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Abstract

In this paper, a segment is a finite row of unit cells. A pyramid of
segments is a set of several segments, where one segment is called the
base. In every segment other than the base, at least one cell is sup-
ported from below by another segment. Pyramids of segments appear
in the enumeration of other combinatorial objects (such as directed ani-
mals, parallelogram polyominoes and 321-avoiding affine permutations),

but are also of independent interest. We shall prove that there are
(
n

r

)2
pyramids of segments with n + 1 cells and r + 1 segments. So there is
a total of

(
2n
n

)
pyramids of segments with n + 1 cells. After obtaining

these simple formulas by a generating functions approach, we also give
bijective proofs.

1 Introduction

A pyramid of segments (see Figure 1) is a plane object made up of segments, where a
segment is actually a row of unit cells. At its beginning stage, a pyramid of segments
is just a single segment. The other segments—either none or a finite number of
them—are then added one by one. Each new segment is initially placed so that the
new segment’s bottom has much greater y-coordinate than the top of the existing
pyramid, and so that at least one cell of the new segment stands precisely above
some cell of the existing pyramid. Then we let the new segment fall as if gravity
acted on it. The fall ends as soon as the bottom side of some cell of the new segment
coincides with the top side of some cell of the existing pyramid.

Pyramids of segments are an instance of Viennot’s [20, 21] heaps of pieces. Pyra-
mids of two-celled segments (also known as pyramids of dimers) have proved use-
ful in the enumeration of directed animals [2, 9, 20]. Another interesting case is
when the leftmost cell of the minimal segment is also a leftmost cell of the whole
pyramid. Pyramids of segments having that property are called semi-pyramids of

segments. They appear in the q-enumeration of parallelogram polyominoes (Figure 2,
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Figure 1: A pyramid of segments.

Figure 2: Left: A parallelogram polyomino. Right: A directed convex polyomino.

left) [6, 10]. The whole set of pyramids of segments appears in the q-enumeration
of periodic parallelogram polyominoes. Periodic parallelogram polyominoes (PPPs)
are a certain superset of “ordinary” parallelogram polyominoes. PPPs were intro-
duced recently by Biagioli, Jouhet and Nadeau [3, 4]. In [3, 4], the main goal is to
enumerate 321-avoiding affine permutations, and PPPs come in handy because they
somehow resemble affine permutations.

When it comes to counting pyramids of segments, one should of course take into
account parameters like the number of cells and the number of segments. However,
there is one parameter—we shall call it horizontal spread—that is less obvious, but
not less important. Horizontal spread plays a prominent role in [3, 4, 6, 10]. What
is horizontal spread? It is the sum, over all segments of a pyramid, of the distance
between the right vertical tangent line of the segment and the left vertical tangent
line of the whole pyramid. Let Â = Â(x, s, q) be the generating function in which
the coefficient of xnsrqt is the number of pyramids of segments that have n cells,
r segments and horizontal spread t. From computations of Biagioli, Jouhet and
Nadeau [4] it follows at once that
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Â(x, s, q) = sx

∑
n≥1

n(−sx)n−1q
(n+1

2 )
(q;q)n(xq;q)n

∑
n≥0

(−sx)nq(
n+1
2 )

(q;q)n(xq;q)n

− sxq

∑
n≥1

n(−sxq)n−1q
(n+1

2 )
(q;q)n(xq;q)n

∑
n≥0

(−sxq)nq(
n+1
2 )

(q;q)n(xq;q)n

, (1)

where (a; q)n stands for the product (1− a)(1− aq) · · · (1− aqn−1).

Remark. Biagioli, Jouhet and Nadeau’s pyramids of segments [3, 4] are somewhat
different from our pyramids of segments. In this paper, pyramids of segments are
invariant under all translations. In [3, 4], pyramids of segments are invariant un-
der upward/downward translations, but are not invariant under leftward/rightward
translations. Formula (1) holds for this paper’s pyramids of segments.

Bousquet-Mélou and Viennot [10] defined a bijection between semi-pyramids of
segments and parallelogram polyominoes. That bijection shows that, for all n ∈
{0, 1, 2, . . .}, r ∈ {0, 1, . . . , n} and t ∈ N, the number of semi-pyramids of segments
with n + 1 cells, r + 1 segments and horizontal spread t is equal to the number of
parallelogram polyominoes with total perimeter 2n+ 4, horizontal perimeter 2r + 2
(that is, r + 1 columns) and area t.

General pyramids of segments are related to directed convex polyominoes (Figure
2, right). This connection is not so tight as the connection between semi-pyramids of
segments and parallelogram polyominoes. The number of pyramids of segments with
n+1 cells, r+1 segments and horizontal spread t is generally not equal to the number
of directed convex polyominoes with total perimeter 2n+4, horizontal perimeter 2r+2
and area t. For example, there are two pyramids of segments with 3 cells, 2 segments
and horizontal spread 4, but there is only one directed convex polyomino with total
perimeter 8, horizontal perimeter 4 and area 4. Still, for n ∈ {0, 1, 2, . . .}, there are(
2n
n

)
pyramids of segments with n + 1 cells, and there are also

(
2n
n

)
directed convex

polyominoes with perimeter 2n + 4. For n ∈ {0, 1, 2, . . .} and r ∈ {0, 1, . . . , n},
there are

(
n

r

)2
pyramids of segments with n + 1 cells and r + 1 segments, and there

are also
(
n

r

)2
directed convex polyominoes with perimeter 2n+ 4 and r+ 1 columns.

In the case of directed convex polyominoes, the results
(
2n
n

)
and

(
n

r

)2
readily follow

from the formula for the perimeter generating function, found by Lin and Chang
[15] in 1988. Once Lin and Chang’s formula was known, Bousquet-Mélou [5] and

Feretić [12] proved the consequent results
(
2n
n

)
and

(
n

r

)2
via bijections. In the case of

pyramids of segments, the results
(
2n
n

)
and

(
n

r

)2
readily follow from the formula

Â(x, s, 1) =
sx√

1− 2x− 2sx+ (1− s)2x2
, (2)

but formula (2) does not at all readily follow from formula (1). In formula (1) there
are an infinity of denominators, and if we set q = 1, each of those denominators
becomes equal to zero. Fortunately, it is not the case that (2) must be obtained
from (1). In Sections 3 and 4 of this paper, formula (2) will be obtained without ever
dealing with horizontal spread. We are going to use the Schützenberger methodology
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[7, 8], while Biagioli, Jouhet and Nadeau [4] used Viennot’s Inversion Lemma [21].
To my best knowledge, formula (2) does not appear in any publication prior to this
paper.

This paper continues as follows. In Section 2, we state definitions and introduce
notation. In Section 3, we define what are the first, second, third,. . . segments of
a pyramid. Then we encode pyramids of segments. The codes are Motzkin paths
satisfying an additional requirement—to put it briefly, returns to level zero and
horizontal steps have to be interlaced in a certain specific way. We write A to denote
the set of all codes of pyramids of segments, and D to denote the set of all Dyck
paths. In Section 4, we define two more families of Motzkin paths, denoted B and C.
Then we find lattice path factorizations and compute generating functions. Thus we

obtain formula (2) and the consequent results
(
2n
n

)
and

(
n

r

)2
. Taking inspiration from

computations of Section 4, in Section 5 we write a new lattice path decomposition,
in which the path families B and C are bypassed: a path t ∈ A is expressed in terms
of Dyck paths only. This new decomposition brings to light that every element of A
has an alter ego among bilateral Dyck paths. Mapping the elements of A to their
alter egos, we obtain a bijective proof that there are

(
2n
n

)
pyramids of segments with

n+ 1 cells.

The remaining task is to provide a bijective proof of the result
(
n

r

)2
. In Section 6,

we formulate that task more precisely: we want to exhibit a bijection from pyramids
with n+1 cells and r+1 segments to bilateral Dyck paths with 2n steps, of which r are
upward even steps. (By the even steps of a path we mean its 2nd, 4th, 6th,. . . steps.)
We give an example where the bijection of Section 5 (we call it bijection g ◦ f)
maps a pyramid with 35 cells and 12 segments to a bilateral Dyck path with 68
steps, of which 16 (and not 11) are upward even steps. Thus, the bijection g ◦ f
is no longer adequate and needs to be upgraded. To lay the groundwork for the
upgrade, in Section 7 we study the Narayana numbers N(n, k) = 1

n

(
n

k

)(
n

k−1

)
. In

particular, we define a bijection between two familiar Narayana-enumerated objects:
Dyck paths having 2n steps and k peaks, and Dyck paths having 2n steps, of which
k are upward odd steps. This bijection is a bit different from bijections between
Narayana-enumerated objects that can be found in the literature [16, 18, 19]. Using
the results of Section 7, in Section 8 we finally obtain a bijection that does map
pyramids with n+ 1 cells and r+ 1 segments to bilateral Dyck paths with 2n steps,
of which r are upward even steps.

2 Definitions and notation

A unit cell is a square [i, i+ 1]× [j, j + 1], where i and j are integers. A segment is
a finite row of unit cells. Two segments are cell-disjoint if they do not have a cell in
common. (If two segments are cell-disjoint, they still may have one or more edges in
common.) Let H be a finite family of cell-disjoint segments, and let s be a segment
of H. If, for every j ∈ N, the segment s − (0, j) is cell-disjoint with all segments
of H, we say that s is a minimal segment of H. If, for every j ∈ N, the segment
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Figure 3: A pyramid of segments can be drawn in two different ways. Left:
The segments are really segments (and their endpoints have integer coordinates).
Right: The segments are actually rows of unit cells.

s+ (0, j) is cell-disjoint with all segments of H, we say that s is a maximal segment
of H. A segment s is supported from below by a segment r if the segment s− (0, 1)
is not cell-disjoint with r. Notice that, in a given family of cell-disjoint segments,
it can happen that a segment is neither minimal nor supported from below by any
other segment.

A finite family of cell-disjoint segments H is a heap of segments if the following
two conditions are satisfied: 1) all minimal segments of H have the same ordinate,
and 2) every segment of H is either minimal or is supported from below by at least
one other segment of H. A pyramid of segments is a heap of segments having only
one minimal segment. Thus, our pyramids of segments are practically identical to X.
Viennot’s [21] pyramids of segments; we only replaced lattice points with unit cells.
See Figure 3.

Let P1 and P2 be two pyramids of segments. In the upcoming enumeration, if
there exists a translation τ such that P2 = τ(P1), we regard P1 and P2 as one and
the same pyramid of segments.

A polyomino is a finite, edge-connected union of unit cells. There is an important
class of polyominoes called partially directed polyominoes [13, subsection 3.5.2]. Par-
tially directed polyominoes are a subset of pyramids of segments. Namely, a partially
directed polyomino is a pyramid of segments in which no two segments share a ver-
tical edge. Next, there is a model called directed animals on the king’s lattice. (The
latter model has been introduced in 2013 by Axel Bacher [1].) A directed animal on
the king’s lattice is the object that remains when, in a pyramid of segments having
no one-celled segments, we delete the leftmost cell of every segment. See Figure 4.

While a pyramid of segments is being constructed, the sizes of segments can be
kept under control, but the contacts between segments are practically uncontrollable.
Hence, with our method of counting pyramids of segments, one can (mutatis mutan-

dis) also count directed animals on the king’s lattice, but cannot count partially
directed polyominoes.

If a set S has n elements, we write |S| = n.

In the lattice paths appearing in this paper, every step is either (1, 1) or (1,−1) or
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Figure 4: Left: A pyramid of segments in which every segment has at least two
cells. The abbreviation tbd means “to be deleted”. Right: The corresponding
directed animal on the king’s lattice.

(1, 0). We call (1, 1) an upward step, (1,−1) a downward step and (1, 0) a horizontal

step. We denote steps by letters: x = (1, 1), y = (1,−1), and a = (1, 0). Let w be
a lattice path with i upward steps, j downward steps and k horizontal steps. Then
we write |w|x = i, |w|y = j, |w|a = k as well as |w| = i + j + k. We denote the
empty path by the Greek letter ε. By the product of two lattice paths we mean their
concatenation. Given two lattice paths u and w, if there exist lattice paths v and z
such that u = vwz, we say that w is a factor (or subpath) of u. If v = ε, w is a left

factor of u. If z = ε, w is a right factor of u. Suppose that, together with u = vwz,
we have |v|x − |v|y = ℓ and |vw|x − |vw|y = m. Then we say that the subpath w

starts at level ℓ and ends at level m.

A lattice path u is a Motzkin path if it satisfies the following two conditions: 1)
|u|x = |u|y, and 2) if v is a left factor of u, then |v|x ≥ |v|y. A Dyck path is a Motzkin
path in which horizontal steps do not occur. A peak of a Dyck path u is a vertex of
u at which an upward step ends and a downward step starts. For example, the path
x̂yxx̂yxxx̂yyyy has three peaks. A lattice path u is a bilateral Dyck path if |u|x = |u|y
and |u|a is zero. A Dyck path cannot go below the horizontal line through its origin,
but a bilateral Dyck path can go below that line.

Suppose that a lattice path u has a factorization u = vwz such that: 1) v is
either empty or ends with a downward step, 2) w is nonempty and each of its steps
is either an upward step or a horizontal one, and 3) z is either empty or starts with
a downward step. Then we say that w is a weakly ascending nest (wan) of u. An
ascending nest is a weakly ascending nest having no horizontal steps. Now suppose
that a lattice path u has a factorization u = vwz such that: 1) v does not end with
a downward step, 2) w is nonempty and each of its steps is a downward step, and
3) z does not start with a downward step. Then we say that w is a descending nest

(den) of u. If a lattice path u has ℓ weakly ascending nests and m descending nests,
then we write wan(u) = ℓ and den(u) = m.

Given a lattice path w, we write w to denote the mirror image of w in the x-axis.
That is, if w has n steps, then w also has n steps. For every i ∈ {1, . . . , n}, if the ith
step of w is an upward (respectively downward, horizontal) step, then the ith step
of w is a downward (respectively upward, horizontal) step.

The odd steps of a lattice path w are the first, third, fifth, . . . steps of w. The
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even steps of a lattice path w are the second, fourth, sixth, . . . steps of w. If a lattice
path w has i upward odd steps and j upward even steps, we write uo(w) = i and
ue(w) = j.

3 A coding for pyramids of segments

In this section, we define a bijection between pyramids of segments and a certain
subset of Motzkin paths.

Let P denote the set of all pyramids of segments. For n ∈ N and r ∈ {1, . . . , n},
let

Pn = {P ∈ P : P has n cells},
Pn,r = {P ∈ P : P has n cells and r segments}.

Let A denote the set of all paths u which have the following properties:

1. u is a nonempty Motzkin path,

2. if w is a weakly ascending nest of u, then w begins with an upward step and
contains at most one horizontal step,

3. if w is a weakly ascending nest of u, then w contains a horizontal step if and
only if the factorization u = vwz starts with a path v that is not empty and
ends at level zero.

For n ∈ N and r ∈ {1, . . . , n}, let

An = {u ∈ A : |u|x = n},

An,r = {u ∈ A : |u|x = n & wan(u) = r}.

Let P be an element of Pn,r. We shall soon encode P by an element of An,r,
but first we have to mark the segments of P by numbers. The rth segment of P is
the rightmost maximal segment of P . The (r − 1)st segment of P is the rightmost
maximal segment of the pyramid that remains when the rth segment of P is deleted.
The (r − 2)nd segment of P is the rightmost maximal segment of the pyramid that
remains when the rth and (r − 1)st segments of P are deleted, and so on. See
Figure 5.

Let si stand for the ith segment of P (i = 1, . . . , r). Let bi and ci be the minimal
abscissa and the maximal abscissa of si, respectively. (If si has five cells, then
ci − bi = 5.) Let maxi denote the maximum element of the set {c1, c2, . . . , ci}.

The code of P is f(P ), a path that we define as follows. First, f(P ) has r weakly
ascending nests and r descending nests. The first nest of f(P ) is a weakly ascending
nest, namely xc1−b1 . Let i ∈ {2, . . . , r}. If ci < maxi−1 then the (i− 1)st descending
nest of f(P ) is yci−bi−1 , and the ith weakly ascending nest of f(P ) is xci−bi . (It
is impossible that ci − bi−1 ≤ 0 because, at the stage when all but i segments are
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Figure 5: How the segments are numbered.

Figure 6: The path f(P ), where P is the pyramid of segments of Figure 5. The
double arrow labelled si shows what section of f(P ) is generated by the ith seg-
ment of P .

deleted, the rightmost maximal segment is si and not si−1.) If ci ≥ maxi−1 then the
(i−1)st descending nest of f(P ) is ymaxi−1 −bi−1 , and the ith weakly ascending nest of
f(P ) is xmaxi−1 −biaxci−maxi−1 . (It is impossible that maxi−1 −bi ≤ 0 because, as long
as si is present, the segments that support si from below are present too.) Finally,
the rth descending nest of f(P ) is ymaxr −br . See Figures 5 and 6 for an example.

The path f(P ) is a Motzkin path. This is not obvious from the definition of
f(P ), but will be proved in the next theorem.

Theorem 3.1. For n ∈ N and r ∈ {1, . . . , n}, the mapping f is a bijection from the

set Pn,r to the set An,r.

Proof. We shall prove by induction that, if P is an element of Pn,r, then, for i
from 1 to r, the ith weakly ascending nest (wan) of f(P ) ends at level maxi−bi.
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Indeed, the definition of f(P ) specifies that the first wan of f(P ) ends at level
c1 − b1 = max1 −b1. Suppose that, for some i ∈ {2, . . . , r}, the (i − 1)st wan of
f(P ) ends at level maxi−1 −bi−1. The induction step splits into two cases: ci <

maxi−1 and ci ≥ maxi−1. In the case ci < maxi−1, the (i − 1)st descending nest
(den) of f(P ) is yci−bi−1 , and the ith wan of f(P ) is xci−bi . Hence the ith wan
ends at level maxi−1 −bi−1 − ci + bi−1 + ci − bi = maxi−1 −bi = maxi−bi. In the
case ci ≥ maxi−1, the (i − 1)st den of f(P ) is ymaxi−1 −bi−1 , and the ith wan of
f(P ) is xmaxi−1 −biaxci−maxi−1 . Once again, it follows that the ith wan ends at level
maxi−1 −bi−1 −maxi−1 +bi−1 +maxi−1 −bi + ci −maxi−1 = ci − bi = maxi−bi. The
induction step is now complete.

The (i − 1)st den starts at the terminus of the (i − 1)st wan. In the case i ∈
{2, . . . , r} and ci < maxi−1, the (i − 1)st den of f(P ) is yci−bi−1 and its final level
is maxi−1 −bi−1 − ci + bi−1 = maxi−1 −ci > 0. In the case i ∈ {2, . . . , r} and ci ≥
maxi−1, the (i− 1)st den of f(P ) is ymaxi−1 −bi−1 and its final level is maxi−1 −bi−1 −
maxi−1 +bi−1 = 0. Thus, every nonfinal den of f(P ) ends at a nonnegative level, and
the rth (and last) den of f(P ) ends at level maxr−br −maxr +br = 0. This means
that f(P ) is a Motzkin path.

Let i ∈ {2, . . . , r}. From the definition of f(P ), we see that the ith wan of f(P )
contains a horizontal step if and only if ci ≥ maxi−1. But the inequality ci ≥ maxi−1

holds if and only if the (i− 1)st den of f(P ) ends at level zero. Also, the definition
of f(P ) ensures that every wan of f(P ) starts with an upward step (and not with a
horizontal step). Putting the pieces together, we conclude that f(P ) is an element
of A.

From the definition of f(P ) it is soon clear that, for i from 1 to r, the ith
wan of f(P ) contains exactly ci − bi upward steps. So the path f(P ) has a total of∑r

i=1(ci−bi) upward steps. If the pyramid P has a total of n cells, then
∑r

i=1(ci−bi) =
n, and the path f(P ) has a total of n upward steps.

So far we have proved that f maps pyramids with n cells and r segments into

the elements of A that have n upward steps and r weakly ascending nests. In other
words, f is a function from the set Pn,r to the set An,r. Now we claim that f is an
injection. That is, if for some w ∈ An,r there exists a pyramid of segments P ∈ Pn,r

such that w = f(P ), then P is uniquely determined. Indeed, the size of the first
segment of P is the number of upward steps in the first nest of w. Suppose that,
for some i ∈ {2, . . . , r}, the sizes and relative positions of the first i − 1 segments
of P have been reconstructed. In the case that the ith wan of w does not contain a
horizontal step, in P we have ci < maxi−1, the i − 1th den of w is yci−bi−1 , and the
ith wan of w is xci−bi . So ci can be read off from the i − 1th den of w, and bi can
then be read off from the ith wan of w. In the case that the ith wan of w contains
a horizontal step, in P we have ci ≥ maxi−1, the i − 1th den of w is ymaxi−1 −bi−1 ,
and the ith wan of w is xmaxi−1 −biaxci−maxi−1 . So both bi and ci can be read off from
the ith wan of w. In both cases, once bi and ci are known, we drop a segment of
width ci − bi from the top of the strip [bi, ci]× 〈−∞,∞〉. The dropped segment will
eventually land on some support, the support being one or more of the first i − 1
segments of P . When the landing is over, the sizes and relative positions of the first
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i segments of P are determined uniquely.

The proof that f is a surjection is also not hard. To save space, we leave that
proof to the reader.

4 The generating function A computed and expanded in

Taylor series

The coding f is useful because the paths of A are not hard to enumerate, and
once those paths are enumerated, pyramids of segments are enumerated too. We
shall enumerate the paths of A via the wasp-waist decomposition [7, subsubsection
3.4.3.1]. The wasp-waist decomposition will involve three additional families of paths.
The definitions of those three families follow.

Let B be the set of all paths u which have the following properties:

1. u is a nonempty Motzkin path,

2. if w is a weakly ascending nest of u, then w begins with an upward step and
contains at most one horizontal step,

3. if w is a weakly ascending nest of u, then w contains a horizontal step if and
only if the factorization u = vwz starts with a path v that is either empty or
is nonempty and ends at level zero.

Remark. The families A and B are different because of the following detail. If
u ∈ A, the first wan of u does not contain a horizontal step, whereas if u ∈ B, the
first wan of u contains a horizontal step.

Let C be the set of all paths u which have the following properties:

1. u is a nonempty Motzkin path,

2. |u|a = 1 and the only horizontal step of u lies in the first wan of u.

Remark. The first wan of u ∈ C does not have to begin with an upward step. The
horizontal step may appear at any position within that wan, the first position not
excluded.

Let D be the set of all Dyck paths.

We are now ready to write the wasp-waist decompositions. Those decompositions
are

A = xDy(ε+ B) = xy(ε+ B) + x(D − ε)y(ε+ B), (3)

B = xCy(ε+ B), (4)

C = aD + xCyD = a+ a(D − ε) + xCyD, (5)

D = ε+ xDyD = ε+ xyD + x(D − ε)yD. (6)
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We are not going to write the proofs of (3)–(6) because these decompositions can
be established by inspection. For example, A = xDy(ε + B) means that a path
u ∈ A can be written either as u = xvy, where v ∈ D, or as u = xwyz, where
w ∈ D and z ∈ B.

It is time to define generating functions. That done, decompositions (3)–(6) will
give us a system of four algebraic equations, where the generating functions appear
as unknowns. Let

A =
∑

u∈A x
|u|xa|u|aswan(u), B =

∑
u∈B x

|u|xa|u|aswan(u),

C =
∑

u∈C x
|u|xaswan(u), D =

∑
u∈D x

|u|xswan(u).

From (3)–(6) we quickly find that

A = sx(1 + B) + x(D − 1)(1 + B), (7)

B = xC(1 +B), (8)

C = as+ a(D − 1) + xCD, (9)

D = 1 + sxD + x(D − 1)D. (10)

Theorem 4.1. The generating function A is given by the formula

A(x, s, a) =
2sx

(1− a)(1− x+ sx) + (1 + a)
√
1− 2x− 2sx+ (1− s)2x2

. (11)

Proof. From (9) it follows that

C =
a(s+D − 1)

1− xD
. (12)

We substitute (12) into (8) to find that

B =
ax(s+D − 1)

1− xD − ax(s+D − 1)
, (13)

and then substitute (13) into (7) to obtain

A = x(s+D − 1)

[
1 +

ax(s+D − 1)

1− xD − ax(s+D − 1)

]
. (14)

Of the two solutions of the quadratic (10), D is the one that does not involve
negative powers of x. This means that

D =
1 + x− sx−

√
1− 2x− 2sx+ (1− s)2x2

2x
. (15)

Plugging (15) into (14) produces a “protoformula” for A, which we rearrange until
we get formula (11).
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If we set a = 1, formula (11) reduces to

A(x, s, 1) =
sx√

1− 2x− 2sx+ (1− s)2x2
. (16)

The case s = 1 of (16) is

A(x, 1, 1) =
x√

1− 4x
.

The Taylor series expansions of A(x, s, 1) and A(x, 1, 1) are

A(x, s, 1) =
∞∑

n=0

n∑

r=0

(
n

r

)2

xn+1sr+1 (17)

and

A(x, 1, 1) =
∞∑

n=0

(
2n

n

)
xn+1. (18)

Corollary 4.1. For n ∈ {0, 1, 2, . . .} and r ∈ {0, 1, . . . , n}, there are
(
n

r

)2
pyramids

of segments with n+ 1 cells and r + 1 segments.

Proof. From Theorem 3.1 we know that |Pn+1,r+1| = |An+1,r+1|, and from (17) we

see that |An+1,r+1| =
(
n

r

)2
.

Corollary 4.2. For n ∈ {0, 1, 2, . . .}, there are
(
2n
n

)
pyramids of segments with n+1

cells.

Proof. It is clear that |Pn+1| =
∑n

r=0 |Pn+1,r+1|, and from Theorem 3.1 we know that∑n

r=0 |Pn+1,r+1| =
∑n

r=0 |An+1,r+1|. It is also clear that
∑n

r=0 |An+1,r+1| = |An+1|,
and from (18) we see that |An+1| =

(
2n
n

)
.

In the next four sections, we are going to prove Corollaries 4.1 and 4.2 in a
bijective way. We shall do the bijective proof of Corollary 4.2 first, because it is
considerably simpler than the bijective proof of Corollary 4.1.

5 A bijective proof of the formula |Pn+1| =
(
2n
n

)

By Theorem 3.1, the mapping f is a bijection from pyramids of segments to the set
A; f maps pyramids of segments with n + 1 cells onto the paths of A that have
n + 1 upward steps. In this section, we define a new bijection. This new bijection,
say g, maps the set A to the set of all bilateral Dyck paths. The bijection g maps
the paths of A that have n+1 upward steps onto bilateral Dyck paths with 2n steps.
The composition g ◦ f is thus a bijection from pyramids of segments with n+1 cells
to bilateral Dyck paths with 2n steps. The number of bilateral Dyck paths with 2n
steps is obviously

(
2n
n

)
. Namely, there is a total of 2n steps, and any n of them can
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be upward steps. This means that, once we define the bijection g and prove that it
has the desired properties, the bijective proof of Corollary 4.2 will be complete.

Let t ∈ A. Suppose that t has p nonempty left factors that end at level zero.
If p = 1, then t can be written as t = xuy, where u ∈ D. If p = 2, then t can be
written as t = xuyxvy, where u ∈ D and v ∈ C. If p = 3, then t can be written as
t = xuyxvyxwy, where u ∈ D, v ∈ C and w ∈ C. Altogether, every path of A can
be decomposed into one factor of the form x · (an element of D) · y and either zero
or a finite number of factors of the form x · (an element of C) · y. By definition of
C, a path of the form x · (an element of C) · y has only one horizontal step. The
horizontal step lies in the path’s first wan. If the horizontal step is preceded by i
upward steps, the said path of the form x · (an element of C) · y can be written
as xiaviyvi−1y · · · v1y, where vi, vi−1, . . . , v1 are elements of D. Summing up, we see
that every path t ∈ A can be written in one of these two ways:

Way 1: t = xuy, where u ∈ D,

Way 2: t=xuy·(xiaviyvi−1y · · · v1y)·(xjawjywj−1y · · ·w1y) · · · (xmazmyzm−1y · · · z1y),
where i, j, . . . , m ∈ N and u, vi, vi−1, . . . , v1, wj, wj−1, . . . , w1, . . . , zm, zm−1, . . . , z1
∈ D.

Let t ∈ A. If t can be written in Way 1, we set g(t) = u. If t can be written in
Way 2, we set

g(t)=u·(yvix · xvi−1y · · · xv1y)·(ywjx · xwj−1y · · · xw1y) · · · (yzmx · xzm−1y · · · xz1y) .

Comments. The parentheses around xiaviyvi−1y · · · v1y, yvix ·xvi−1y · · · xv1y,. . . have
been written with the only purpose to make the reading easier. If i = 1, then
xvi−1y · · · xv1y = ε. For the meaning of vi, wj and zm, see Section 2.

See Figure 7 for an example. In Figure 7, we made use of green and red colours:
the wans of the path t are green, and the upward (respectively downward) even steps
of the path g(t) are green (respectively red). These colourings are useful because the
wans of t and the upward even steps of g(t) thus become easy to count.

Notation. The set of bilateral Dyck paths with 2n steps will be denoted by Zn.
Incidentally, the letter Z is intended to suggest the word “zero”: a bilateral Dyck
path is only required to end at level zero (and not to make horizontal steps).

Theorem 5.1. For n ∈ {0, 1, 2, . . .}, the mapping g is a bijection from the set An+1

to the set Zn.

Proof. Let t ∈ A. If t can be written in Way 1, then g(t) = u is a Dyck path,
and every Dyck path is a bilateral Dyck path. It is also clear that g(t) = u has one
upward step less than t. Hence, if |t|x = n+ 1, then |g(t)|x = n, so that g(t) has 2n
steps in all.

Now suppose that t can be written in Way 2. Since |vi|x = |vi|y = |vi|x = |vi|y,
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Figure 7: Top: A path t ∈ A. (The path t can be seen in Figure 6 too.) Bottom:
The path g(t). The factorizations of t and g(t) are also shown.

we have

|yvix · xvi−1y · · · xv1y|x = i+ |vi|x + |vi−1|x + . . .+ |v1|x
= i+ |vi|x + |vi−1|x + . . .+ |v1|x
= |xiaviyvi−1y · · · v1y|x
= |xiaviyvi−1y · · · v1y|y
= |vi|y + |vi−1|y + . . .+ |v1|y + i

= |vi|y + |vi−1|y + . . .+ |v1|y + i

= |yvix · xvi−1y · · · xv1y|y.

In the same way, one can show that

|ywjx · xwj−1y · · · xw1y|x = |ywjx · xwj−1y · · · xw1y|y, . . . ,
|yzmx · xzm−1y · · · xz1y|x = |yzmx · xzm−1y · · · xz1y|y.
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The path g(t) is the product of the Dyck path u and of parenthesized paths, and each
of the parenthesized paths is a bilateral Dyck path. Therefore g(t) is a bilateral Dyck
path too. From the above computation, we also see that |yvix · xvi−1y · · · xv1y|x =
|xiaviyvi−1y · · · v1y|x. Similarly, we have

|ywjx · xwj−1y · · · xw1y|x = |xjawjywj−1y · · ·w1y|x, . . . ,
|yzmx · xzm−1y · · · xz1y|x = |xmazmyzm−1y · · · z1y|x.

Hence the numbers |t|x and |g(t)|x differ only because the initial factor of t is xuy,
and the initial factor of g(t) is u alone. If |t|x = n+1, then |g(t)|x = n, which means
that g(t) has 2n steps in all.

To sum up, if t ∈ A and |t|x = n + 1, then, regardless of how t can be written
(in Way 1 or Way 2), g(t) is always a bilateral Dyck path with 2n steps.

So far we have proved that g is a function from An+1 to Zn. Now we want to
prove that g is a surjection. Let p be a bilateral Dyck path with 2n steps. If p is
a Dyck path, then xpy is an element of A, and we have |xpy|x = n + 1 as well as
g(xpy) = p. Now suppose that p is not a Dyck path. Then p has one or more y-steps
that start at level zero. Between any two such y-steps, as well as before the first and
after the last such y-step, p may (but does not need to) have one or more x-steps
that start at level zero. This means that p can be written as

p = u · (yvix · xvi−1y · · · xv1y) · (ywjx · xwj−1y · · · xw1y) · · · (yzmx · xzm−1y · · · xz1y),

where i, j, . . . ,m are positive integers and u, vi, vi−1, . . . , v1, wj, wj−1, . . . , w1, . . . , zm,

zm−1, . . . , z1 are Dyck paths. Let

t = xuy ·
(
xiaviyvi−1y · · · v1y

)
·
(
xjawjywj−1y · · ·w1y

)
· · · (xmazmyzm−1y · · · z1y) .

It is not hard to see that t is an element of A. In addition, we have |t|x = n+1 and
g(t) = p.

Thus, g is a surjection fromAn+1 toZn. The setsAn+1 andZn are equinumerous:
each of them has

(
2n
n

)
elements. (The cardinality of An+1 was found in Corollary

4.2, and the cardinality of Zn is obvious.) For this reason, in addition to being a
surjection from An+1 to Zn, g is also a bijection from An+1 to Zn.

Now that Theorem 5.1 is proved, we can easily do an extra enumeration. Let
P ∈ Pn+1, where n ∈ N. From the definitions of f and g it is soon clear that, if
the first segment of P has only one cell, then the path (g ◦ f)(P ) begins with a
downward step. If instead the first segment of P has two or more cells, then the
path (g ◦ f)(P ) begins with an upward step. So the restriction of g ◦ f to the set
{P ∈ Pn+1 : the first segment of P has only one cell} is a bijection from that set to
the set {z ∈ Zn : z begins with a downward step}. Also, the restriction of g◦f to the
set {P ∈ Pn+1 : the first segment of P has two or more cells} is a bijection from the
latter set to the set {z ∈ Zn : z begins with an upward step}. Each of the sets {z ∈
Zn : z begins with a downward step} and {z ∈ Zn : z begins with an upward step}
obviously has

(
2n−1
n−1

)
= 1

2

(
2n
n

)
elements. Hence we have this corollary:
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Corollary 5.1. For n ∈ N, the sets

{P ∈ Pn+1 : the first segment of P has only one cell}

and

{P ∈ Pn+1 : the first segment of P has two or more cells}
have 1

2

(
2n
n

)
elements each.

6 Why is it hard to prove the formula |Pn+1,r+1| =
(
n
r

)2
bijectively?

Notation. The set {p ∈ Zn : p has r upward even steps} will be denoted by Zn,r.

By Theorem 3.1, the mapping f is a bijection from the set Pn+1,r+1 to the set
An+1,r+1. Now we want to find a bijection (say h) from the set An+1,r+1 to the
set Zn,r. Once we find h, the bijective proof of Corollary 4.1 will be very nearly
complete. Namely, the composition h ◦ f is a bijection from Pn+1,r+1 to Zn,r, and

this latter set is easily seen to have
(
n

r

)2
elements. Indeed, there are n even steps,

and any r of them can be upward steps; there are n odd steps, and any n−r of them
can be upward steps. Altogether there are

(
n

r

)
·
(
n

n−r

)
=

(
n

r

)2
choices.

However, the bijection h is not easy to define. We already have a bijection
g : An+1 → Zn, but g does not map every path with r + 1 wans into a path with r
upward even steps. For example, in Figure 7, the path t has 12 wans, whereas the
path g(t) has 16 upward even steps. Therefore h cannot be equal to g.

The formula for g involves a number of Dyck paths. To obtain a formula for h,
one has to replace each of those Dyck paths by another, more suitable Dyck path.
To be specific, we are going to replace each of those Dyck paths by its image under
ϕ or, if appropriate, by its image under ψ. Here, ϕ and ψ are two bijections between
Narayana-enumerated objects. Of course, to revise the formula for g in such a way,
one has to know something about the Narayana numbers. Therefore, in Section 7
we shall study the Narayana numbers. The formula for h will then be stated in
Section 8.

7 Bijections between three Narayana-enumerated objects

For n ∈ {1, 2, 3, . . .} and k ∈ {1, 2, . . . , n}, the Narayana number N(n, k) is given
by the formula

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
.

The Narayana numbers occur in various combinatorial enumerations. For our
purposes, it is most relevant that:

1. N(n, k) is the number of Dyck paths with 2n steps and k peaks,
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2. N(n, k) is the number of Dyck paths with 2n steps, of which k are upward odd
steps,

3. N(n, k) is the number of Dyck paths with 2n steps, of which k− 1 are upward
even steps.

The Narayana numbers are named after a Canadian mathematician Tadepalli
Venkata Narayana. Narayana’s paper [17], published in 1959, contains a result that
is very close to the first of the three facts listed above. The discoveries of the facts
2) and 3) cannot be dated quite accurately. Anyway, the references provided by
Kreweras [14] indicate that 2) and 3) were found in the early 1980s.

For n ∈ {1, 2, 3, . . .} and k ∈ {1, 2, . . . , n}, let

P̂n,k = {u ∈ D : u has 2n steps and k peaks},
On,k = {u ∈ D : u has 2n steps, k of them being upward odd steps},

En,k−1 = {u ∈ D : u has 2n steps, k − 1 of them being upward even steps}.

Remark. In Section 3 we defined a set Pn,r and here we defined a set P̂n,k. The sets

Pn,r and P̂n,k are not as closely related as their names might suggest: Pn,r is a set

of pyramids of segments, whereas P̂n,k is a set of Dyck paths.

As stated above, each of the sets P̂n,k, On,k and En,k−1 has N(n, k) elements.
Hence each two of these sets can be placed in a one-to-one correspondence. However,
of the one-to-one correspondences P̂n,k ↔ On,k, P̂n,k ↔ En,k−1 and On,k ↔ En,k−1,
only the third one is easy to see. Therefore we start with the third one-to-one
correspondence.

Let τ(ε) = ε and τ(xy) = xy. If u is a Dyck path with n ≥ 2 upward steps,
we define τ(u) to be the path obtained by swapping the 2ith and (2i + 1)st steps
of u, for all i from 1 to n − 1. With ai denoting the ith step of u, we have u =
a1a2a3 . . . a2n−2a2n−1a2n and τ(u) = a1a3a2 . . . a2n−1a2n−2a2n. For example, if u =

x xy︸︷︷︸
︷︸︸︷
xx yy︸︷︷︸

︷︸︸︷
xy yx︸︷︷︸ y, then τ(u) = x yx︸︷︷︸

︷︸︸︷
xx yy︸︷︷︸

︷︸︸︷
yx xy︸︷︷︸ y.

The mapping τ is both a bijection from On,k to En,k−1 and a bijection from En,k−1

to On,k. In the next proposition, we shall prove the first part of this claim.

Proposition 7.1. For n ∈ {1, 2, 3, . . .} and k ∈ {1, 2, . . . , n}, the mapping τ is a

bijection from On,k to En,k−1.

Proof. We have O1,1 = {xy}, E1,0 = {xy} and τ(xy) = xy. So it is clear that
τ is a bijection from O1,1 to E1,0. Now let n ≥ 2 and k ∈ {1, 2, . . . , n}. For
u = a1 . . . a2n ∈ On,k and i ∈ {1, 2, . . . , n}, the first 2i− 1 steps of τ(u) form a path
(say vi) with strictly more upward steps than downward steps. Indeed, since u is a
Dyck path, we have

|vi|x − |vi|y = |a1a3a2 . . . a2i−1a2i−2|x − |a1a3a2 . . . a2i−1a2i−2|y
= |a1a2a3 . . . a2i−2a2i−1|x − |a1a2a3 . . . a2i−2a2i−1|y > 0.
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Hence, the first 2i steps of τ(u) form a path (say wi) such that |wi|x − |wi|y ≥ 0.
In addition, we have

|τ(u)|x − |τ(u)|y = |a1a3a2 . . . a2n−1a2n−2a2n|x − |a1a3a2 . . . a2n−1a2n−2a2n|y
= |a1a2a3 . . . a2n−2a2n−1a2n|x − |a1a2a3 . . . a2n−2a2n−1a2n|y
= |u|x − |u|y = 0.

Altogether, this means that τ(u) is a Dyck path. How does ue(τ(u)) relate to
uo(u)? (Recall from Section 2 that ue(τ(u)) stands for the number of upward even
steps of τ(u), while uo(u) stands for the number of upward odd steps of u.) Having
in mind that a1 = x and a2n = y, we obtain

ue(τ(u)) = ue(a1a3a2 . . . a2n−1a2n−2a2n) = ue(a1a3a2 . . . a2n−1a2n−2)

= |a3a5 . . . a2n−1|x = |a1a3a5 . . . a2n−1|x − 1

= uo(a1a2a3 . . . a2n−2a2n−1a2n)− 1 = uo(u)− 1 = k − 1.

Thus, τ(u) is a Dyck path with 2n steps, of which k − 1 are upward even steps.
This means that τ(u) is an element of En,k−1.

Now that we know that τ is a function from On,k to En,k−1, we can prove at once
that τ is a bijection. Let v = b1b2b3 . . . b2n−2b2n−1b2n be an element of En,k−1. If
there exists a path u ∈ On,k such that v = τ(u), then u cannot be anything but
b1b3b2 . . . b2n−1b2n−2b2n. Thus, τ is an injection. Since On,k and En,k−1 are finite sets
of equal cardinality, any injection from On,k to En,k−1 is also a bijection. So τ is also
a bijection. This completes the proof.

Let us move on to another one-to-one correspondence. An obvious bijection from
P̂n,k to On,k is out of the question, but an elegant bijection still exists. The definition
follows.

For n ∈ {1, 2, 3, . . .} and k ∈ {1, 2, . . . , n}, let w be an element of P̂n,k. Since
w has k peaks, there exist positive integers a1, . . . , ak and b1, . . . , bk such that w =
xa1yb1xa2yb2 · · · xakybk . Let c = xyb1−1xyb2−1 · · · xybk−1 and d = xa1−1yxa2−1y · · ·
xak−1y. Each of the paths c and d has n steps. Indeed, since c =

∏k

i=1 xy
bi−1, the

total number of steps of c is
∑k

i=1 bi = |w|y = n. Since d =
∏k

i=1 x
ai−1y, the total

number of steps of d is
∑k

i=1 ai = |w|x = n. Let cj (respectively dj) stand for the jth
step of c (respectively d). We define ϕ to be the function that maps the path w to
the path ϕ(w) = c1d1c2d2 · · · cndn. We also let ϕ(ε) = ε.

Example 7.1. Let w = x3yxy2xy2. The descending nests of w are y, y2 and y2.
Hence c = x · xy · xy = xxyxy. The ascending nests of w are x3, x and x. Thus
d = x2y · y · y = xxyyy. By alternating the steps of c with those of d, we obtain
ϕ(w) = (xx)(xx)(yy)(xy)(yy) = x4y2xy3.

Proposition 7.2. For n ∈ {1, 2, 3, . . .} and k ∈ {1, 2, . . . , n}, the mapping ϕ is a

bijection from P̂n,k to On,k.
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Proof. Let w ∈ P̂n,k. Suppose that w can be written as w = xa1yb1xa2yb2 · · · xakybk .
Let z be a left factor of ϕ(w) having an odd number of steps. If z has 2j − 1 steps,
then z = c1d1 · · · cj−1dj−1cj. If |c1 · · · cj−1cj|x = i, then the path c1 · · · cj−1cj ends at
latest at the end of the ith factor of c = (xyb1−1)(xyb2−1) · · · (xybk−1). This means
that j ≤ b1 + b2 + . . .+ bi. Since w = xa1yb1xa2yb2 · · · xakybk is a Dyck path, we have
b1 + b2 + . . . + bi ≤ a1 + a2 + . . . + ai. Consequently, j ≤ a1 + a2 + . . . + ai and
j − 1 < a1 + a2 + . . .+ ai. Because of this latter inequality, the path d1 · · · dj−1 ends
strictly before the end of the ith factor of d = (xa1−1y)(xa2−1y) · · · (xak−1y). Hence
|d1 · · · dj−1|y ≤ i − 1, and this implies that |d1 · · · dj−1|x ≥ (j − 1) − (i− 1) = j − i.
Altogether,

|z|x = |c1d1 · · · cj−1dj−1cj|x
= |c1 · · · cj−1cj|x + |d1 · · · dj−1|x ≥ i+ (j − i)

= j.

Since z has a total of 2j− 1 steps, |z|x ≥ j implies that z ends at a positive level.
Now let z̃ be a left factor of ϕ(w) having an even number of steps. If we delete the
last step of z̃, the remaining path (say z) is again a left factor of ϕ(w). Since z has
an odd number of steps, the end level of z is at least one. Therefore, whether z̃ = zx

or z̃ = zy, the end level of z̃ is at least zero. Thus every left factor of ϕ(w) ends at
a nonnegative level. In addition, we have

|ϕ(w)|x = |c1c2 · · · cn|x + |d1d2 · · · dn|x = |c|x + |d|x = |c|x + n− |d|y

=

∣∣∣∣∣
k∏

i=1

xybi−1

∣∣∣∣∣
x

+ n−
∣∣∣∣∣
k∏

i=1

xai−1y

∣∣∣∣∣
y

= k + n− k = n.

Having n upward steps and n downward steps, the path ϕ(w) ends at level n−n =
0. In summary, ϕ(w) is a Dyck path with 2n steps. How many upward odd steps
does ϕ(w) have? The answer is

uo(ϕ(w)) = |c1c2 · · · cn|x = |c|x =
∣∣∣∣∣
k∏

i=1

xybi−1

∣∣∣∣∣
x

= k.

Being a Dyck path with 2n steps, of which k are upward odd steps, ϕ(w) is an
element of On,k.

Now that we know that ϕ is a function from P̂n,k to On,k, we can readily prove
that ϕ is a bijection. Let s be an element of On,k. Suppose that there exists a path

w ∈ P̂n,k such that s = ϕ(w). Let c (respectively d) denote the path formed by the
odd (respectively even) steps of s. Inspecting the path c (respectively d), one gets
to know the number and sizes of the descending (respectively ascending) nests of
w. Once these numbers and sizes are all known, the path w is determined uniquely.
Hence, ϕ is an injection. Since P̂n,k and On,k are finite sets of equal cardinality, any

injection from P̂n,k to On,k is also a bijection. So ϕ is also a bijection. This completes
the proof.
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From Propositions 7.1 and 7.2 we obtain the following corollary.

Corollary 7.1. Let ψ = τ ◦ ϕ. For n ∈ {1, 2, 3, . . .} and k ∈ {1, 2, . . . , n}, the
composition ψ is a bijection from P̂n,k to En,k−1.

Comments. Our bijection ϕ is new up to a certain measure. Namely, ϕ has strong
ties with some known bijections. Let Papn,k stand for the set of parallelogram
polyominoes with perimeter 2n and k rows. Sulanke [19] observes that a bijective
proof that |En,k−1| = |P̂n,k| can be obtained by combining two results that are already
known. One of those results is a bijection, essentially due to Narayana [17], that maps
P̂n,k to Papn+1,k. The other result is a bijection, due to Delest and Viennot [11],
that maps En,k−1 to Papn+1,k. Composing the former bijection with the inverse of

the latter bijection, one obtains a bijection (let us call it α) from P̂n,k to En,k−1. Our

bijection ψ = τ ◦ ϕ also maps P̂n,k to En,k−1. Moreover, for every u ∈ P̂n,k, we have
ψ(u) = α(u). The mathematical definition of functions now says that ψ = α. Still,
the bijection ψ goes directly from Dyck paths to Dyck paths, whereas α first goes
from Dyck paths to parallelogram polyominoes, and then returns from parallelogram
polyominoes to Dyck paths. Therefore I think that ψ is a simpler bijection than α.

Osborn [18] gives a bijection (let us call it β) from En,k−1 to P̂n,k. The bijection
β is defined graphically: given a path u ∈ En,k−1, we draw the lines y = x − ℓ and
y = −x+m (ℓ, m ∈ N∪ {0}), and then write checkmarks at certain intersections of
y = x and y = −x with the other lines. Then we draw the path β(u). By contrast, to
find the path ψ−1(u) = (ϕ−1 ◦ τ)(u), we just write sequences of x’s and y’s, without
drawing anything. So the first impression is that ψ−1 and β are two very different
bijections. However, when I recast the definition of β in non-graphical terms, it
turned out that there is no difference at all: we have ψ−1 = β! I leave it open for
discussion whether it is more insightful to draw a path physically, or to produce a
sequence of x’s and y’s from another such sequence.

Mortimer and Prellberg [16] give a bijection (let us call it γ) from P̂n,k to On,k.
Our bijection ϕ is different from γ. For example, for u = x3yxy2xy2, we have
ϕ(u) = x4y2xy3 (recall Example 7.1) whereas γ(u) = x5y5. In addition, the bijection
γ is defined recursively.

It should be mentioned that the papers [18] and [16] are not only concerned
with the “ordinary” Dyck paths. Along with β (respectively γ), the paper [18]
(respectively [16]) presents an extension of that bijection, where the domain and
codomain are sets of bilateral Dyck paths.

8 A bijective proof of the formula |Pn+1,r+1| =
(
n
r

)2

We are now ready to define a bijection from An+1,r+1 to Zn,r. Recall from Section 5
that the set An+1,r+1 has two kinds of elements: those that can be written in Way 1,
and those that can be written in Way 2. Let t ∈ An+1,r+1. If t can be written in
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Way 1, we set h(t) = ψ(u). If t can be written in Way 2, we set

h(t) = ψ(u) ·
[
yψ(vi)x · xϕ(vi−1)y · · · xϕ(v1)y

]

·
[
yψ(wj)x · xϕ(wj−1)y · · · xϕ(w1)y

]
· · ·

[
yψ(zm)x · xϕ(zm−1)y · · · xϕ(z1)y

]
.

Here is an example.

Example 8.1. Figure 7 shows a path t ∈ A, together with its factorization. The
factorization being t = xuy · (xav1y) · (x3aw3yw2yw1y), the path h(t) has the form

h(t) = ψ(u) ·
[
yψ(v1)x

]
·
[
yψ(w3)x · xϕ(w2)y · xϕ(w1)y

]
.

The only way to make this expression concrete is to compute the paths ψ(u), ψ(v1),
ψ(w3), ϕ(w2) and ϕ(w1).

Let us begin with the path ψ(u). Since ψ(u) = τ(ϕ(u)), the first thing to do is
to compute ϕ(u). By definition, ϕ(u) is a combination of two paths, called c and
d. To obtain c, in each of the descending nests of u, we replace the first step by an
upward step. Then we multiply the resulting paths, and the product is c. Since the
descending nests of u are y2, y, y7, y and y4, the paths to be multiplied are xy, x,
xy6, x and xy3. So c = xy · x · xy6 · x · xy3 = xyx2y6x2y3. To obtain d, in each
of the ascending nests of u, we replace the last step by a downward step. Then we
multiply the resulting paths, and the product is d. Since the ascending nests of u are
x4, x4, x3, x2 and x2, the paths to be multiplied are x3y, x3y, x2y, xy and xy. Thus
d = x3yx3yx2yxyxy. With ci denoting the ith step of c and di denoting the ith step
of d, we have

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ci x y x x y y y y y y x x y y y

di x x x y x x x y x x y x y x y

By definition, ϕ(u) is the product c1d1c2d2 · · · c15d15. From the table above, we
see that

ϕ(u) = (xx)1(yx)2(xx)3(xy)4(yx)5(yx)6(yx)7

·(yy)8(yx)9(yx)10(xy)11(xx)12(yy)13(yx)14(yy)15
= x2yx4y2xyxyxy3xyx2yx2y3xy2.

(The indexed parentheses just help us to associate each step pair with the corre-
sponding column of the table.)

To obtain the path ψ(u) = τ(ϕ(u)), we need to swap the 2nd and 3rd steps of
ϕ(u), the 4th and 5th steps of ϕ(u),. . . , the 28th and 29th steps of ϕ(u). With
helpful parentheses adjusted, we have

ϕ(u) = x(xy)1→(xx)2→(xx)3→(yy)4→(xy)5→(xy)6→(xy)7→



S. FERETIĆ /AUSTRALAS. J. COMBIN. 91 (1) (2025), 41–66 62

·(yy)8→(xy)9→(xx)10→(yx)11→(xy)12→(yy)13→(xy)14→y,

whence we easily find that

ψ(u) = x(yx)1→(xx)2→(xx)3→(yy)4→(yx)5→(yx)6→(yx)7→

·(yy)8→(yx)9→(xx)10→(xy)11→(yx)12→(yy)13→(yx)14→y

= xyx5y3xyxyxy3x4y2xy3xy.

We proceed to the path ψ(v1). The descending nests of v1 are y, y and y3. So
this time we have c = x · x · xy2 = x3y2. The ascending nests of v1 are x, x and x3.
Thus d = y · y · x2y = y2x2y. By alternating the steps of c with those of d, we get
ϕ(v1) = (xy)(xy)(xx)(yx)(yy) = x(yx)(yx)(xy)(xy)y. Therefore ψ(v1) = τ(ϕ(v1)) =
x(xy)(xy)(yx)(yx)y = x2yxy2xyxy, whence ψ(v1) = y2xyx2yxyx.

The next path to find is ψ(w3). The descending nests of w3 are y, y2 and y3. So
we have c = x · xy · xy2 = x2yxy2. The ascending nests of w3 are x

2, x3 and x. Thus
d = xy · x2y · y = xyx2y2. By alternating the steps of c with those of d, we obtain
ϕ(w3) = (xx)(xy)(yx)(xx)(yy)(yy) = x(xx)(yy)(xx)(xy)(yy)y. Therefore ψ(w3) =
τ(ϕ(w3)) = x(xx)(yy)(xx)(yx)(yy)y = x3y2x2yxy3, whence ψ(w3) = y3x2y2xyx3.

The remaining two paths, ϕ(w2) and ϕ(w1), are both easy to find. Since w2 = ε,
we have ϕ(w2) = ε. Since w1 = x4y4, we find at once that c = xy3 and d = x3y.
Hence ϕ(w1) = (xx)(yx)(yx)(yy) = x2yxyxy2.

Putting the pieces together, we find that h(t) is the path shown in Figure 8.

Figure 8: The path h(t), where t is the path shown in Figure 7, top. The factor-
ization of h(t) is also shown.

Figure 8 is coloured in the same way as Figure 7, bottom: the upward even
steps of h(t) are green and the downward even steps of h(t) are red. Thanks to the
colourings, it is easy to see that the path t has 12 weakly ascending nests, while the
path h(t) has 11 upward even steps. With some more effort, it can also be seen that
t has 35 upward steps, while h(t) has a total of 68 steps (of which 34 are upward and
34 are downward). Thus, t is an element of A35,12 and h(t) is an element of Z34,11.



S. FERETIĆ /AUSTRALAS. J. COMBIN. 91 (1) (2025), 41–66 63

In Example 8.1, the mapping h has mapped an element of A35,12 to an element
of Z34,11. That was not a mere coincidence, but an instance of a general rule, stated
in the following theorem.

Theorem 8.1. For n ∈ {0, 1, 2, . . .} and r ∈ {0, 1, . . . , n}, the mapping h is a

bijection from An+1,r+1 to Zn,r.

In the proof of Theorem 8.1, one part is new, and the other part is an adaptation—
or upgrade—of the proof of Theorem 5.1. The new part of the proof amounts to
showing that h maps paths with r + 1 wans into paths with r upward even steps.
Here we shall write only the new part of the proof.

Proof of Theorem 8.1. Let t ∈ An+1,r+1. Suppose that t can be written in Way 1.
That is, t = xuy, where u ∈ D. If u 6= ε, then ue(h(t)) = ue(ψ(u)) = wan(u)− 1 =
wan(xuy) − 1 = wan(t) − 1. If u = ε, then again ue(h(t)) = ue(ψ(ε)) = ue(ε) =
0 = wan(xy) − 1 = wan(t) − 1. So in both cases, wan(t) = r + 1 implies that
ue(h(t)) = r.

Now suppose that t can be written in Way 2. First we note that

ue(h(t)) = ue(ψ(u)) + ue
(
yψ(vi)x · xϕ(vi−1)y · · · xϕ(v1)y

)

+ue
(
yψ(wj)x · xϕ(wj−1)y · · · xϕ(w1)y

)
+ . . .

+ue
(
yψ(zm)x · xϕ(zm−1)y · · · xϕ(z1)y

)
.

Much as before, we have ue(ψ(u)) = wan(xuy) − 1. Indeed, if u 6= ε, then
ue(ψ(u)) = wan(u) − 1 = wan(xuy) − 1. If u = ε, then again ue(ψ(u)) = ue(ε) =
0 = 1− 1 = wan(xy)− 1 = wan(xuy)− 1.

Suppose that vi 6= ε. The path ψ(vi) has ue(ψ(vi)) upward even steps. Hence it

has |ψ(vi)|
2

−ue(ψ(vi)) upward odd steps and |ψ(vi)|
2

−
[
|ψ(vi)|

2
− ue(ψ(vi))

]
= ue(ψ(vi))

downward odd steps. That is, ue(ψ(vi)) is both the number of upward even steps of
ψ(vi) and the number of downward odd steps of ψ(vi). The contribution of ψ(vi) to

ue
(
yψ(vi)x · xϕ(vi−1)y · · · xϕ(v1)y

)

is the number of upward odd steps of ψ(vi), which is equal to the number of downward
odd steps of ψ(vi), which is in its turn equal to the number of upward even steps of
ψ(vi). Therefore,

ue
(
yψ(vi)x · xϕ(vi−1)y · · ·xϕ(v1)y

)
= ue(ψ(vi)) + 1 + uo(ϕ(vi−1)) + · · ·+ uo(ϕ(v1))

= wan(vi)− 1 + 1 + wan(vi−1) + · · ·+ wan(v1)

= wan(vi) + wan(vi−1) + · · ·+ wan(v1)

= wan(xiaviyvi−1y · · · v1y).
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If vi = ε, then ψ(vi) = ε and ψ(vi) = ε. Hence,

ue
(
yψ(vi)x · xϕ(vi−1)y · · · xϕ(v1)y

)
= ue(yx · xϕ(vi−1)y · · · xϕ(v1)y)
= 1 + uo(ϕ(vi−1)) + . . .+ uo(ϕ(v1))

= 1 + wan(vi−1) + . . .+ wan(v1)

= wan(xiayvi−1y · · · v1y)
= wan(xiaviyvi−1y · · · v1y).

Thus, in either of the cases vi 6= ε and vi = ε, the conclusion is that

ue
(
yψ(vi)x · xϕ(vi−1)y · · · xϕ(v1)y

)
= wan(xiaviyvi−1y · · · v1y).

Similarly, we have

ue
(
yψ(wj)x · xϕ(wj−1)y · · · xϕ(w1)y

)
= wan(xjawjywj−1y · · ·w1y), . . . ,

ue
(
yψ(zm)x · xϕ(zm−1)y · · · xϕ(z1)y

)
= wan(xmazmyzm−1y · · · z1y).

The above findings add up to

ue(h(t)) = ue(ψ(u)) + ue(yψ(vi)x · xϕ(vi−1)y · · · xϕ(v1)y)
+ue

(
yψ(wj)x · xϕ(wj−1)y · · · xϕ(w1)y

)
+ . . .

+ue
(
yψ(zm)x · xϕ(zm−1)y · · · xϕ(z1)y

)

= wan(xuy)− 1 + wan(xiaviyvi−1y · · · v1y)
+wan(xjawjywj−1y · · ·w1y) + . . .+ wan(xmazmyzm−1y · · · z1y)

= wan
(
xuy · (xiaviyvi−1y · · · v1y)

·(xjawjywj−1y · · ·w1y) · · · (xmazmyzm−1y · · · z1y)
)
− 1

= wan(t)− 1 = r + 1− 1 = r.

Thus, the path h(t) has r upward even steps, as required.

Theorems 3.1 and 8.1 imply the following corollary.

Corollary 8.1. For n ∈ {0, 1, 2, . . .} and r ∈ {0, 1, . . . , n}, the composition h ◦ f is

a bijection from Pn+1,r+1 to Zn,r.
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et séries en variables partiellement commutatives, Technical report No. 93-18,
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des recherches, Report No. 1154-96, LaBRI, Université Bordeaux I, 1996.
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ération de polyominos convexes dirigés, J. Combin. Theory Ser. A 60 (2) (1992),
196–224.

[11] M.-P. Delest and G. Viennot, Algebraic languages and polyominoes enumera-
tion, Theoret. Comput. Sci. 34 (1-2) (1984), 169–206.
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