Hamiltonian connected balanced multipartite tournaments and hamiltonian connected partitions^{*}

Ana Paulina Figueroa †

Departamento Académico de Matemáticas ITAM, México ana.figueroa@itam.mx

JUAN JOSÉ MONTELLANO-BALLESTEROS

Instituto de Matemáticas UNAM, México juancho@math.unam.mx

Mika Olsen

Departamento de Matemáticas Aplicadas y Sistemas UAM-C, México olsen@correo.cua.uam.mx

Abstract

In this paper we give sufficient conditions for the existence of a partition of an *r*-balanced *c*-partite tournament into *r* strongly hamiltonian connected tournaments of order *c* (an *hc*-partition). We also prove that every *r*-balanced *c*-partite tournament with $c \ge 5$ and $r \ge 5$ is strongly hamiltonian connected if it has an *hc*-partition and minimum degree at least $\frac{c(r+12)}{4} + \frac{3r}{4}$. As a consequence of these theorems, we give sufficient conditions for balanced multipartite tournaments and regular balanced multipartite tournaments to be strongly hamiltonian connected.

1 Introduction, notation and preliminary results

Let $c \geq 3$ be an integer. A *c*-partite or multipartite tournament is a digraph obtained from a complete *c*-partite graph by orienting each edge. Recently multipartite tour-

^{*} Research supported by PAPIIT-México under project IN113324; CONACYT under projects A1-S-12891 and A1-S-45208.

[†] Corresponding author.

naments have received considerable attention from various authors [2, 3, 4, 5, 8, 9]. Let G be a c-partite tournament of order n with partite sets V_1, V_2, \ldots, V_c . We say that a c-partite tournament is r-balanced if each partite set has exactly r vertices, and we denote it by $G_{r,c}$. We follow all the definitions and notation of [1]. Let A and B be two non intersecting subdigraphs (or subsets of vertices) of a digraph D. Then we denote by (A, B) the set of arcs from a vertex of A to a vertex of B, and if $a \in (A, B)$, we say that a is an AB-arc.

For an oriented graph D, the global irregularity of D is defined as

$$i_g(D) = \max_{x,y \in V(D)} \left(\max\{d^+(x), d^-(x)\} - \min\{d^+(y), d^-(y)\} \right).$$

If $i_g(D) = 0$, then D is regular. For $x \in V(G)$ and $i \in [c]$, the *out-neighborhood* of x in V_i is $N_i^+(x) = V_i \cap N^+(x)$; the *in-neighborhood* of x in V_i is $N_i^-(x) = V_i \cap N^-(x)$; $d_i^+(x) = |N_i^+(x)|$; $d_i^-(x) = |N_i^-(x)|$; and $\delta(G) = \min_{x \in V(G)} \{d^-(x), d^+(x)\}$ is the *minimum degree* of G. The *local partite irregularity* of G is defined as

$$\mu(G) = \max_{x \in V(G)} \max_{i \in [c]} |d_i^+(x) - d_i^-(x)|.$$

Given a tournament T, a vertex $x \in V(T)$ is q-wicked for T if $\min\{d_T^+(x), d_T^-(x)\} \leq q$. Let $G_{r,c}$ be an r-balanced c-partite tournament. Notice that a maximal tournament in $G_{r,c}$ is a tournament of order c. For each integer $q \geq 0$ and each vertex $x \in V(G_{r,c})$, let $T_q^+(x)$ (respectively, $T_q^-(x)$) be the number of maximal tournaments of $G_{r,c}$ for which x is q-wicked because it has out-degree (respectively, in-degree) at most q in T. A partition of $G_{r,c}$ into maximal tournaments is a spanning subdigraph of $G_{r,c}$ formed by r pairwise vertex-disjoint tournaments of order c. Notice that if T is not strong, then T must have a $\left\lceil \frac{c-2}{4} \right\rceil$ -wicked vertex. In [4] we gave sufficient conditions for a balanced multipartite tournament to have a strong partition (st-partition for short); that is, partitions for which every maximal tournament of the partition is strong, and in our results we used the following bounds of the number of maximal tournaments of $m_{r,c}$ for which x is q-wicked for $q = \left\lceil \frac{c-2}{4} \right\rceil$.

Theorem 1.1 (Theorem 2.3, [3]) Let $G_{r,c}$ be an r-balanced c-partite tournament with $r \ge 2$ and $c \ge 5$ such that for some integer $q \ge 0$, $\delta(G_{r,c}) \ge q (r + \mu(G_{r,c})) \frac{c-1}{c-2}$. Then, for every $x \in V(G_{r,c})$,

$$T_q^+(x) \le \sum_{k=0}^q \binom{c-1}{k} \left(\frac{d^+(x)}{c-1}\right)^k \left(\frac{d^-(x)}{c-1}\right)^{c-1-k}$$

Theorem 1.2 (Theorem 2.4, [3]) Let $G_{r,c}$ be an r-balanced c-partite tournament with $r \ge 2$ and $c \ge 5$. If for some $q \ge 0$, $\delta(G_{r,c}) \ge q (r + \mu(G_{r,c})) \frac{c-1}{c-2}$ and $i_g(G_{r,c}) = r(c-1)\beta$ with $0 \le \beta < \frac{c-2q-2}{c}$, then for every $x \in V(G_{r,c})$ we have that

$$T_q^+(x) \le {\binom{c-1}{q+1}} \left(\frac{r}{2}\right)^{c-1} \frac{(1+\beta)^{c-2-2q} (q+1)}{c(1-\beta) - 2q - 2}.$$

A digraph D is strongly hamiltonian connected (hamiltonian connected for short) if, for any two vertices x and y, there is a hamiltonian path from x to y and from y to x. In this article we study the partitions of $G_{r,c}$ into hamiltonian connected maximal tournaments. A partition is called hamiltonian connected (hc-partition for short) if every maximal tournament of the partition is hamiltonian connected. A vertex xis hc-wicked for a maximal tournament T if min $\{d_T^+(x), d_T^-(x)\} \leq \lfloor \frac{c}{4} \rfloor + 1$. It can be proved, using the following theorem, that if a tournament is not hamiltonian connected, then it has an hc-wicked vertex.

Theorem 1.3 (Corollary 5.7 [7]) A 4-connected tournament is hamiltonian connected.

Using Theorems 1.1, 1.2 and 1.3, we give sufficient conditions for $G_{r,c}$ to have an hc-partition. We also prove that every r-balanced c-partite tournament, $G_{r,c}$, with $c \geq 5$ and $r \geq 5$ is hamiltonian connected if it has an hc-partition and minimum degree at least $\frac{c(r+12)}{4} + \frac{3r}{4}$. As a consequence of these theorems we give sufficient conditions for balanced multipartite tournaments and regular balanced multipartite tournaments to be hamiltonian connected.

2 Hamiltonian connected partitions

In this section we give sufficient conditions on the global irregularity and the local partite irregularity for a balanced multipartite tournament to have a hamiltonian connected partition. Let T be a tournament of order $c \ge 10$. First we prove Lemma 2.1 to affirm that if T has no hc-wicked vertices, then T is hamiltonian connected, and this fact will be used thoughout, without mentioning it.

Lemma 2.1 Let T be a tournament of order $c \ge 10$. If $\delta(T) \ge \lceil \frac{c}{4} \rceil + 2$, then T is hamiltonian connected.

Proof. Let *T* be a tournament of order $c \ge 10$ with $\delta(T) \ge \lceil \frac{c}{4} \rceil + 2$. By Theorem 1.3, it suffices to prove that *T* is 4-connected. For a contradiction, assume that *T* is not 4-connected. Then there is a set $S \subseteq V(T)$, with $|S| \le 3$, such that T - S is not strongly connected. Therefore there is a pair $x, y \in V(T) \setminus S$ such that there is no xy-path in T - S. Let $A_x \subseteq V(T) \setminus S$ (respectively, $A_y \subseteq V(T) \setminus S$) be the set of all the $z \in V(T) \setminus S$ such that there is an xz-path (respectively, zy-path) in T - S. Clearly $A_x \cap A_y = \emptyset$, and there is no arc from A_x to $V(T) \setminus (S \cup A_x)$ (respectively, from $V(T) \setminus (S \cup A_y)$ to A_y). Therefore $\sum_{w \in A_x} d^+(w) \le {|A_x| \choose 2} + |S| |A_x|$ and $\sum_{w \in A_y} d^-(w) \le {|A_y| \choose 2} + |S| |A_y|$. We may assume that $|A_x| \le |A_y|$. Hence there is $w_0 \in A_x$ such that $d^+(w_0) \le \frac{|A_x|-1}{2} + |S|$, and since $|A_x| \le |A_y|$ and $|A_x| \le \frac{c-|S|}{2}$, we have $d^+(w_0) \le \frac{|A_x|-1+2|S|}{2} \le \frac{c-|S|-2+4|S|}{4} = \frac{c+3|S|-2}{4}$. Since $|S| \le 3$, we have

 $d^+(w_0) \leq \frac{c+7}{4}$, which contradicts the fact that $\delta(T) \geq \lceil \frac{c}{4} \rceil + 2$. By Theorem 1.3, the lemma follows.

Lemma 2.3 assures us that if for every vertex x in an r-balanced c-partite tournament, the number of tournaments for which x is hc-wicked because of its outneighborhood is less than $\frac{r^{c-1}}{2rc}$, then the r-balanced c-partite tournament has an hc-partition. For its proof we need the following lemma.

Lemma 2.2 (Lemma 1 [4]) The number of partitions of any $G_{r,c}$ into maximal tournaments is $(r!)^{c-1}$.

Lemma 2.3 Let $G_{r,c}$ be an r-balanced c-partite tournament. If $G_{r,c}$ does not have an hc-partition, then there exists a vertex x_0 such that

$$\max\{T^+_{\lceil \frac{c}{4}\rceil+1}(x_0), T^-_{\lceil \frac{c}{4}\rceil+1}(x_0)\} \ge \frac{r^{c-1}}{2rc}$$

Proof. If $G_{r,c}$ does not have an hc-partition, then every partition into maximal tournaments has a tournament T with an hc-wicked vertex; that is, $\delta(T) \leq \lceil \frac{c}{4} \rceil + 1$. By Lemma 2.2, there are $(r!)^{c-1}$ partitions. Since $G_{r,c}$ does not have an hc-partition, the number of partitions with an hc-wicked vertex is the number of all partitions. For a given $x \in V(G_{r,c})$, $T^+_{\lceil \frac{c}{4} \rceil + 1}(x) + T^-_{\lceil \frac{c}{4} \rceil + 1}(x)$ is the number of maximal tournaments for which x is an hc-wicked vertex. Notice that each maximal tournament of $G_{r,c}$ for which x is hc-wicked is contained in $((r-1)!)^{c-1}$ partitions.

Therefore,

$$((r-1)!)^{c-1} \sum_{x \in V(G_{r,c})} \left(T^+_{\lceil \frac{c}{4} \rceil + 1}(x) + T^-_{\lceil \frac{c}{4} \rceil + 1}(x) \right) \ge (r!)^{c-1}$$

and

$$\sum_{c \in V(G_{r,c})} \left(T^+_{\lceil \frac{c}{4} \rceil + 1}(x) + T^-_{\lceil \frac{c}{4} \rceil + 1}(x) \right) \ge r^{c-1}.$$

Since the order of $G_{r,c}$ is rc, by an averaging argument, there exists a vertex $x_0 \in G_{r,c}$ such that

$$T^+_{\lceil \frac{c}{4} \rceil + 1}(x_0) + T^-_{\lceil \frac{c}{4} \rceil + 1}(x_0) \ge \frac{r^{c-1}}{rc}$$

From here the result follows.

We now give sufficient conditions for an r-balanced c-partite tournament to have an hc-partition.

Theorem 2.1 Let $G_{r,c}$ be a regular r-balanced c-partite tournament, with $c \geq 10$, $r \geq 2$ and $\mu(G_{r,c}) \leq \frac{r(c-2)}{2\lceil \frac{c}{4} \rceil + 2} - r$. Then, $G_{r,c}$ has an hc-partition if

$$2^{c-2} > rc \min\left\{ \binom{c-1}{\lceil \frac{c}{4} \rceil + 2} \frac{\lceil \frac{c}{4} \rceil + 2}{c - 2\lceil \frac{c}{4} \rceil - 4}, \sum_{k=0}^{\lceil \frac{c}{4} \rceil + 1} \binom{c-1}{k} \right\}.$$

Proof. If $G_{r,c}$ does not have an *hc*-partition, then, by Lemma 2.3, there exists $x_0 \in V(G_{r,c})$ such that

$$T^{+}_{\lceil \frac{c}{4} \rceil + 1}(x_0) \ge \frac{r^{c-1}}{2rc}.$$
(1)

Since $\mu(G_{r,c}) \leq \frac{r(c-2)}{2\lceil \frac{c}{4} \rceil + 2} - r$, and $G_{r,c}$ is regular,

$$\left(\left\lceil \frac{c}{4} \right\rceil + 1\right) \left(r + \mu(G_{r,c})\right) \frac{c-1}{c-2} \leq r\left(\left\lceil \frac{c}{4} \right\rceil + 1\right) \left(\frac{c-2}{2\left\lceil \frac{c}{4} \right\rceil + 2}\right) \frac{c-1}{c-2}$$
$$= \frac{r(c-1)}{2} = \delta(G_{r,c}).$$

Thus, by Theorem 1.1 and Inequality (1), for every $x \in V(G_{r,c})$

$$\frac{r^{c-1}}{2rc} \le T^+_{\lceil \frac{c}{4} \rceil + 1}(x) \le \sum_{k=0}^{\lceil \frac{c}{4} \rceil + 1} \binom{c-1}{k} \left(\frac{d^+(x)}{c-1}\right)^k \left(\frac{d^-(x)}{c-1}\right)^{c-1-k}$$

Since $G_{r,c}$ is regular, for every $x \in V(G_{r,c})$, $d^+(x) = d^-(x) = \frac{r(c-1)}{2}$ and

$$\frac{r^{c-1}}{2rc} \le \sum_{k=0}^{\lceil \frac{c}{4}\rceil+1} \binom{c-1}{k} \left(\frac{d^+(x)}{c-1}\right)^k \left(\frac{d^-(x)}{c-1}\right)^{c-1-k} = \sum_{k=0}^{\lceil \frac{c}{4}\rceil+1} \binom{c-1}{k} \left(\frac{r}{2}\right)^{c-1}.$$
 (2)

Moreover, since $i_g(G_{r,c}) = r(c-1)\beta = 0$; $\delta(G_{r,c}) = \frac{r(c-1)}{2}$ and $\mu(G_{r,c}) \leq \frac{r(c-2)}{2\lceil \frac{c}{4} \rceil + 2} - r$, it follows that $\delta(G_{r,c}) \geq q \left(r + \mu(G_{r,c})\right) \frac{c-1}{c-2}$ with $q = \lceil \frac{c}{4} \rceil + 1$. By Theorem 1.2 and Inequality (1), for every $x \in V(G_{r,c})$,

$$\frac{r^{c-1}}{2rc} \leq T^+_{\lceil \frac{c}{4} \rceil + 1}(x) \leq \binom{c-1}{\lceil \frac{c}{4} \rceil + 2} \binom{r}{2}^{c-1} \frac{(1+\beta)^{c-4-2\lceil \frac{c}{4} \rceil}(\lceil \frac{c}{4} \rceil + 2)}{c(1-\beta)-2\lceil \frac{c}{4} \rceil - 4} \\
= \binom{c-1}{\lceil \frac{c}{4} \rceil + 2} \binom{r}{2}^{c-1} \frac{\lceil \frac{c}{4} \rceil + 2}{c-2\lceil \frac{c}{4} \rceil - 4}.$$
(3)

Multiplying (2) and (3) by $2^{c-1} \frac{2rc}{r^{c-1}}$, the result follows.

Theorem 2.2 Let $G_{r,c}$ be an r-balanced c-partite tournament with $r \ge 3$, $c \ge 10$ and $i_g(G_{r,c}) = r(c-1)\beta$, where $0 \le \beta < \frac{c-2\lceil \frac{c}{4}\rceil - 4}{c}$, and $\mu(G_{r,c}) \le r\left(\frac{(1-\beta)(c-2)}{2\lceil \frac{c}{4}\rceil + 2} - 1\right)$. If

$$2^{c-2} > rc \binom{c-1}{\left\lceil \frac{c}{4} \right\rceil + 2} \frac{\left(1+\beta\right)^{c-2\left\lceil \frac{c}{4} \right\rceil - 4}\left(\left\lceil \frac{c}{4} \right\rceil + 2\right)}{c(1-\beta) - 2\left\lceil \frac{c}{4} \right\rceil - 4},$$

then there exists an hc-partition.

Proof. If $G_{r,c}$ does not have an *hc*-partition, then, by Lemma 2.3, there exists $x_0 \in V(G_{r,c})$ such that

$$T^+_{\lceil \frac{c}{4} \rceil + 1}(x_0) \ge \frac{r^{c-1}}{2rc}.$$
 (4)

Let $Q := rc\binom{c-1}{\lceil \frac{c}{4} \rceil + 2} \frac{(1+\beta)^{c-2\lceil \frac{c}{4} \rceil - 4}(\lceil \frac{c}{4} \rceil + 2)}{c(1-\beta) - 2\lceil \frac{c}{4} \rceil - 4}$. In order to use Theorem 1.2, we need to prove that $\delta(G_{r,c}) \ge q \left(r + \mu(G_{r,c})\right) \frac{c-1}{c-2}$ with $q = \lceil \frac{c}{4} \rceil + 1$. Since $G_{r,c}$ is r-balanced, for every vertex x, $d^+(x) + d^-(x) = r(c-1)$; thus the vertex with maximum out-degree is the same as the one with minimum in-degree. Therefore $i_g(G_{r,c}) = r(c-1) - 2\delta(G_{r,c})$, and thus $\delta(G_{r,c}) = \frac{r(c-1) - i_g(G_{r,c})}{2}$; and by hypothesis, $i_g(G_{r,c}) = r(c-1)\beta$.

Therefore $\delta(G_{r,c}) = \frac{r(c-1)}{2}(1-\beta)$. As $\mu(G_{r,c}) \leq r\left(\frac{(1-\beta)(c-2)}{2\lceil \frac{c}{4}\rceil+2}-1\right)$, we see that $(1-\beta) \geq \frac{(2\lceil \frac{c}{4}\rceil+2)(\mu(G_{r,c})+r)}{r(c-2)}$. Thus, $\delta(G_{r,c}) \geq \frac{r(c-1)}{2} \frac{(2\lceil \frac{c}{4}\rceil+2)(\mu(G_{r,c})+r)}{r(c-2)} = (\lceil \frac{c}{4}\rceil+1)(r+\mu(G_{r,c}))\frac{c-1}{c-2}$. By Theorem 1.2 and Inequality (4), for every $x \in V(G_{r,c})$,

$$\frac{r^{c-1}}{2rc} \le T^+_{\lceil \frac{c}{4}\rceil+1}(x) \le \binom{c-1}{\lceil \frac{c}{4}\rceil+2} \left(\frac{r}{2}\right)^{c-1} \frac{(1+\beta)^{c-2\lceil \frac{c}{4}\rceil-4}\left(\lceil \frac{c}{4}\rceil+2\right)}{c(1-\beta)-2\lceil \frac{c}{4}\rceil-4}.$$

Simplifying, we obtain that $2^{c-2} \leq Q$. Therefore, if $2^{c-2} > Q$, there exists an hc-partition.

3 From *hc*-partitions to hamiltonian connected balanced multipartite graphs

In this section we prove that having an hc-partition and sufficiently large minimum degree are sufficient conditions for a balanced multipartite tournament to be hamiltonian connected. To do so we define the digraph of a partition as follows.

Let $G_{r,c}$ be an *r*-balanced *c*-partite tournament with an *hc*-partition, $\mathcal{P} = \{T_1, \ldots, T_r\}$ of $G_{r,c}$. We define $D_{\mathcal{P}}$ of the partition \mathcal{P} as a digraph with vertex set $V(D_{\mathcal{P}}) = \{T_1, \ldots, T_r\}$ and such that $T_i T_j \in A(D_{\mathcal{P}})$ if and only if in $G_{r,c}$ there are at least three independent $T_i T_j$ -arcs. Observe that $D_{\mathcal{P}}$ may have symmetric arcs.

Lemma 3.1 Let $G_{r,c}$ be an r-balanced c-partite tournament with $r \ge 3$, $c \ge 5$ and an hc-partition $\mathcal{P} = \{T_1, \ldots, T_r\}$. Then the digraph $D_{\mathcal{P}}$ is semicomplete.

Proof. Let $T_i, T_j \in V(D_{\mathcal{P}})$ and let $V(T_i) = \{x_0, \ldots, x_{c-1}\}$ and $V(T_j) = \{y_0, \ldots, y_{c-1}\}$. Without loss of generality, suppose that for $i \in \{0, 1, \ldots, c-1\}$, x_i and y_i belong to the same partite set of $G_{r,c}$. Let $A = \{x_iy_{i+1} \in A(G_{c,r}) : i \mod c\} \cup \{y_{i+1}x_i \in A(G_{c,r}) : i \mod c\}$. A is a set of c independent arcs in $G_{r,c}$. Since $c \ge 5$, it follows that either $|A \cap (T_i, T_j)| \ge 3$ or $|A \cap (T_j, T_i)| \ge 3$, and the result follows. \Box

Lemma 3.2 Let $G_{r,c}$ be an r-balanced c-partite tournament with $r \ge 3$, $c \ge 5$. Let $T_i, T_j \in V(D_{\mathcal{P}})$. If $T_iT_j \notin A(D_{\mathcal{P}})$, then $|(T_i, T_j)| \le 2(c-1)$.

Proof. Let $T_i, T_j \in V(D_{\mathcal{P}})$ such that $T_iT_j \notin A(D_{\mathcal{P}})$. Thus there is no triple of independent T_iT_j -arcs in $G_{r,c}$. If the maximum size of a set of independent T_iT_j -arcs is one, then all the T_iT_j -arcs are incident to the same vertex, and therefore $|(T_i, T_j)| \leq c - 1$. If the maximum size of a set of independent T_iT_j -arcs is two, then let $\{x_1y_1, x_2y_2\}$ be a pair of independent T_iT_j -arcs. Then each of $(T_i - x_1, T_j - y_1)$ and $(T_i - x_2, T_j - y_2)$ contains exactly one independent (T_i, T_j) -arc. Therefore, by the above arguments, each of them contains at most c - 2 (T_i, T_j) -arcs. Observe that (T_i, T_j) may also contain the arcs x_1y_2 and x_2y_1 . Thus, we obtain that $|(T_i, T_j)| \leq 2(c-1)$ and the result follows.

Theorem 3.1 Let $G_{r,c}$ be an r-balanced c-partite tournament with $r \ge 5$, $c \ge 5$ and an hc-partition. If $\delta(G_{r,c}) \ge \frac{c(r+12)}{4} + \frac{3r}{4}$, then $D_{\mathcal{P}}$ is 5-connected.

Proof. For a contradiction, suppose that $D_{\mathcal{P}}$ is not 5-connected. Let

$$S = \{T_1, T_2, T_3, T_4\} \subseteq V(D_{\mathcal{P}})$$

such that $D_{\mathcal{P}} - S$ is not strong. Let $\{A, B\}$ be a partition of $V(D_{\mathcal{P}} - S)$ such that $(B, A) = \emptyset$. Without loss of generality suppose that $|A| \leq |B|$; then $|A| \leq \frac{r-4}{2}$. Let $A' = \bigcup_{T \in A} V(T) \subseteq V(G_{r,c})$. By Lemma 3.2, for every $T_i \in A$ and every $T_j \in B$, $|(T_i, T_j)| \leq 2(c-1)$, and since |A'| = c|A|, it follows that

$$\sum_{x \in A'} d^{-}(x) \le \binom{|A|c}{2} - c\binom{|A|}{2} + |A||B|2(c-1) + 4(c-1)c|A|.$$

Since $c \ge 5$, $|A| = \frac{4|A|}{c} + \frac{(c-4)|A|}{c}$, |A| + |B| = r - 4, and $|A| \le \frac{r-4}{2}$, there is $x_0 \in V(G_{r,c})$ such that

$$\begin{aligned} d^{-}(x_{0}) &\leq \frac{\sum_{x \in A'} d^{-}(x)}{|A|c} = \frac{|A|c-1}{2} - \frac{|A|-1}{2} + 2|B|\frac{c-1}{c} + 4(c-1) \\ &= \frac{|A|(c-1)}{2} + 2|B|\frac{c-1}{c} + 4(c-1) = \frac{c-1}{2}\left(|A| + \frac{4|B|}{c} + 8\right) \\ &= \frac{c-1}{2}\left(\frac{(c-4)|A|}{c} + \frac{4|A|}{c} + \frac{4|B|}{c} + 8\right) \\ &\leq \frac{c-1}{4}\left(\frac{(c-4)(r-4)}{c} + \frac{8(r-4)}{c} + \frac{16c}{c}\right) \\ &= \frac{c-1}{4c}\left(cr - 4c - 4r + 16 + 8r - 32 + 16c\right) \\ &= \frac{c-1}{4c}\left(cr + 12c + 4r - 16\right) \\ &\leq \frac{1}{4c}\left(c^{2}r + 12c^{2} + 3cr - 28c - 4r + 16\right) \\ &= \frac{c}{4c}\left(cr + 12c + 3r - 28 + \frac{-4r + 16}{c}\right) \\ &< \frac{1}{4}\left(cr + 12c + 3r\right) \\ &< \frac{c}{4}\left(r + 12\right) + \frac{3r}{4}, \end{aligned}$$

which contradicts the fact that $\delta(G_{r,c}) \geq \frac{c(r+12)}{4} + \frac{3r}{4}$ and therefore $D_{\mathcal{P}}$ is 5-connected.

We use the former results and Theorem 3.2 in order to prove Theorem 3.3.

Theorem 3.2 (Corollary 2.11 [6]) Every 4-connected locally semicomplete digraph is hamiltonian-connected.

Let Q_1 and Q_2 be paths of a digraph D; the concatenation of $Q_1 = (a_1, a_2, \ldots, a_n)$ and $Q_2 = (a_n = b_1, b_2, \ldots, b_k)$ is the walk $Q_1 \circ Q_2 = (a_1, a_2, \ldots, a_n = b_1, \ldots, b_2, \ldots, b_k)$.

Theorem 3.3 Let $G_{r,c}$ be an r-balanced c-partite tournament with $r \ge 4$, $c \ge 3$, and an hc-partition $\mathcal{P} = \{T_1, \ldots, T_r\}$. If $\delta(G_{r,c}) \ge 2c - 2$ and $D_{\mathcal{P}}$ is 5-connected, then $G_{r,c}$ is hamiltonian connected.

Proof. Since T_i is hamiltonian connected, for any pair $x, y \in V(T_i)$, there exists a hamiltonian xy-path in T_i , that will be denoted by (xP_iy) .

Given a path of $D_{\mathcal{P}}$, say (T_1, T_2, \ldots, T_s) , notice that for every vertex $u \in V(T_i)$ with $1 \leq i < s$, there exists a vertex $v \in V(T_i) \setminus \{u\}$ such that $N^+(v) \cap V(T_{i+1}) \neq \emptyset$, because there exist at least three parallel arcs from T_i to T_{i+1} .

For every $y_1 \in V(T_1)$ such that $N^+(y_1) \cap V(T_2) \neq \emptyset$, there exist $x_s \in V(T_s)$ and a y_1x_s -path $Q_{T_1,T_s}(y_1,x_s)$ of $G_{r,c}$ with vertex set $\bigcup_{i=2}^{s-1}V(T_i) \cup \{y_1,x_s\}$. Now $Q_{T_1,T_s}(y_1,x_s)$ is constructed as follows. Let $x_2 \in N^+(y_1) \cap V(T_2)$. As noticed above, there is a vertex $y_2 \in V(T_2) \setminus \{x_2\}$ such that there exists $x_3 \in N^+(y_2) \cap V(T_3)$. From the fact that T_2 is hamiltonian strongly connected, we can concatenate the arc (y_1,x_2) with a hamiltonian path $x_2P_2y_2$ and the arc (y_2,x_3) , obtaining a y_1x_3 -path with vertex set $V(T_2) \cup \{y_1,x_3\}$. Following this procedure, there exists $Q_{T_1,T_s}(y_1,x_s) =$ $((y_1,x_2) \circ (x_2P_2y_2) \circ (y_2,x_3) \circ (x_3P_3y_3) \circ (y_3,x_4) \circ \cdots \circ (y_{s-2},x_{s-1}) \circ (x_{s-1}P_{s-1}y_{s-1}) \circ$ $(y_{s-1},x_s))$ such that $N^+(y_t) \cap T_{t+1} \neq \emptyset$ and $x_{t+1} \in N^+(y_t) \cap T_{t+1}$, for every $t \in$ $\{1,2\ldots s-1\}$.

Let $a, b \in V(G_{r,c})$. It is sufficient to prove that there is a hamiltonian *ab*-path. Without loss of generality we have two cases.

Case 1. a and b are vertices in different tournaments of the hc-partition.

Without loss of generality, we can assume that $a \in V(T_1)$, $b \in V(T_r)$. By Lemma 3.1 and Theorem 3.2, \mathcal{D}_P is hamiltonian connected. Therefore there is a hamiltonian path, (T_1, \ldots, T_r) .

Let y_1 be a vertex in $V(T_1) \setminus \{a\}$ such that $N^+(y_1) \cap V(T_2) \neq \emptyset$. There exists $x_{r-1} \in V(T_{r-1})$ such that $Q_{T_1,T_{r-1}}(y_1, x_{r-1})$ is a y_1x_{r-1} -path with vertex set $\bigcup_{i=2}^{r-1}V(T_i) \cup \{y_1, x_{r-1}\}$. Since T_1 is hamiltonian connected, in T_1 there is a hamiltonian ay_1 -path, say Q_1 . There are at least three parallel arcs from $V(T_{r-1})$ to $V(T_r)$; therefore at least one of them is an arc uv such that $u \neq x_{r-1}$ and $v \neq b$. Since T_{r-1} and T_r are hamiltonian connected, there exists a hamiltonian $x_{r-1}u$ -path of T_{r-1} , say Q_{r-1} , and a hamiltonian vb-path of T_r , say Q_r . Then $Q_1 \circ Q_{T_1T_{r-1}}(y_1, x_r) \circ Q_{r-1} \circ Q_r$ is a hamiltonian ab-path of $G_{c,r}$.

Case 2. a and b are vertices of the same tournaments of the hc-partition.

We can assume that $a, b \in V(T_r)$. Since $d^+(a) \geq 2c - 2 \geq c + 1$, we can assume that there exists $u \in V(T_1)$ such that $au \in A(G_{r,c})$. As T_r is hamiltonian connected, there exists a hamiltonian path, $(a, a_1, \ldots a_{c-1} = b)$ in T_r . By hypothesis, $d^-(a_1) \geq 2c - 2 \geq c + 1$; thus there exists a partite set $T_{r-1} \neq T_1$ and a vertex $w \in V(T_{r-1})$ such that $w \in N^-(a_1)$. By hypothesis, $D_{\mathcal{P}}$ is 5-connected; therefore $D_{\mathcal{P}} - T_r$ is 4-connected and by Theorem 3.2, hamiltonian connected. Let (T_1, \ldots, T_{r-1}) be a hamiltonian path of $D_{\mathcal{P}} - T_r$.

Since there are at least three parallel arcs from T_1 to T_2 , there exists $y_1 \neq u$ and $x_{r-2} \in V(T_{r-2})$ such that $Q_{T_1,T_{r-2}}(y_1, x_{r-2})$ is a y_1x_{r-2} -path containing vertices $\bigcup_{i=2}^{r-3} V(T_i)$.

Since there are three parallel arcs from T_{r-2} to T_{r-1} , there exists at least one of these arcs cd such that $c \neq x_{r-2}$ and $d \neq w$. Since T_1 is hamiltonian connected, let Q be a hamiltonian uy_1 -path in T_1 ; analogously there exists S, a hamiltonian $x_{r-2}c$ -path of T_{r-2} , and U, a hamiltonian dw-path in T_{r-1} ; see Figure 1.

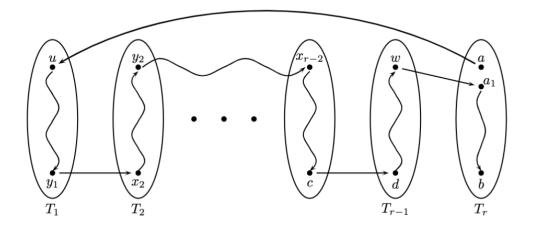


Figure 1

Therefore

$$(Q \circ Q_{T_1,T_{r-2}}(y_1, x_{r-2}) \circ S \circ U \circ (a_1, \dots, a_{c-1} = b))$$

is an *ab*-hamiltonian path of $G_{r,c}$.

Corollary 3.1 Let $G_{r,c}$ be a regular r-balanced c-partite tournament, with $c \ge 10$, $r \ge 5$ and $cr \ge 12c + 5r$ and $\mu(G_{r,c}) \le r\left(\frac{c-2}{2\lceil \frac{c}{4}\rceil+2} - 1\right)$. Then $G_{r,c}$ is hamiltonian connected if

$$2^{c-2} > rc \min\left\{ \binom{c-1}{\left\lceil \frac{c}{4} \right\rceil + 2} \left(\frac{\left\lceil \frac{c}{4} \right\rceil + 2}{c - 2\left\lceil \frac{c}{4} \right\rceil - 4} \right), \sum_{k=0}^{\left\lceil \frac{c}{4} \right\rceil + 1} \binom{c-1}{k} \right\}.$$

Proof. Since $G_{r,c}$ is regular, $\delta(G_{r,c}) = \frac{r(c-1)}{2}$, and using $cr \geq 12c + 5r$ it is not difficult to check that $\frac{r(c-1)}{2} \geq \frac{c(r+12)}{4} + \frac{3r}{4}$. Therefore, by Theorems 2.1, 3.1 and 3.3, $G_{r,c}$ is hamiltonian connected.

References

- J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2001.
- [2] A. P. Figueroa, J. J. Montellano Ballesteros and M. Olsen, Strong subtournaments and cycles of multipartite tournaments, *Discrete Math.* 339 (2016), 2793–2803. https://doi.org/10.1016/j.disc.2016.05.031
- [3] A. P. Figueroa, J. J. Montellano Ballesteros and M. Olsen, Conditions on the regularity of balanced *c*-partite tournaments for the existence of strong subtournaments with high minimum degree, *Australas. J. Combin.* 82 (2022), 353–365. https://ajc.maths.uq.edu.au/pdf/82/ajc_v82_p353.pdf
- [4] A. P. Figueroa, J. J. Montellano Ballesteros and M. Olsen. Partition of regular balanced c-tournaments into strongly connected c-tournaments, *Discrete Math.* 346 (7) (2023), 113459. https://doi.org/10.1016/j.disc.2023.113459
- [5] W. D. Goddard, G. Kubicki, O. R. Oellermann and S. Tian, On Multipartite Tournaments, J. Combin. Theory Ser. B 52 (1991), 284–300.
- Y. Guo, Strongly Hamiltonian-connected locally semicomplete digraphs, J. Graph Theory 21 (1996), 65–73.
- [7] C. Thomassen, Hamiltonian-Connected Tournaments, J. Combin. Theory Ser. B 28 (1980), 142–163.
- [8] L. Volkmann, Multipartite tournaments: A survey, Discrete Math. 307 (24) (2007), 3097-3129. https://doi.org/10.1016/j.disc.2007.03.053
- [9] L. Volkmann, Strong subtournaments of multipartite tournaments, Australas. J. Combin. 20 (1999), 189-196. https://ajc.maths.uq.edu.au/pdf/20/ ocr-ajc-v20-p189.pdf

(Received 11 Nov 2023; revised 22 Sep 2024, 10 Dec 2024)