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juancho@math.unam.mx

Mika Olsen

Departamento de Matemáticas Aplicadas y Sistemas
UAM-C, México
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Abstract

In this paper we give sufficient conditions for the existence of a parti-
tion of an r-balanced c-partite tournament into r strongly hamiltonian
connected tournaments of order c (an hc-partition). We also prove that
every r-balanced c-partite tournament with c ≥ 5 and r ≥ 5 is strongly
hamiltonian connected if it has an hc-partition and minimum degree at
least c(r+12)

4
+ 3r

4
. As a consequence of these theorems, we give sufficient

conditions for balanced multipartite tournaments and regular balanced
multipartite tournaments to be strongly hamiltonian connected.

1 Introduction, notation and preliminary results

Let c ≥ 3 be an integer. A c-partite or multipartite tournament is a digraph obtained
from a complete c-partite graph by orienting each edge. Recently multipartite tour-
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naments have received considerable attention from various authors [2, 3, 4, 5, 8, 9].
Let G be a c-partite tournament of order n with partite sets V1, V2, . . . Vc. We say
that a c-partite tournament is r-balanced if each partite set has exactly r vertices,
and we denote it by Gr,c. We follow all the definitions and notation of [1]. Let A
and B be two non intersecting subdigraphs (or subsets of vertices) of a digraph D.
Then we denote by (A,B) the set of arcs from a vertex of A to a vertex of B, and if
a ∈ (A,B), we say that a is an AB-arc.

For an oriented graph D, the global irregularity of D is defined as

ig(D) = max
x,y∈V (D)

(
max{d+(x), d−(x)} −min{d+(y), d−(y)}

)
.

If ig(D) = 0, then D is regular. For x ∈ V (G) and i ∈ [c], the out-neighborhood
of x in Vi is N+

i (x) = Vi ∩ N+(x); the in-neighborhood of x in Vi is N−i (x) =
Vi ∩ N−(x); d+i (x) = |N+

i (x)|; d−i (x) = |N−i (x)|; and δ(G) = min
x∈V (G)

{d−(x), d+(x)}

is the minimum degree of G. The local partite irregularity of G is defined as

µ(G) = max
x∈V (G)

max
i∈[c]
|d+i (x)− d−i (x)|.

Given a tournament T , a vertex x ∈ V (T ) is q-wicked for T if min{d+T (x), d−T (x)}
≤ q. Let Gr,c be an r-balanced c-partite tournament. Notice that a maximal tour-
nament in Gr,c is a tournament of order c. For each integer q ≥ 0 and each vertex
x ∈ V (Gr,c), let T+

q (x) (respectively, T−q (x)) be the number of maximal tournaments
of Gr,c for which x is q-wicked because it has out-degree (respectively, in-degree) at
most q in T . A partition of Gr,c into maximal tournaments is a spanning subdigraph
of Gr,c formed by r pairwise vertex-disjoint tournaments of order c. Notice that if
T is not strong, then T must have a

⌈
c−2
4

⌉
-wicked vertex. In [4] we gave sufficient

conditions for a balanced multipartite tournament to have a strong partition (st-
partition for short); that is, partitions for which every maximal tournament of the
partition is strong, and in our results we used the following bounds of the number of
maximal tournaments of Gr,c for which x is q-wicked for q =

⌈
c−2
4

⌉
.

Theorem 1.1 (Theorem 2.3, [3]) Let Gr,c be an r-balanced c-partite tournament
with r ≥ 2 and c ≥ 5 such that for some integer q ≥ 0, δ(Gr,c) ≥ q (r + µ(Gr,c))

c−1
c−2 .

Then, for every x ∈ V (Gr,c),

T+
q (x) ≤

q∑
k=0

(
c− 1

k

)(
d+(x)

c− 1

)k (
d−(x)

c− 1

)c−1−k
.

Theorem 1.2 (Theorem 2.4, [3]) Let Gr,c be an r-balanced c-partite tournament
with r ≥ 2 and c ≥ 5. If for some q ≥ 0, δ(Gr,c) ≥ q (r + µ(Gr,c))

c−1
c−2 and ig(Gr,c) =

r(c− 1)β with 0 ≤ β < c−2q−2
c

, then for every x ∈ V (Gr,c) we have that

T+
q (x) ≤

(
c− 1

q + 1

)(r
2

)c−1 (1 + β)c−2−2q (q + 1)

c(1− β)− 2q − 2
.
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A digraph D is strongly hamiltonian connected (hamiltonian connected for short)
if, for any two vertices x and y, there is a hamiltonian path from x to y and from y to
x. In this article we study the partitions of Gr,c into hamiltonian connected maximal
tournaments. A partition is called hamiltonian connected (hc-partition for short) if
every maximal tournament of the partition is hamiltonian connected. A vertex x
is hc-wicked for a maximal tournament T if min{d+T (x), d−T (x)} ≤

⌈
c
4

⌉
+ 1. It can

be proved, using the following theorem, that if a tournament is not hamiltonian
connected, then it has an hc-wicked vertex.

Theorem 1.3 (Corollary 5.7 [7]) A 4-connected tournament is hamiltonian con-
nected.

Using Theorems 1.1, 1.2 and 1.3, we give sufficient conditions for Gr,c to have an
hc-partition. We also prove that every r-balanced c-partite tournament, Gr,c, with
c ≥ 5 and r ≥ 5 is hamiltonian connected if it has an hc-partition and minimum

degree at least
c(r + 12)

4
+

3r

4
. As a consequence of these theorems we give sufficient

conditions for balanced multipartite tournaments and regular balanced multipartite
tournaments to be hamiltonian connected.

2 Hamiltonian connected partitions

In this section we give sufficient conditions on the global irregularity and the local
partite irregularity for a balanced multipartite tournament to have a hamiltonian con-
nected partition. Let T be a tournament of order c ≥ 10. First we prove Lemma 2.1
to affirm that if T has no hc-wicked vertices, then T is hamiltonian connected, and
this fact will be used thoughout, without mentioning it.

Lemma 2.1 Let T be a tournament of order c ≥ 10. If δ(T ) ≥ d c
4
e + 2, then T is

hamiltonian connected.

Proof. Let T be a tournament of order c ≥ 10 with δ(T ) ≥ d c
4
e+2. By Theorem 1.3,

it suffices to prove that T is 4-connected. For a contradiction, assume that T is not
4-connected. Then there is a set S ⊆ V (T ), with |S| ≤ 3, such that T − S is not
strongly connected. Therefore there is a pair x, y ∈ V (T ) \ S such that there is
no xy-path in T − S. Let Ax ⊆ V (T ) \ S (respectively, Ay ⊆ V (T ) \ S) be the
set of all the z ∈ V (T ) \ S such that there is an xz-path (respectively, zy-path)
in T − S. Clearly Ax ∩ Ay = ∅, and there is no arc from Ax to V (T ) \ (S ∪ Ax)
(respectively, from V (T ) \ (S ∪ Ay) to Ay). Therefore

∑
w∈Ax

d+(w) ≤
(|Ax|

2

)
+ |S||Ax|

and
∑
w∈Ay

d−(w) ≤
(|Ay |

2

)
+ |S||Ay|. We may assume that |Ax| ≤ |Ay|. Hence there

is w0 ∈ Ax such that d+(w0) ≤ |Ax|−1
2

+ |S|, and since |Ax| ≤ |Ay| and |Ax| ≤ c−|S|
2

,

we have d+(w0) ≤ |Ax|−1+2|S|
2

≤ c−|S|−2+4|S|
4

= c+3|S|−2
4

. Since |S| ≤ 3, we have
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d+(w0) ≤ c+7
4

, which contradicts the fact that δ(T ) ≥ d c
4
e+ 2. By Theorem 1.3, the

lemma follows. �

Lemma 2.3 assures us that if for every vertex x in an r-balanced c-partite tour-
nament, the number of tournaments for which x is hc-wicked because of its out-

neighborhood is less than
rc−1

2rc
, then the r-balanced c-partite tournament has an

hc-partition. For its proof we need the following lemma.

Lemma 2.2 (Lemma 1 [4]) The number of partitions of any Gr,c into maximal tour-
naments is (r!)c−1.

Lemma 2.3 Let Gr,c be an r-balanced c-partite tournament. If Gr,c does not have
an hc-partition, then there exists a vertex x0 such that

max{T+
d c
4
e+1(x0), T

−
d c
4
e+1(x0)} ≥

rc−1

2rc
.

Proof. If Gr,c does not have an hc-partition, then every partition into maximal
tournaments has a tournament T with an hc-wicked vertex; that is, δ(T ) ≤ d c

4
e+ 1.

By Lemma 2.2, there are (r!)c−1 partitions. Since Gr,c does not have an hc-partition,
the number of partitions with an hc-wicked vertex is the number of all partitions. For
a given x ∈ V (Gr,c), T+

d c
4
e+1(x) + T−d c

4
e+1(x) is the number of maximal tournaments

for which x is an hc-wicked vertex. Notice that each maximal tournament of Gr,c for
which x is hc-wicked is contained in ((r − 1)!)c−1 partitions.

Therefore,

((r − 1)!)c−1
∑

x∈V (Gr,c)

(
T+
d c
4
e+1(x) + T−d c

4
e+1(x)

)
≥ (r!)c−1

and ∑
x∈V (Gr,c)

(
T+
d c
4
e+1(x) + T−d c

4
e+1(x)

)
≥ rc−1.

Since the order of Gr,c is rc, by an averaging argument, there exists a vertex x0 ∈ Gr,c

such that

T+
d c
4
e+1(x0) + T−d c

4
e+1(x0) ≥

rc−1

rc
.

From here the result follows. �

We now give sufficient conditions for an r-balanced c-partite tournament to have
an hc-partition.

Theorem 2.1 Let Gr,c be a regular r-balanced c-partite tournament, with c ≥ 10,

r ≥ 2 and µ(Gr,c) ≤ r(c−2)
2d c

4
e+2
− r. Then, Gr,c has an hc-partition if

2c−2 > rc min

{(
c− 1

d c
4
e+ 2

) d c
4
e+ 2

c− 2d c
4
e − 4

,

d c
4
e+1∑
k=0

(
c− 1

k

)}
.
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Proof. If Gr,c does not have an hc-partition, then, by Lemma 2.3, there exists
x0 ∈ V (Gr,c) such that

T+
d c
4
e+1(x0) ≥

rc−1

2rc
. (1)

Since µ(Gr,c) ≤ r(c−2)
2d c

4
e+2
− r, and Gr,c is regular,

(⌈ c
4

⌉
+ 1
)

(r + µ(Gr,c))
c− 1

c− 2
≤ r

(⌈ c
4

⌉
+ 1
)( c− 2

2d c
4
e+ 2

)
c− 1

c− 2

=
r(c− 1)

2
= δ(Gr,c).

Thus, by Theorem 1.1 and Inequality (1), for every x ∈ V (Gr,c)

rc−1

2rc
≤ T+

d c
4
e+1(x) ≤

d c
4
e+1∑
k=0

(
c− 1

k

)(
d+(x)

c− 1

)k (
d−(x)

c− 1

)c−1−k
.

Since Gr,c is regular, for every x ∈ V (Gr,c), d
+(x) = d−(x) = r(c−1)

2
and

rc−1

2rc
≤
d c
4
e+1∑
k=0

(
c− 1

k

)(
d+(x)

c− 1

)k (
d−(x)

c− 1

)c−1−k
=

d c
4
e+1∑
k=0

(
c− 1

k

)(r
2

)c−1
. (2)

Moreover, since ig(Gr,c) = r(c−1)β = 0; δ(Gr,c) = r(c−1)
2

and µ(Gr,c) ≤ r(c−2)
2d c

4
e+2
−r,

it follows that δ(Gr,c) ≥ q (r + µ(Gr,c))
c−1
c−2 with q = d c

4
e + 1. By Theorem 1.2 and

Inequality (1), for every x ∈ V (Gr,c),

rc−1

2rc
≤ T+

d c
4
e+1(x) ≤

(
c−1
d c
4
e+2

) (
r
2

)c−1 (1+β)c−4−2d c4 e(d c4 e+2)
c(1−β)−2d c

4
e−4

=
(
c−1
d c
4
e+2

) (
r
2

)c−1 d c
4
e+2

c−2d c
4
e−4 .

(3)

Multiplying (2) and (3) by 2c−1
2rc

rc−1
, the result follows. �

Theorem 2.2 Let Gr,c be an r-balanced c-partite tournament with r ≥ 3, c ≥ 10

and ig(Gr,c) = r(c − 1)β, where 0 ≤ β <
c−2d c

4
e−4

c
, and µ(Gr,c) ≤ r

(
(1−β)(c−2)
2d c

4
e+2

− 1
)

.

If

2c−2 > rc

(
c− 1

d c
4
e+ 2

)
(1 + β)c−2d

c
4
e−4 (d c

4
e+ 2)

c(1− β)− 2d c
4
e − 4

,

then there exists an hc-partition.

Proof. If Gr,c does not have an hc-partition, then, by Lemma 2.3, there exists
x0 ∈ V (Gr,c) such that

T+
d c
4
e+1(x0) ≥

rc−1

2rc
. (4)
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Let Q := rc
(
c−1
d c
4
e+2

) (1+β)c−2d c4 e−4(d c
4
e+2)

c(1−β)−2d c
4
e−4 . In order to use Theorem 1.2, we need to

prove that δ(Gr,c) ≥ q (r + µ(Gr,c))
c−1
c−2 with q = d c

4
e+1. Since Gr,c is r-balanced, for

every vertex x, d+(x)+d−(x) = r(c−1); thus the vertex with maximum out-degree is
the same as the one with minimum in-degree. Therefore ig(Gr,c) = r(c−1)−2δ(Gr,c),

and thus δ(Gr,c) = r(c−1)−ig(Gr,c)

2
; and by hypothesis, ig(Gr,c) = r(c− 1)β.

Therefore δ(Gr,c) = r(c−1)
2

(1 − β). As µ(Gr,c) ≤ r
(

(1−β)(c−2)
2d c

4
e+2

− 1
)

, we see that

(1− β) ≥ (2d c4 e+2)(µ(Gr,c)+r)

r(c−2) .

Thus, δ(Gr,c) ≥ r(c−1)
2

(2d c4 e+2)(µ(Gr,c)+r)

r(c−2) =
(
d c
4
e+ 1

)
(r + µ(Gr,c))

c−1
c−2 .

By Theorem 1.2 and Inequality (4), for every x ∈ V (Gr,c),

rc−1

2rc
≤ T+

d c
4
e+1(x) ≤

(
c− 1

d c
4
e+ 2

)(r
2

)c−1 (1 + β)c−2d
c
4
e−4 (d c

4
e+ 2)

c(1− β)− 2d c
4
e − 4

.

Simplifying, we obtain that 2c−2 ≤ Q. Therefore, if 2c−2 > Q, there exists an
hc-partition. �

3 From hc-partitions to hamiltonian connected balanced
multipartite graphs

In this section we prove that having an hc-partition and sufficiently large minimum
degree are sufficient conditions for a balanced multipartite tournament to be hamil-
tonian connected. To do so we define the digraph of a partition as follows.

LetGr,c be an r-balanced c-partite tournament with an hc-partition, P = {T1, . . . ,
Tr} of Gr,c. We define DP of the partition P as a digraph with vertex set V (DP) =
{T1, . . . , Tr} and such that TiTj ∈ A(DP) if and only if in Gr,c there are at least three
independent TiTj-arcs. Observe that DP may have symmetric arcs.

Lemma 3.1 Let Gr,c be an r-balanced c-partite tournament with r ≥ 3, c ≥ 5 and
an hc-partition P = {T1, . . . , Tr}. Then the digraph DP is semicomplete.

Proof. Let Ti, Tj ∈ V (DP) and let V (Ti) = {x0, . . . , xc−1} and V (Tj) = {y0, . . . ,
yc−1}. Without loss of generality, suppose that for i ∈ {0, 1, . . . , c − 1}, xi and yi
belong to the same partite set of Gr,c. Let A = {xiyi+1 ∈ A(Gc,r) : i mod c} ∪
{yi+1xi ∈ A(Gc,r) : i mod c}. A is a set of c independent arcs in Gr,c. Since c ≥ 5,
it follows that either |A∩ (Ti, Tj)| ≥ 3 or |A∩ (Tj, Ti)| ≥ 3, and the result follows. �

Lemma 3.2 Let Gr,c be an r-balanced c-partite tournament with r ≥ 3, c ≥ 5. Let
Ti, Tj ∈ V (DP). If TiTj 6∈ A(DP), then |(Ti, Tj)| ≤ 2(c− 1).
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Proof. Let Ti, Tj ∈ V (DP) such that TiTj 6∈ A(DP). Thus there is no triple of
independent TiTj-arcs in Gr,c. If the maximum size of a set of independent TiTj-
arcs is one, then all the TiTj-arcs are incident to the same vertex, and therefore
|(Ti, Tj)| ≤ c− 1. If the maximum size of a set of independent TiTj-arcs is two, then
let {x1y1, x2y2} be a pair of independent TiTj-arcs. Then each of (Ti − x1, Tj − y1)
and (Ti−x2, Tj−y2) contains exactly one independent (Ti, Tj)-arc. Therefore, by the
above arguments, each of them contains at most c − 2 (Ti, Tj)-arcs. Observe that
(Ti, Tj) may also contain the arcs x1y2 and x2y1. Thus, we obtain that |(Ti, Tj)| ≤
2(c− 1) and the result follows. �

Theorem 3.1 Let Gr,c be an r-balanced c-partite tournament with r ≥ 5, c ≥ 5 and

an hc-partition. If δ(Gr,c) ≥
c(r + 12)

4
+

3r

4
, then DP is 5-connected.

Proof. For a contradiction, suppose that DP is not 5-connected. Let

S = {T1, T2, T3, T4} ⊆ V (DP)

such that DP − S is not strong. Let {A,B} be a partition of V (DP − S) such that

(B,A) = ∅. Without loss of generality suppose that |A| ≤ |B|; then |A| ≤ r − 4

2
.

Let A′ =
⋃
T∈A

V (T ) ⊆ V (Gr,c). By Lemma 3.2, for every Ti ∈ A and every Tj ∈ B,

|(Ti, Tj)| ≤ 2(c− 1), and since |A′| = c|A|, it follows that∑
x∈A′

d−(x) ≤
(
|A|c

2

)
− c
(
|A|
2

)
+ |A||B|2(c− 1) + 4(c− 1)c|A|.

Since c ≥ 5, |A| =
4|A|
c

+
(c− 4)|A|

c
, |A| + |B| = r − 4, and |A| ≤ r − 4

2
, there is

x0 ∈ V (Gr,c) such that

d−(x0) ≤
∑

x∈A′ d
−(x)

|A|c
=
|A|c− 1

2
− |A| − 1

2
+ 2|B|c− 1

c
+ 4(c− 1)

=
|A|(c− 1)

2
+ 2|B|c− 1

c
+ 4(c− 1) =

c− 1

2

(
|A|+ 4|B|

c
+ 8

)
=

c− 1

2

(
(c− 4)|A|

c
+

4|A|
c

+
4|B|
c

+ 8

)
≤ c− 1

4

(
(c− 4)(r − 4)

c
+

8(r − 4)

c
+

16c

c

)
=

c− 1

4c
(cr − 4c− 4r + 16 + 8r − 32 + 16c)

=
c− 1

4c
(cr + 12c+ 4r − 16)

≤ 1

4c
(c2r + 12c2 + 3cr − 28c− 4r + 16)

=
c

4c

(
cr + 12c+ 3r − 28 +

−4r + 16

c

)
<

1

4
(cr + 12c+ 3r)

<
c

4
(r + 12) +

3r

4
,
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which contradicts the fact that δ(Gr,c) ≥
c(r + 12)

4
+

3r

4
and therefore DP is 5-

connected. �

We use the former results and Theorem 3.2 in order to prove Theorem 3.3.

Theorem 3.2 (Corollary 2.11 [6]) Every 4-connected locally semicomplete di-
graph is hamiltonian-connected.

Let Q1 and Q2 be paths of a digraph D; the concatenation of Q1 = (a1, a2, . . . , an)
and Q2 = (an = b1, b2, . . . bk) is the walk Q1◦Q2 = (a1, a2, . . . , an = b1, . . . , b2, . . . , bk).

Theorem 3.3 Let Gr,c be an r-balanced c-partite tournament with r ≥ 4, c ≥ 3, and
an hc-partition P = {T1, . . . , Tr}. If δ(Gr,c) ≥ 2c − 2 and DP is 5-connected, then
Gr,c is hamiltonian connected.

Proof. Since Ti is hamiltonian connected, for any pair x, y ∈ V (Ti), there exists a
hamiltonian xy-path in Ti, that will be denoted by (xPiy).

Given a path of DP , say (T1, T2, . . . , Ts), notice that for every vertex u ∈ V (Ti)
with 1 ≤ i < s, there exists a vertex v ∈ V (Ti) \ {u} such that N+(v)∩V (Ti+1) 6= ∅,
because there exist at least three parallel arcs from Ti to Ti+1.

For every y1 ∈ V (T1) such that N+(y1) ∩ V (T2) 6= ∅, there exist xs ∈ V (Ts)
and a y1xs-path QT1,Ts(y1, xs) of Gr,c with vertex set ∪s−1i=2V (Ti) ∪ {y1, xs}. Now
QT1,Ts(y1, xs) is constructed as follows. Let x2 ∈ N+(y1) ∩ V (T2). As noticed above,
there is a vertex y2 ∈ V (T2)\{x2} such that there exists x3 ∈ N+(y2)∩V (T3). From
the fact that T2 is hamiltonian strongly connected, we can concatenate the arc (y1, x2)
with a hamiltonian path x2P2y2 and the arc (y2, x3), obtaining a y1x3-path with
vertex set V (T2) ∪ {y1, x3}. Following this procedure, there exists QT1,Ts(y1, xs) =
((y1, x2) ◦ (x2P2y2) ◦ (y2, x3) ◦ (x3P3y3) ◦ (y3, x4) ◦ · · · ◦ (ys−2, xs−1) ◦ (xs−1Ps−1ys−1) ◦
(ys−1, xs)) such that N+(yt) ∩ Tt+1 6= ∅ and xt+1 ∈ N+(yt) ∩ Tt+1, for every t ∈
{1, 2 . . . s− 1}.

Let a, b ∈ V (Gr,c). It is sufficient to prove that there is a hamiltonian ab-path.
Without loss of gererality we have two cases.

Case 1. a and b are vertices in different tournaments of the hc-partition.

Without loss of generality, we can assume that a ∈ V (T1), b ∈ V (Tr). By Lemma
3.1 and Theorem 3.2, DP is hamiltonian connected. Therefore there is a hamiltonian
path, (T1, . . . , Tr).

Let y1 be a vertex in V (T1)\{a} such thatN+(y1)∩V (T2) 6= ∅. There exists xr−1 ∈
V (Tr−1) such that QT1,Tr−1(y1, xr−1) is a y1xr−1-path with vertex set ∪r−1i=2V (Ti) ∪
{y1, xr−1}. Since T1 is hamiltonian connected, in T1 there is a hamiltonian ay1-path,
say Q1. There are at least three parallel arcs from V (Tr−1) to V (Tr); therefore at
least one of them is an arc uv such that u 6= xr−1 and v 6= b. Since Tr−1 and Tr
are hamiltonian connected, there exists a hamiltonian xr−1u-path of Tr−1, say Qr−1,
and a hamiltonian vb-path of Tr, say Qr. Then Q1 ◦QT1Tr−1(y1, xr) ◦Qr−1 ◦Qr is a
hamiltonian ab-path of Gc,r.
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Case 2. a and b are vertices of the same tournaments of the hc-partition.

We can assume that a, b ∈ V (Tr). Since d+(a) ≥ 2c− 2 ≥ c + 1, we can assume
that there exists u ∈ V (T1) such that au ∈ A(Gr,c). As Tr is hamiltonian connected,
there exists a hamiltonian path, (a, a1, . . . ac−1 = b) in Tr. By hypothesis, d−(a1) ≥
2c − 2 ≥ c + 1; thus there exists a partite set Tr−1 6= T1 and a vertex w ∈ V (Tr−1)
such that w ∈ N−(a1). By hypothesis, DP is 5-connected; therefore DP − Tr is
4-connected and by Theorem 3.2, hamiltonian connected. Let (T1, . . . , Tr−1) be a
hamiltonian path of DP − Tr.

Since there are at least three parallel arcs from T1 to T2, there exists y1 6= u
and xr−2 ∈ V (Tr−2) such that QT1,Tr−2(y1, xr−2) is a y1xr−2-path containing vertices
∪r−3i=2V (Ti) .

Since there are three parallel arcs from Tr−2 to Tr−1, there exists at least one of
these arcs cd such that c 6= xr−2 and d 6= w. Since T1 is hamiltonian connected,
let Q be a hamiltonian uy1-path in T1; analogously there exists S, a hamiltonian
xr−2c-path of Tr−2, and U , a hamiltonian dw-path in Tr−1; see Figure 1.

Figure 1

Therefore
(Q ◦QT1,Tr−2(y1, xr−2) ◦ S ◦ U ◦ (a1, . . . , ac−1 = b))

is an ab-hamiltonian path of Gr,c. �

Corollary 3.1 Let Gr,c be a regular r-balanced c-partite tournament, with c ≥ 10,

r ≥ 5 and cr ≥ 12c + 5r and µ(Gr,c) ≤ r
(

c−2
2d c

4
e+2
− 1
)

. Then Gr,c is hamiltonian

connected if

2c−2 > rc min

{(
c− 1

d c
4
e+ 2

)( d c
4
e+ 2

c− 2d c
4
e − 4

)
,

d c
4
e+1∑
k=0

(
c− 1

k

)}
.
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Proof. Since Gr,c is regular, δ(Gr,c) = r(c−1)
2

, and using cr ≥ 12c + 5r it is not

difficult to check that
r(c− 1)

2
≥ c(r + 12)

4
+

3r

4
. Therefore, by Theorems 2.1, 3.1

and 3.3, Gr,c is hamiltonian connected. �
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