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Abstract

A classical theorem independently due to Gallai, Hasse, Roy, and Vitaver
states that a graph G has a proper n-coloring if and only if G has an
orientation without coherent paths of length n. We prove that a signed
graph has a proper n-coloring if and only if it has an orientation without
coherent paths or balloons of length n.

1 Introduction

Theorem 1 is a classical result in graph theory which simply and elegantly character-
izes the existence of a proper n-coloring in terms of orientations. It was independently
discovered in the 1960’s by Gallai [1], Hasse [2], Roy [4], and Vitaver [6].

Theorem 1. For a loopless graph G the following are equivalent.

(1) G has a proper n-coloring.

(2) G has an acyclic orientation without coherent paths of length n.

(3) G has an orientation without coherent paths of length n.

Integer-valued vertex coloring of signed graphs was first defined by Zaslavsky [8].
It is an attractive generalization of vertex coloring of ordinary graphs in that it
also generalizes additional aspects of and results on graph coloring; for instance, the
connection between graph coloring and matroid theory though chromatic and Tutte
polynomials [7]. In this note, we present Theorem 2 which generalizes Theorem 1 in
the following sense: if we consider a graph to be a signed graph in which all edges
are positive, then the set of graphs which satisfy Part(x) of Theorem 1 is properly
contained in the set of signed graphs which satisfy Part(x) of Theorem 2. Thus we
have another classical aspect of graph coloring which is generalized by signed-graph
coloring.

The terms used in Theorem 2 are well known among those familiar with the
theory of signed graphs. For others, a short introduction is provided in Section 2
where all relevant terms are defined. The proof is presented in Section 3.
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Theorem 2. For a signed graph (G, σ) without positive loops the following are equiv-
alent.

(1) (G, σ) has a proper n-coloring.

(2) (G, σ) has an acyclic orientation without coherent paths or balloons of length n.

(3) (G, σ) has an orientation without coherent paths or balloons of length n.

In a previous publication we presented [5, Theorem 5.2] as an analogue of Theorem 1
for signed graphs. The result here is much nicer: it is more simply stated and
similar to Theorem 1, it makes no reference to sign switching in its statement, and
the implications (2 → 1) and (3 → 1) are stronger results than the corresponding
implication in [5, Theorem 5.2].

2 Background

A signed graph is a pair (G, σ) in which G is a graph and σ : E(G) → {+,−}.
Let M2k+1 = {−k, . . . ,−1, 0, 1, . . . , k} and M2k = {−k, . . . ,−1, 1, . . . , k}. An n-
coloring of a signed graph (G, σ) is a function κ : V (G) → Mn. An n-coloring κ
is proper when for each edge e in (G, σ) with endpoints u and v (possibly equal),
κ(u) 6= σ(e)κ(v). Evidently every signed graph (G, σ) without positive loops has
a proper 2|V (G)|-coloring and if (G, σ) has a proper n-coloring, then (G, σ) has a
proper (n+1)-coloring. Thus it makes sense to define the chromatic number χ(G, σ)
as the smallest n such that (G, σ) has a proper n-coloring. This formulation of the
chromatic number of a signed graph is due to Máčajová, Raspaud, and Škoviera
[3]. It is a more streamlined adaptation of coloring and chromatic numbers defined
earlier by Zaslavsky [8].

In a graphG, an incidence is where an end of an edge meets a vertex. As such each
edge (including a loop) has two distinct incidences. An incidence can be denoted by
a pair (v, e) in which vertex v is an endpoint of edge e. Although this notation does
not distinguish between the two distinct incidences of a loop, the notation can be
modified as (v, e)1 and (v, e)2 in order to do so. Let I(G) denote the set of incidences
of G. A bidirection on G is a function β : I(G)→ {+,−}. Graphically, β(v, e) = +
is envisioned as an arrow at (v, e) pointing towards v. Similarly, β(v, e) = − is
envisioned as an arrow at (v, e) pointing away from v. Thus bidirections produce
three types of edges: extroverted, introverted, and directed.

Extroverted

Introverted

Directed

Figure 1: The three types of edges in a bidirected graph.
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An orientation of a signed graph (G, σ) is a bidirection β satisfying β(v, e)β(u, e) =
−σ(e). As such, each negative edge is either introverted or extroverted and each
positive edge has one of two possible directions. An oriented signed graph is a triple
(G, σ, β) where β is an orientation of (G, σ). A vertex v in (G, σ, β) is a sink (or
source) when all of the bidirectional arrows at v are directed towards (or away from)
v. A vertex in v in (G, σ, β) is singular when it is either a source or a sink.

Let (G, σ, β) be an oriented signed graph. A path P in (G, σ, β) is coherent when
every internal vertex of (P, σ, β) is non-singular. A cycle C in a signed graph (G, σ)
is called positive (or negative) when the product of signs on its edges is positive (or
negative). A balloon B = C ∪ P in (G, σ) consists of a negative cycle C and a path
P (possibly of length zero) which intersects C at a single vertex only. The length of
a balloon is the length of C plus twice the length of P . A balloon B = C ∪ P in
(G, σ, β) is coherent when there is a unique singular vertex in (B, σ, β). When P has
positive length, then this singular vertex must be the degree-1 vertex in B. When P
has length zero, the singular vertex is any vertex on C. Figure 2 depicts a coherent
path and three coherent balloons, each of which has length 7. When depicting signed
graphs, positive edges are solid curves and negative edges are dashed curves. A circle
around a vertex indicates that the vertex is singular.

Figure 2: A coherent path and three coherent balloons, each of which has length 7.
Positive edges are solid curves and negative edges are dashed curves. A circle
around a vertex indicates that the vertex is singular.

A circuit in a signed graph (G, σ) is a subgraph which is either a positive cycle,
two negative cycles which intersect in a single vertex (called a tight handcuff ), or two
vertex-disjoint negative cycles along with a minimal connecting path (called a loose
handcuff ). If C is a circuit in (G, σ), then C is coherent in the oriented signed graph
(G, σ, β) when every vertex of C is non-singular in (C, σ, β). The reader can check
that there are exactly two possibilities for a coherent orientation β of circuit C and,
furthermore, if β is one of them, then −β is the other. An oriented signed graph
(G, σ, β) is acyclic when it contains no coherent circuit. Zaslavsky [9, Corollary 5.3]
proved that if (G, σ, β) is acyclic, then (G, σ, β) has a singular vertex.

Given a signed graph (G, σ), a switching function is a function η : V (G) →
{+,−}. Define ση by ση(e) = η(u)σ(e)η(v) in which u and v are the endpoints
of e. (This includes the case for a loop.) The sets of circuits of (G, σ) and (G, ση)
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are the same. If β is an orientation of (G, σ), then ηβ is an orientation of (G, ση).
One can think of ηβ as being obtained from β by reversing the arrows at v when
η(v) = − and leaving the arrows at v the same when η(v) = +. Since a vertex is
singular in (G, σ, β) if and only if it is singular in (G, ση, ηβ), coherence of circuits,
paths, and balloons is invariant under switching.

If κ is a proper n-coloring of (G, σ), then there is a natural orientation of (G, σ)
induced by κ, call it βκ, which is defined as follows. Given an edge e with ends (u, e)
and (v, e), we have that κ(u) 6= σ(e)κ(v); that is, κ(u)− σ(e)κ(v) 6= 0. Now because
an orientation β must satisfy β(u, e)β(v, e) = −σ(e), there is only one choice for
βκ(u, e) and βκ(v, e) so that

βκ(u, e)κ(u) + βκ(v, e)κ(v) > 0.

An equivalent formulation of βκ is as follows: If e is positive, then without loss of
generality κ(u) > κ(v). Thus e under βκ is directed with head u and tail v. If e is
negative, then κ(u)+κ(v) 6= 0. Thus e is extroverted under βκ when κ(u)+κ(v) > 0
and e is introverted under βκ when κ(u) + κ(v) < 0.

Note that βκ is acyclic when κ is proper because on any subgraph of (G, σ, βκ) a
vertex v is singular when |κ(v)| is maximum for that subgraph.

If η is a switching function for (G, σ) and κ a proper n-coloring, then ηκ is a
proper n-coloring of (G, ση). In fact, κ 7→ ηκ is a bijection between the collection of
all proper n-colorings of (G, σ) and those of (G, ση). If κ is a proper n-coloring of
(G, σ), then βηκ = ηβκ.

A useful notion of normalizing colorings and acyclic orientations was explored in
[5]. If κ is a proper n-coloring of (G, σ), then let η be the switching function defined
by η(v) = − when κ(v) < 0. Now ηκ is a non-negative proper n-coloring of (G, ση).
The coloring ηκ is called the normalization of κ. Note now that every negative edge
of (G, ση, ηβκ) is extroverted.

If β is an acyclic orientation of (G, σ), then there is a partition L1, L2, . . . of V (G)
called the canonical level decomposition of (G, σ, β) which is defined iteratively as
follows: L1 is the set of singular and isolated vertices of (G, σ) and Li+1 is the set of
singular and isolated vertices of (G, σ)−(L1∪· · ·∪Li). Let η be the switching function
for which η(v) = − if v was accounted for as a source (rather than a sink or isolated
vertex) during the construction of the canonical level decomposition. The acyclic
orientation ηβ of (G, ση) is called the normalization of β. The proof of Proposition
3 is easy.

Proposition 3 ([5, Proposition 4.1]). Let β be a normalized acyclic orientation of
(G, σ) and let L1, . . . , Lm be the canonical level decomposition.

(1) If e is a negative edge, then e is extroverted.

(2) If e is a positive edge with head in Li and tail end in Lj, then i < j.

(3) If v ∈ Lj for j > 0, then there is a positive edge e with v as its tail with
w ∈ Lj−1 as its head.
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3 The Proof of Theorem 2

(1→ 2∧ 3) Let n ∈ {2k, 2k + 1} and suppose that (G, σ) has a proper n-coloring κ.
We may assume by switching that κ is normalized as coherence of paths and balloons
is invariant under switching. Let C0, . . . , Ck be the color classes of V (G). Let P be a
coherent path in (G, σ, βκ), then because each negative edge is extroverted, there can
be at most one negative edge on P . Furthermore, if e is a positive edge with head
v and tail u, then κ(v) ≥ κ(u) + 1. If P has no negative edges, then the maximum
possible length of P is k − 1 when n = 2k and k when n = 2k + 1. If P has one
negative edge, then the maximum possible length of P occurs when the colors of
the endpoints of the negative edge are a minimum. If n = 2k, then this is when
the endpoints of the negative edge both have color 1. In this case the maximum
possible length is 1 + 2(k − 1) = 2k − 1 < n, as required. If n = 2k + 1, then this
is when the endpoints of the negative edge have colors 0 and 1. In this case, the
maximum possible length is 1 + k+ (k− 1) = 2k < n, as required. If B is a coherent
balloon in (G, σ, βκ), then because all negative edges are extroverted, there is exactly
one negative edge in B and it is on the negative cycle of B. We can associate a
coherent path with a coherent balloon of the same length as suggested in Figure 3.
The same argument for paths now implies that the maximum possible length of B
is less than n.

v v1

v2

Figure 3: Break the cycle at v and append two copies of the path to the ends.

(2 → 1) Let (G, σ, β) be an acyclic oriented signed graph without coherent paths
or balloons of length n. Since n-colorability is invariant under switching, we may
assume that β is normalized. Let L1, . . . , Lm be the canonical level decomposition of
V (G) given by β. Because there are no coherent paths of length n, Proposition 3(3)
implies that m ≤ n. If necessary, append copies of the empty set to the sequence of
Li’s so that m = n. Consider two cases based on the parity of n.

Case 1 Assume that n = 2k + 1. Relabel the sets L1, . . . , L2k+1 respectively as
Ck, . . . , C0, . . . , C−k. If e is a negative edge of (G, σ, β) whose endpoints are in Ci
and Cj, then by Proposition 3, e is contained in a coherent path or balloon of length
1+(k−i)+(k−j) < 2k+1. Hence i+j > 0. Thus all edges in the induced subgraph
G[C0∪· · ·∪C−k] are positive and there are no negative edges with endpoints in both
Ci and C−i for any i ∈ {0, . . . , k}. Thus if we color the vertices in Ci with color i,
then we have a proper (2k + 1)-coloring of (G, σ), as required.
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Case 2 Assume that n = 2k. Relabel the sets L1, . . . , L2k respectively as
Ck, . . . , C1, C−1, . . . , C−k. If e is a negative edge with endpoints in Ci and Cj,
then Proposition 3 implies that at least one of i and j is positive; furthermore,
if i is positive and j is negative, then there is a coherent path or balloon of length
1 + (k − i) + (|j| − 1 + k) < 2k. This again implies that i + j > 0, all edges in the
induced subgraph G[C−1 ∪ · · · ∪ C−k] are positive, and there are no negative edges
with endpoints in both Ci and C−i for any i ∈ {1, . . . , k}. Thus the coloring of (G, σ)
in which vertices of Ci receive color i is a proper 2k-coloring, as required.

(3→ 1) Let (G, σ, β) be an oriented signed graph without coherent paths or balloons
of length n. We may assume that G is connected. Let (H, σ, β) be a maximal acyclic
subgraph of (G, σ, β). Necessarily H is connected and spans G. Assume that a
switching function is applied to (G, σ, β) so that (H, σ, β) is normalized.

Consider the proper n-coloring κ on (H, σ, β) constructed in the proof for (2→ 1).
We finish by showing that κ extends to all of (G, σ, β). So if e ∈ E(G)−E(H), then
(H ∪ e, σ, β) has a coherent circuit, call it C, using e. In Case 1 assume that e is
positive and in Case 2 that e is negative.

Case 1 A coherent handcuff cannot have only extroverted negative edges, thus C is
a positive cycle. Because all negative edges in (H, σ, β) are extroverted, C − e is a
coherent path consisting of positive edges only. Thus the endpoints of P must have
different colors under κ and so edge e is properly colored by κ as well.

Case 2 A coherent circuit which contains negative edges cannot contain only extro-
verted edges. Thus e must be introverted. Denote the endpoints of e by x and y.
(This includes the case that x = y.) If C is a positive cycle, then C − e is a coherent
path containing a single negative edge which is extroverted. Thus C − e is as shown
on the left in Figure 4 where either or both of the y′y- or x′x-paths may have length
zero. Because κ(y′)+κ(x′) > 0, this implies that κ(y)+κ(x) > 0 and so e is properly
colored by κ.

If C is a handcuff, then e is either on a negative cycle of C or on its connecting
path. In the latter case, C − e is as shown in the middle of Figure 4 where either or
both of the v1x- or v2y-paths may have length zero. Since the sum of the colors of
the endpoints of a negative edge in (H, σ, β) must be positive, κ(v1) and κ(v2) are
both positive which implies the same for κ(x) and κ(y). Thus e is properly colored
by κ. If e is on a negative cycle of C, then C− e is as shown on the right of Figure 4
in which 1 ≤ |{v, v′x, y}| ≤ 4. Again κ(v) > 0 which implies that κ(x) and κ(y) are
positive and so e is properly colored by κ.
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Figure 4: Possibilities for C − e when e is introverted. Positive edges shown
in this figure represent coherent paths of positive edges of any length, including
zero. Negative loops shown in this figure represent negative cycles having a unique
singular vertex and which consist of a single extroverted negative edge along with
any number (including zero) of positive edges.
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[3] E. Máčajová, A. Raspaud and M. Škoviera, The chromatic number of a signed
graph, Electron. J. Combin. 23(1) (2016), #P1.14, 10pp.

[4] B. Roy, Nombre chromatique et plus longs chemins d’un graphe, Rev. Française
Informat. Recherche Opérationnelle 1(5) (1967), 129–132.

[5] D. Slilaty, On colorings and orientations of signed graphs, Discrete Math. Lett.
12 (2023), 98–102.

[6] L. M. Vitaver, Determination of minimal coloring of vertices of a graph by means
of Boolean powers of the incidence matrix, Dokl. Akad. Nauk SSSR 147 (1962),
758–759.

[7] T. Zaslavsky, Chromatic invariants of signed graphs, Discrete Math. 42(2-3)
(1982), 287–312.

[8] T. Zaslavsky, Signed graph coloring, Discrete Math. 39(2) (1982), 215–228.

[9] T. Zaslavsky, Orientation of signed graphs, European J. Combin. 12(4) (1991),
361–375.

(Received 13 Dec 2023; revised 30 July 2024, 1 Dec 2024)


