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Abstract

In this paper we give sufficient conditions for the existence of a parti-
tion of an r-balanced c-partite tournament into r strongly hamiltonian
connected tournaments of order ¢ (an he-partition). We also prove that
every r-balanced c-partite tournament with ¢ > 5 and r > 5 is strongly
hamiltonian connected if it has an hc-partition and minimum degree at
least @ + ?jf. As a consequence of these theorems, we give sufficient
conditions for balanced multipartite tournaments and regular balanced

multipartite tournaments to be strongly hamiltonian connected.

1 Introduction, notation and preliminary results

Let ¢ > 3 be an integer. A c-partite or multipartite tournament is a digraph obtained
from a complete c-partite graph by orienting each edge. Recently multipartite tour-
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naments have received considerable attention from various authors [2] 3, 4, 5] 8, ©].
Let G be a c-partite tournament of order n with partite sets Vi, V5, ... V.. We say
that a c-partite tournament is r-balanced if each partite set has exactly r vertices,
and we denote it by G, .. We follow all the definitions and notation of [I]. Let A
and B be two non intersecting subdigraphs (or subsets of vertices) of a digraph D.
Then we denote by (A, B) the set of arcs from a vertex of A to a vertex of B, and if
a € (A, B), we say that a is an AB-arc.

For an oriented graph D, the global irreqularity of D is defined as

ig(D) = max (max{d*(z),d (z)} —min{d*(y),d" (y)}).
z,yeV (D)
If iy(D) = 0, then D is regular. For x € V(G) and i € [¢], the out-neighborhood
of x in V; is Njf(z) = V; N N*(z); the in-neighborhood of z in V; is N; (z) =
VinN~(z); df (x) = [N (2)]; d; (x) = [N; (2)]; and 6(G) = min {d” (), d"(x)}
xre

is the minimum degree of G. The local partite irregularity of G is defined as

G) = d (z) —d; ().
w(G) Jenv%%ﬁd L () —d; (z)]

Given a tournament 7', a vertex z € V(T is g-wicked for T' if min{d}-(z), d(x)}
< gq. Let G, be an r-balanced c-partite tournament. Notice that a maximal tour-
nament in G, . is a tournament of order c¢. For each integer ¢ > 0 and each vertex
x € V(Ghr.), let Tf () (vespectively, T,” (x)) be the number of maximal tournaments
of G, . for which x is g-wicked because it has out-degree (respectively, in-degree) at
most ¢ in T'. A partition of G, . into mazimal tournaments is a spanning subdigraph
of G, . formed by r pairwise vertex-disjoint tournaments of order c. Notice that if
T is not strong, then T must have a [<2|-wicked vertex. In [4] we gave sufficient
conditions for a balanced multipartite tournament to have a strong partition (st-
partition for short); that is, partitions for which every maximal tournament of the
partition is strong, and in our results we used the following bounds of the number of
maximal tournaments of G, . for which z is ¢g-wicked for ¢ = ’—%-‘

Theorem 1.1 (Theorem 2.3, [3]) Let G,. be an r-balanced c-partite tournament
with > 2 and ¢ > 5 such that for some integer ¢ >0, 6(Gye) > q (r + p(Gy.)) <.
Then, for every x € V(G,.),

T,/ (z) < ki; <C; 1> <i+_(x1)>k (i_(xl))c_l_k_

Theorem 1.2 (Theorem 2.4, [3]) Let G,. be an r-balanced c-partite tournament
with v > 2 and ¢ > 5. If for some ¢ > 0, 6(G,.c) > q(r+ 1(Gre)) % and i,(Gy) =
r(c—1)B with 0 < B < <222 then for every x € V(G,..) we have that

< (1) (5) L ey

! g+1) \2 c(1—p0)—2¢—2
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A digraph D is strongly hamiltonian connected (hamiltonian connected for short)
if, for any two vertices x and y, there is a hamiltonian path from z to y and from y to
x. In this article we study the partitions of G, . into hamiltonian connected maximal
tournaments. A partition is called hamiltonian connected (hc-partition for short) if
every maximal tournament of the partition is hamiltonian connected. A vertex z
is he-wicked for a maximal tournament 7' if min{d}(z),dy ()} < [¢] + 1. It can
be proved, using the following theorem, that if a tournament is not hamiltonian
connected, then it has an hc-wicked vertex.

Theorem 1.3 (Corollary 5.7 [7]) A 4-connected tournament is hamiltonian con-
nected.

Using Theorems [I.1], [1.2] and [I.3] we give sufficient conditions for G,.. to have an
he-partition. We also prove that every r-balanced c-partite tournament, G, ., with

¢ > 5 and r > 5 is hamiltonian connected if it has an hc-partition and minimum

c(r+12) 3r

degree at least + —. As a consequence of these theorems we give sufficient

conditions for balanced multipartite tournaments and regular balanced multipartite
tournaments to be hamiltonian connected.

2 Hamiltonian connected partitions

In this section we give sufficient conditions on the global irregularity and the local
partite irregularity for a balanced multipartite tournament to have a hamiltonian con-
nected partition. Let T be a tournament of order ¢ > 10. First we prove Lemma [2.1
to affirm that if 7" has no hc-wicked vertices, then T is hamiltonian connected, and
this fact will be used thoughout, without mentioning it.

Lemma 2.1 Let T be a towrnament of order ¢ > 10. If 6(T) > [§] + 2, then T is
hamiltonian connected.

Proof. Let T be a tournament of order ¢ > 10 with §(7) > [{]+2. By Theorem
it suffices to prove that T' is 4-connected. For a contradiction, assume that 7" is not
4-connected. Then there is a set S C V(T'), with |S| < 3, such that 7" — S is not
strongly connected. Therefore there is a pair z,y € V(T') \ S such that there is
no zy-path in 7' — S. Let A, C V(T)\ S (respectively, A, C V(T)\ S) be the
set of all the z € V(T) \ S such that there is an zz-path (respectively, zy-path)
in T —S. Clearly A, N A, = (), and there is no arc from A, to V(T') \ (S U A,)
(respectively, from V(T) \ (SU A4,) to A,). Therefore " dt(w) < ('AQ”““) +|S|| AL

UIEAI

and Y. d (w) < (|A2y|) + |S||A,|. We may assume that |A,| < |A4,|. Hence there

wWEAy
is wy € A, such that d¥(wgy) < % + 15|, and since |A,| < |4,] and |A,] < C—QISI,
we have d(wp) < |A”|_21+2|S| < C_|S|_42+4|S| = C+3|f|_2. Since |S| < 3, we have
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d*(wp) < <, which contradicts the fact that §(7) > [<] 4+ 2. By Theorem , the

lemma follows. O

Lemma [2.3] assures us that if for every vertex x in an r-balanced c-partite tour-

nament, the number of tournaments for which x is hc-wicked because of its out-
c—1

neighborhood is less than , then the r-balanced c-partite tournament has an

rc
hc-partition. For its proof we need the following lemma.

Lemma 2.2 (Lemma 1 []]) The number of partitions of any G, . into mazimal tour-
naments is (r!)° 1.

Lemma 2.3 Let G, . be an r-balanced c-partite tournament. If G, . does not have
an hc-partition, then there exists a vertex xy such that

,'ncfl

maX{T{E}+1(xO>7T[%]+1(xO)} Z 27”0'

Proof. If G, . does not have an hc-partition, then every partition into maximal
tournaments has a tournament 7" with an hc-wicked vertex; that is, §(7) < [§] + 1.
By Lemma [2.2| there are (r!)°~! partitions. Since G, . does not have an he-partition,
the number of partitions with an hc-wicked vertex is the number of all partitions. For
a given x € V(G,..), T[%H(x) + T[_g1+1(x) is the number of maximal tournaments
for which z is an he-wicked vertex. Notice that each maximal tournament of G, . for
which z is he-wicked is contained in ((r — 1)!)~! partitions.

Therefore,

((T‘ o 1>!)c—1 Z <T[—%]+l(x) + Tf_z]-i-l(x)) Z (7“!)0—1

SCEV(GT,C)

— c—1
Z (T[%H(x) + T[§]+1($>> > el
€V (Gr,c)

and

Since the order of G, . is rc, by an averaging argument, there exists a vertex z¢ € G,
such that

c—1
B r
From here the result follows. O

We now give sufficient conditions for an r-balanced c-partite tournament to have
an hc-partition.

Theorem 2.1 Let G, be a regular r-balanced c-partite tournament, with ¢ > 10,

r>2 and p(G,.) < ;f(ZW_i)Q —r. Then, G, has an hc-partition if
4

[1+1

27> remin { ()t e 2 ) }
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Proof. If G,. does not have an hc-partition, then, by Lemma , there exists
zo € V(G,) such that
c—1
+
Trey (o) 25—

(1)

Since pu(Gr.) < ;ngé —r, and G, is regular,

(e e rmean = < ([51) (g32) =

_ 7"(02_ Y 56,

Thus, by Theorem and Inequality , for every x € V(G,..)

c—1 [{1+1 + k — c—1-k
r c—1\ [d*(x) d—(z)
< + < _— E— .
2rc THH() kz:% ( k )(c—l) <c—1
Since G, is regular, for every z € V(G,.), d"(z) =d (x) = T(C—l and

S E) (@) TS (R e

Moreover, since i4(Gy.) = r(c—1)8 = 0; §(G,..) = @ and p(Gy.) < zr[(?i)Z -,

it follows that 6(G,.) > ¢ (r + pu(Gr.)) <=5 with ¢ = [£] + 1. By Theorem and
Inequality , for every x € V(G,..),

el c—4-27%] c
r ¥ 1\ (rye—1 (48) 11(151+2)
27‘6 <T[ ]+1( ) < ([514-2 (2) c(1-p)—2[$]1—-4 (3>
c—1 Z)C_l [i1+2
—O\[§1+2/ \2 c—2[<]—4
Multlplymg and by 2¢” 1— the result follows. 0

Theorem 2.2 Let G, . be an r-balanced c-partite tournament with r > 3, ¢ > 10

. c—2 < 74 — c—
and iy(Gr.) = r(c —1)58, where 0 < < %, and ((Gre) <7 (% - 1).
If

( c—1 )(1 +8) T (151 +2)
27" >rel L. e )
[$1+2) o(1-p) - 2[5] -1
then there exists an hc-partition.

Proof. If G,. does not have an hc-partition, then, by Lemma [2.3, there exists
xo € V(G,) such that

c—1

Tieyy, (o) 2 (4)

2rc
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ol et Y QBT
Let Q := TC([§]+2) c(1—5)72(ﬁj4

prove that 6(G,..) > q (r + u(G,.)) <5 with ¢ = [£]+1. Since G, is r-balanced, for
every vertex x, d*(x)+d (x) = r(c—1); thus the vertex with maximum out-degree is
the same as the one with minimum in-degree. Therefore iy(G, ) = r(c—1)—2§(G, ),

and thus §(G,..) = %, and by hypothesis, i,(G,.) = r(c — 1)5.
Therefore 6(G,..) = @(1 —B). As u(G,.) <r <W — 1>, we see that

. In order to use Theorem 7 we need to

3[<]+2
(2[£1+2>(#(Gr,c)+r)
(1 o ﬁ) 2z . r(c—2) :
r(e—1) (2[§14+2) ((Grc)+7) c o—
Thus, §(Grc) > ( 2 MCk r()c—2) = ((Z—I + 1) (r+ 1(Gre)) c__é

By Theorem and Inequality , for every x € V(G.,..),

c—1

+

r
<Tre <
2rec — fﬂ+1(x) = ([%1 +2

c—1 (ryet (LB T (5] +2)
1><‘> j(l—ﬁ)—?f:‘ﬂ—z'

2
Simplifying, we obtain that 272 < Q. Therefore, if 2°°2 > (@, there exists an
hc-partition. O

3 From hc-partitions to hamiltonian connected balanced
multipartite graphs

In this section we prove that having an hc-partition and sufficiently large minimum
degree are sufficient conditions for a balanced multipartite tournament to be hamil-
tonian connected. To do so we define the digraph of a partition as follows.

Let G, be an r-balanced c-partite tournament with an he-partition, P = {11, ...,
T.} of G, .. We define Dp of the partition P as a digraph with vertex set V(Dp) =
{Ty,...,T,} and such that T;,7; € A(Dp) if and only if in G, . there are at least three
independent T;Tj-arcs. Observe that Dp may have symmetric arcs.

Lemma 3.1 Let G, . be an r-balanced c-partite tournament with r > 3, ¢ > 5 and
an he-partition P = {Th,...,T,.}. Then the digraph Dp is semicomplete.

Proof. Let 1;,7; € V(Dp) and let V(T;) = {zo,..., 2.1} and V(T}) = {yo, ...,
Ye—1}. Without loss of generality, suppose that for i € {0,1,...,¢c— 1}, z; and y;
belong to the same partite set of G,.. Let A = {z;y;41 € A(G.,) : i mod ¢} U
{yis1z; € A(G.,) 17 mod c}. Ais a set of ¢ independent arcs in G, .. Since ¢ > 5,
it follows that either |AN(T;,T;)| > 3 or |[AN(T},T;)| > 3, and the result follows. O

Lemma 3.2 Let G, . be an r-balanced c-partite tournament with r > 3, ¢ > 5. Let
T, T, € V(Dp). IfTT; & A(Dp), then |(T;, Ty)| < 2(c — 1),
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Proof. Let T;,7; € V(Dp) such that T;7; ¢ A(Dp). Thus there is no triple of
independent T;Tj-arcs in G,.. If the maximum size of a set of independent T;7T}-
arcs is one, then all the T;Tj-arcs are incident to the same vertex, and therefore
(T;,T;)|] < c—1. If the maximum size of a set of independent T;7T}-arcs is two, then
let {xlyl, Ty} be a pair of independent T;Tj-arcs. Then each of (T; — 1,1 — 1)
and (T; —xa, Tj — y2) contains exactly one mdependent (T;,T;)-arc. Therefore, by the
above arguments, each of them contains at most ¢ — 2 (Ti7 Tj)-arcs. Observe that
(T;,T;) may also contain the arcs z1y2 and xoy;. Thus, we obtain that |(7;,1})| <

2(¢ — 1) and the result follows. O

Theorem 3.1 Let G, . be an r-balanced c-partite tournament with r > 5, ¢ > 5 and
12) 3

an he-partition. If §(G,..) > # + 4T then Dp 1is 5-connected.

Proof. For a contradiction, suppose that Dp is not 5-connected. Let

S =A{T1, T, T35, T,} CV(Dp)
such that Dp — S is not strong. Let {A, B} be a partition of V(Dp — S) such that
(B,A) = 0. Without loss of generality suppose that |A| < |B|; then - 4.
Let A= |J V(T) C V(G,.). By Lemma [3.2] for every T; € A and every T; € B,

TEA
(T3,T;)] <2(c—1), and since |A'| = ¢|A|, it follows that

Y d (o <|Alc) (’§|>+|A||B|2( 1)+ 4(c — 1)c|Al.

reA’

4|A —4)|A —4
Sincecz57 ‘A': | |—|—(C )l |,‘A|+‘B’:T—4, and ’A‘STT, there is
C C
xo € V(G,) such that

2owen & (@) |Ale—1 |A]-1

c—1
d- < = 2B— 4(c—1
Allc—1 4B
_ Al =52 (12015
-1 —4)|A 41A| 4B
el >||+r|+\|+8)
2 c c c
< c—1 (c—4)(r—4)+8(7‘—4)+160>
4 c c c
-1
- C4 (cr — dc — 4r + 16 + 8r — 32 + 16¢)
c
—1
= C4c (er 4+ 12¢ + 4r — 16)
< " (Pr 4+ 12¢? + 3cr — 28¢ — 4r + 16)
c
—4 16
= i(cr+12c+3r—28—|—L)
< —(er+12c+ 3r)

3r

< (7”+12)—|—Z,

B |
@)
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12 3
which contradicts the fact that §(G,.) > # + or and therefore Dp is 5-

connected. O
We use the former results and Theorem in order to prove Theorem [3.3]

Theorem 3.2 (Corollary 2.11 [6]) Ewvery 4-connected locally semicomplete di-
graph is hamiltonian-connected.

Let Q1 and Q)3 be paths of a digraph D; the concatenation of Q1 = (a1, as, ..., a,)
and QQ = (an = bl,bg, . bk> is the walk Q10Q2 = (al,&z,. ey = bl;- . .,bg,. . ,bk)

Theorem 3.3 Let G, be an r-balanced c-partite tournament with r > 4, ¢ > 3, and
an he-partition P = {Ty,...,T,}. If §(G,.) > 2c¢ — 2 and Dp is 5-connected, then
G, is hamiltonian connected.

Proof. Since T; is hamiltonian connected, for any pair x,y € V(T;), there exists a
hamiltonian xy-path in T}, that will be denoted by (zPy).

Given a path of Dp, say (11, T5,...,Ts), notice that for every vertex u € V(Tj)
with 1 < < s, there exists a vertex v € V(T;) \ {u} such that N*(v) NV (T;41) # 0,
because there exist at least three parallel arcs from 7} to T} ;.

For every y; € V(T1) such that Nt (y;) N V(Tz) # 0, there exist x, € V(T})
and a yzs-path Qr, 1. (y1, ) of G, with vertex set U,V (T;) U {y1,7s}. Now
Qr, 1, (v1,zs) is constructed as follows. Let zo € NT(y;1) N V(T3). As noticed above,
there is a vertex yo € V(T3) \ {z2} such that there exists 3 € N*(y2) NV (T3). From
the fact that 75 is hamiltonian strongly connected, we can concatenate the arc (y, x2)
with a hamiltonian path x2Py, and the arc (yo,x3), obtaining a yyzs-path with
vertex set V(T3) U {y1,z3}. Following this procedure, there exists Qr 1, (y1,%s) =
((yh 372) o ($2P2y2) © (yz, 333) © (563]333/3) © (Z/3, 1’4) ©-:--0 (ysf2, 1’571) © (Qisflpsqysq) ©
(ys_1,5)) such that N*(y;) N Tyy # 0 and 241 € N1 (y) N Tyyq, for every t €
{1,2...5—1}.

Let a,b € V(G,..). It is sufficient to prove that there is a hamiltonian ab-path.
Without loss of gererality we have two cases.

Case 1. a and b are vertices in different tournaments of the hc-partition.

Without loss of generality, we can assume that a € V/(T}), b € V(T,). By Lemma
and Theorem Dp is hamiltonian connected. Therefore there is a hamiltonian
path, (T1,...,T}).

Let y; be a vertex in V(7})\{a} such that N*(y;)NV(T3) # (). There exists z,_; €
V(T,_1) such that Qg 7., (y1,2,_1) is a y12,_1-path with vertex set Uj_,V(T;) U
{y1,x,_1}. Since T} is hamiltonian connected, in 7 there is a hamiltonian ay;-path,
say ()1. There are at least three parallel arcs from V(T,_1) to V(T,); therefore at
least one of them is an arc wv such that v # x,_; and v # b. Since T,_; and T,
are hamiltonian connected, there exists a hamiltonian z,_ju-path of T,_1, say Q,_1,
and a hamiltonian vb-path of T,, say @Q,. Then Q1 o Qr1._,(y1,2,) 0 Qr_1 0 Q, is a
hamiltonian ab-path of G,
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Case 2. a and b are vertices of the same tournaments of the he-partition.

We can assume that a,b € V(T,). Since d*(a) > 2c—2 > ¢+ 1, we can assume
that there exists u € V(T}) such that au € A(G, ). As T, is hamiltonian connected,
there exists a hamiltonian path, (a,a;,...a.-1 = b) in T,.. By hypothesis, d~(a;) >
2¢ — 2 > ¢+ 1; thus there exists a partite set T,,_; # 11 and a vertex w € V(T,_1)
such that w € N~ (ay). By hypothesis, Dp is 5-connected; therefore Dp — T, is
4-connected and by Theorem hamiltonian connected. Let (71,...,7,_1) be a
hamiltonian path of Dp — T,.

Since there are at least three parallel arcs from T to T, there exists y; # u

and x,_o € V(T,_2) such that Qr, 1, ,(y1,2,—2) is a y12,_o-path containing vertices
r—3
U VI(T3) -

Since there are three parallel arcs from T,._5 to T,_1, there exists at least one of
these arcs cd such that ¢ # x,_5 and d # w. Since 77 is hamiltonian connected,
let @ be a hamiltonian uy,-path in T}; analogously there exists S, a hamiltonian
x,_gc-path of T,._5, and U, a hamiltonian dw-path in 7T,_1; see Figure

L] [ ] [ ]
Tl Tz Tr—l Tr
Figure 1
Therefore
(QoQn 1 _o(y1,0,-2)0SoUo(a,... a1 =Db))
is an ab-hamiltonian path of G, .. O

Corollary 3.1 Let G, be a regular r-balanced c-partite tournament, with ¢ > 10,

r>5 and cr > 12¢+ 5r and p(G,.) < r (ﬁ — 1). Then G is hamiltonian
4

connected if

[1+1

e (1570) (i) & ()}
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Proof. Since G, is regular, 6(G,.) = r(cQ—l), and using cr > 12¢ + 5r it is not

-1 12
difficult to check that r(02 ) > cr+12) + 3_r Therefore, by Theorems ,
L

4 4
and [3.3, G, is hamiltonian connected.
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