result is a G-design of
order 144u+ 73 for u ≥ 4.

We deal with the orders missed, namely 289, 361, 505 and 577, by similar construc-
tions. For brevity we just indicate the ingredients.

For order 289, use a 4-GDD of type 34 with G-decompositions of K244 and K73.

For order 361, use a 4-GDD of type 35 with G-decompositions of K244 and K73.

For order 505, use a 4-GDD of type 3561 with G-decompositions of K244 , K73 and
K145.

For order 577, use a 4-GDD of type 38 with G-decompositions of K244 and K73. 2

Proposition 5.2 Let G be a 12-vertex, 6-regular graph. Suppose there exist G-
decompositions of K184 and K185. Suppose also that there exist G-designs of orders
73, 145, 217 and 433. Then there exist G-designs of order n for all positive integers
n ≡ 1 (mod 72).

Proof. Let m ∈ {0, 4, 8} and t ≥ max{1,m/4} be integers. Take a {4, 5}-GDD
of type 43t+1m1, inflate its points by a factor of 18 and replace its blocks by G-
decompositions of K184 or K185 , as appropriate. Add a new point and overlay each
group plus the new point with a G-design of order 73 or 145, as appropriate. The
result is a G-design of order 216t+ 18m+ 73 for m ∈ {0, 4, 8}, t ≥ max{1,m/4}. No
further constructions are needed. 2

Proposition 5.3 Let G be a 12-vertex, 6-regular graph. Suppose there exist G-
decompositions of K185, K99 and either K67 or K727. Suppose also that there exist
G-designs of orders 73, 145, 217, 289, 577 and 1009. Then there exist G-designs of
order n for all positive integers n ≡ 1 (mod 72).
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Proof. Let m ∈ {0, 4, 8, 12, 16} and t be integers such that

t ≥


1 if m ∈ {0, 4},
3 if m = 8,
2 if m = 12,
4 if m = 16.

(4)

Take a 5-GDD of type 45tm1, inflate its points by a factor of 18 and replace its blocks
by G-decompositions of K185 . Add a new point and overlay each group plus the new
point with a G-design of order 73, 145, 217 or 289, as appropriate. The result is a
G-design of order 360t+ 18m+ 1 for m ∈ {0, 4, 8, 12, 16} and t satisfying (4).

We deal with the orders missed, namely 505, 649, 865, 1369, by similar constructions.
If the multipartite graph is Kfe , we inflate each point of the GDD by a factor of f .

For order 505, either use a 7-GDD of type 127 with G-decompositions of K67 and
K73, or use a 7-GDD of type 17 with G-decompositions of K727 and K73.

For order 649, use a 9-GDD of type 89 with G-decompositions of K99 and K73.

For order 865, use a 5-GDD of type 86 with G-decompositions of K185 and K145.

For order 1369, use a 5-GDD of type 125161 with G-decompositions of K185 , K217

and K289. 2

Now we are ready to prove our main theorems.

Theorem 5.1 For graphs 201, 1513, 3470, 6383, 6397, 6401, 6406, 6408, 6713,
6753, 7677, 7700, 7754, 7840, 7845 and 7847, a design of order n exists if and only
if n ≡ 1 (mod 72).

Proof. For 201, 6383, 6397, 6401, 6753, 7677, 7754, use Proposition 5.1 with a
decomposition of K244 and design orders 73, 145, 217, 433.

For 6406, 6408, 7845, use Proposition 5.3 with decompositions of K185 , K67 , K99 and
design orders 73, 145, 217, 289, 577, 1009.

For 1513, 3470, 6713, use Proposition 5.2 with decompositions of K184 , K185 and
design orders 73, 145, 217, 433.

For 7700, 7840, 7847, use Proposition 5.3 with decompositions of K185 , K727 , K99

and design orders 73, 145, 217, 289, 577, 1009.

See Lemmas 4.1–4.7 for the relevant graph decompositions. 2

As explained in the Introduction, Theorem 5.1 deals only with the graphs for
which we have provided decomposition details in Lemmas 4.1–4.7. The next theorem
represents all of our successful design spectrum completions.

Theorem 5.2 For 7788 12-vertex, 6-regular graphs, including the 5-colourable ver-
tex-transitive graphs and all of the 3-chromatic graphs, 1, 2, 3, 4, 17, 18, 20, 22, 23,
24, 201, 203, 206, 207, 228, 312, 527, 529, 590, 599, 601, 850, 1106, 1233, 1261,
1698, 1702, 1825, 1835, 1839, 2040, 2045, 2051, 2053, 2471, 2562, 2563, 2574, 2581,
3179, 3191, 3193, 3241, 3243, 6383, 6385, 6390, 6397 and 6401, a design of order n
exists if and only if n ≡ 1 (mod 72).
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Proof. (i) In Part A of the appendix (3) we give decomposition details of

K244 , K73, K145, K217, K433

for 6311 graphs, including seven covered by Theorem 5.1. Use Proposition 5.1.

(ii) In Part B of the appendix (3) we give decomposition details of

K185 , K67 , K99 , K73, K145, K217, K289, K577, K1009

for 1471 graphs, including three covered by Theorem 5.1. Use Proposition 5.3.

The six graphs, 1513, 3470, 6713, 7700, 7840, 7847, not covered by (i) and (ii) are
dealt with in Theorem 5.1. 2

Theorem 5.3 For eleven 4-chromatic graphs, 10, 13, 59, 130, 211, 432, 551, 3281,
6729, 7679, 7743, and forty-three 5-chromatic graphs, 16, 163, 424, 635, 659, 670,
671, 687, 692, 701, 702, 707, 722, 733, 1063, 1438, 3101, 3443, 3447, 4001, 4069,
4070, 4074, 4096, 4108, 4317, 4764, 4778, 5701, 5859, 5913, 6339, 6391, 6657, 6751,
7353, 7421, 7531, 7603, 7667, 7752, 7761, 7803, a design of order n exists if and
only if n ≡ 1 (mod 72), with the possible exception of n = 505.

Proof. For each of the 54 graphs in the statement of the theorem, we have decom-
positions of

K185 , K99 , K73, K145, K217, K289, K577, K1009.

The details are in Part C of the appendix (3).

Use Proposition 5.3 omitting the construction of a design of order 505 since we do
not have decompositions of K67 or K727 for any of the graphs. 2

6 Concluding remarks

We cannot help thinking that fate has been kind to us. Prior to carrying out the
work for this paper, we would have been forgiven for believing that any attempt
to obtain the design spectrum of a 6-regular graph with chromatic number greater
than 2 would be doomed. Even for the smallest example, K7, there are unresolved
cases—twenty-one stated in [5, Table 1]. And yet we have in our paper completely
solved the spectrum problem for thousands of 6-regular graphs, a substantial number
of them 5-chromatic. Here we offer some explanations.

The necessary condition for a design of order n for 12 vertices and 6-regularity
is particularly simple, n ≡ 1 (mod 72). It is well known to graph-design theorists
that residue class 1 modulo 2|E(G)| is by far the easiest. Take the truncated cuboc-
tahedron, for example. In 2013 Forbes & Griggs published the solution only for
design orders n ≡ 1 (mod 144), [10]. However, n can belong to another residue class,
64 (mod 144), and it took four extra years plus one extra author (T. J. Forbes) to
resolve this case, [11].

Other things being equal, 5-chromatic graphs are usually much harder to process
than 4-colourable ones. Constructions like Proposition 5.3 require a suitable infinite
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supply of 5-GDDs. In contrast to 2-, 3- and 4-GDDs, group divisible designs with
block size 5 are scarce, and in most cases the right ones for a particular design spec-
trum are unavailable. However, the publication of the paper by Abel, Ge, Greig &
Ling, [2], is most fortunate. They obtain substantial results concerning the existence
of (v, {5, w∗}, 1)-PBDs and hence of 5-GDDs of type 4um1, which turn out to be
precisely what we want to combine with G-decompositions of K185 .

Obtaining a direct construction of a 6-regular graph decomposition by backtrack-
ing combined with random processes is in general essentially hopeless unless there
is an automorphism of large order. We were therefore pleasantly surprised when we
discovered that all of our G-decompositions except K727 can be obtained from single
base blocks.

On the other hand, there was a limit to our good fortune. Recall from Theorem 5.3
that we were obliged to accept the possible exception of order 505 for a specific set
C, say, of 54 graphs. There are various ways to try to obtain this design order.

GDD decompositions design orders

4-GDD type 3561 K244 73, 145
4-GDD type 47 K184 73
7-GDD type 17 K727 73
7-GDD type 127 K67 73

The first two options won’t work for 5-chromatic graphs, the K727 option did not
achieve very much, and we suspect a G-decomposition of K67 generated from a single
base block does not exist for any G ∈ C. However, we had no difficulty obtaining
G-decompositions of K127 for all G ∈ C. With these in place there appears to be an
obvious way to construct a G-design of order 505. Use the decomposition of K127

with design order 73 and a 7-GDD of type 67 created by removing a point from a
projective plane of order 6, if only such a projective plane were to exist.
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Figure 1: Vertex-transitive graphs
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Figure 2: Vertex-transitive graphs
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Figure 3: Graphs

1
2

3

4

5

6
7

8

9

10

11

12
7849 1

2

3

4

5

6
7

8

9

10

11

12
1513

1
2

3

4

5

6
7

8

9

10

11

12
3470 1

2

3

4

5

6
7

8

9

10

11

12
6713

1
2

3

4

5

6
7

8

9

10

11

12
7700 1

2

3

4

5

6
7

8

9

10

11

12
7840



A.D. FORBES AND C.G. RUTHERFORD/AUSTRALAS. J. COMBIN. 91 (1) (2025), 84–103 102

References

[1] R. J. R. Abel, C. J. Colbourn and J. H. Dinitz, Mutually Orthogonal Latin
Squares (MOLS), in Handbook of Combinatorial Designs, second edition (C. J.
Colbourn and J. H. Dinitz, eds), Chapman & Hall/CRC Press, Boca Raton,
2007, 160–193.

[2] R. J. R. Abel, G. Ge, M. Greig and A. C. H. Ling, Further results on
(v, {5, w∗}, 1)-PBDs, Discrete Math. 309 (2009), 2323–2339.

[3] P. Adams, E. J. Billington and C. A. Rodger, Pasch decompositions of lambda-
fold triple systems, J. Combin. Math. Combin. Comput. 15 (1994), 53–63.

[4] P. Adams and D. E. Bryant, Decomposing the complete graph into Platonic
graphs, Bull. Inst. Combin. Appl. 17 (1996), 19–26.

[5] P. Adams, D. E. Bryant and M. Buchanan, A survey on the existence of G-
designs, J. Combin. Des. 16 (2008), 373–410.

[6] P. Adams, D. E. Bryant, A. D. Forbes and T. S. Griggs, Decomposing the
complete graph into dodecahedra, J. Statist. Plann. Inference 142 (2012), 1040–
1046.

[7] A. E. Brouwer, A. Schrijver and H. Hanani, Group divisible designs with block
size four, Discrete Math. 20 (1977), 1–10.

[8] D. E. Bryant, S. El-Zanati and R. Gardner, Decompositions of Km,n and Kn

into cubes, Australas. J. Combin. 9 (1994), 285–290.

[9] A. D. Forbes and T. S. Griggs, Icosahedron designs, Australas. J. Combin. 52
(2012), 215–228.

[10] A. D. Forbes and T. S. Griggs, Archimedean graph designs, Discrete Math. 313
(2013) 1138–1149.

[11] A. D. Forbes, T. J. Forbes and T. S. Griggs, Archimedean graph designs - II,
Discrete Math. 340 (2017) 1598–1611.

[12] G. Ge, Group Divisible Designs, in Handbook of Combinatorial Designs, second
edition (C. J. Colbourn and J. H. Dinitz, eds), Chapman & Hall/CRC Press,
Boca Raton, 2007, 255–260.

[13] G. Ge and A. C. H. Ling, Some More 5-GDDs and Optimal (v, 5, 1)-Packings,
J. Combin. Des. 12 (2004), 132–141).

[14] G. Ge and A. C. H. Ling, Asymptotic results on the existence of 4-RGDDs and
uniform 5-GDDs, J. Combin. Des. 13 (2005), 222–237.



A.D. FORBES AND C.G. RUTHERFORD/AUSTRALAS. J. COMBIN. 91 (1) (2025), 84–103 103

[15] G. Ge and Y. Miao, PBDs, Frames and Resolvability, in Handbook of Combina-
torial Designs, second edition (C. J. Colbourn and J. H. Dinitz, eds), Chapman
& Hall/CRC Press, Boca Raton, 2007, 261–265.

[16] T. S. Griggs, M. J. deResmini and A. Rosa, Decomposing Steiner triple systems
into four-line configurations, Ann. Discrete Math. 52 (1992), 215–226.

[17] H. Hanani, The existence and contruction of balanced incomplete block designs,
Ann. Math. Statist. 32 (1961), 361–386.

[18] H. Hanani, D. K. Ray-Chaudhuri and R. M. Wilson, On resolvable designs,
Discrete Math. 3 (1972), 343–357.

[19] T. P. Kirkman, On a problem in combinations, Cambridge Dublin Math. J. 2
(1847), 191–204.

[20] A. Kotzig, Decompositions of complete graphs into isomorphic cubes, J. Com-
bin. Theory B 31 (1981), 292–296.

[21] M. Maheo, Strongly graceful graphs, Discrete Math. 29 (1980), 39–46.

[22] B. D. McKay, Transitive Graphs With Fewer Than Twenty Vertices, Math.
Comp. 33 (1979), 1101–1121.

[23] M. Meringer, Fast Generation of Regular Graphs and Construction of Cages, J.
Graph Theory 30 (1999), 137–146.

[24] M. Meringer, Regular Graphs,
https://www.mathe2.uni-bayreuth.de/markus/reggraphs.html#CRG.

[25] A. Rosa, On certain valuations of the vertices of a graph, in Theory of Graphs
(Internat. Sympos., Rome, 1966) (P. Rosenstiehl, editor), Gordon and Breach,
New York, 1967, 349–355.

[26] H. Wei and G. Ge, Some more 5-GDDs, 4-frames and 4-RGDDs, Discrete Math.
336 (2014), 7–21.

[27] R. M. Wilson, An existence theory for pairwise balanced designs I. Composition
theorems and morphisms, J. Combin. Theory A 13 (1972), 20–236.

[28] R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to
a given graph, Congr. Numer. 15 (1976), 647–659.

(Received 26 Jan 2024; revised 26 Nov 2024, 3 Dec 2024)

https://www.mathe2.uni-bayreuth.de/markus/reggraphs.html#CRG

	Introduction
	Terminology and techniques

	Graphs
	Group divisible designs
	Graph designs: direct constructions
	Graph designs: general constructions
	Concluding remarks

