
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 91(1) (2025), Pages 32–40

Planar graphs with no incident triangles and
no 4- or 5-cycles are (7 : 2)-colorable

Martin Rolek∗ Paul Scemama†

Department of Mathematics

William & Mary, Williamsburg, VA 23185

U.S.A.

Abstract

Steinberg’s conjecture that every planar graph with no 4- or 5-cycles has
chromatic number at most 3 has been disproved, but it remains to show
the upper bound on the fractional chromatic number of such graphs. An
(s : t)-coloring of a graph G is a function φ which assigns to each vertex of
G a t-element subset of {1, 2, . . . , s} such that φ(u) ∩ φ(v) = ∅ whenever
uv ∈ E(G), and the fractional chromatic number of G is min{s/t : an
(s : t)-coloring of G exists}. It has recently been shown by Dvořák and
Hu that planar graphs with no 4- or 5-cycles have fractional chromatic
number at most 11/3. We include a slight relaxation and show that planar
graphs with no incident triangles and no 4- or 5-cycles have fractional
chromatic number at most 7/2. Specifically, we show that such graphs
are (7 : 2)-colorable.

1 Introduction

A famous conjecture of Steinberg from 1976 claims that every planar graph with
no cycles of length 4 or 5 is 3-colorable. The conjecture has attracted significant
attention in recent decades, and was finally disproved by Cohen-Addad, Hebdige,
Král’, Li, and Salgado [4] in 2017. While disproved, Steinberg’s conjecture is only
one aspect of the broader three color problem—a search for sufficient conditions for
a planar graph to be 3-colorable. Significant information about the progress on the
three color problem can be found in Section 7 of an informative survey by Borodin [1].
We will mention here some results of present interest.

Erdős (see [7]) suggested a relaxation as an approach to solving Steinberg’s conjec-
ture by asking for which values of k a planar graph with no cycles of lengths 4, 5, . . . , k
is 3-colorable. It has been shown by Borodin, Glebov, Raspaud, and Salavatipour [3]
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that planar graphs without cycles of lengths 4, 5, 6, 7 are 3-colorable, representing
the best current answer. Thus k = 6 is the only remaining open case of Erdős’ ques-
tion. As a separate relaxation of Steinberg’s conjecture, research has been done with
Bordeaux-style restrictions in place, that is prescribing a minimum distance between
triangles. Borodin and Glebov [2] proved that any planar graph with no 5-cycles and
minimum distance between triangles at least 2 is 3-colorable.

In the present paper, we will study Steinberg’s conjecture in the context of frac-
tional coloring. For integers s, t, an (s : t)-coloring of a graph G is a function
φ which assigns to each vertex of G a t-element subset of {1, 2, . . . , s} such that
φ(u) ∩ φ(v) = ∅ whenever uv ∈ E(G). A graph G is (s : t)-colorable if an (s : t)-
coloring of G exists. The fractional chromatic number of a graph G, denoted χf (G),
is defined as χf (G) = min{s/t : G is (s : t)-colorable}. Note that an (s : 1)-coloring
of a graph G is simply a proper coloring using s colors. Hence every planar graph G
satisfies χf (G) ≤ 4 by the Four Color Theorem. We remark that the counterexample
to Steinberg’s conjecture found by Cohen-Addad, et al. [4] is (6 : 2)-colorable, and
so has fractional chromatic number at most 3. Thus the following question is still of
interest.

Question 1.1 What is the minimum t such that χf (G) ≤ t for every planar graph
G with no cycles of length 4 or 5?

Clearly, 3 ≤ t ≤ 4, where the lower bound comes from considering the graph
K3 consisting of a single triangle. Recently, Dvořák and Hu [6] became the first
to show that t < 4. Specifically, they proved that planar graphs with no cycles
of length 4 or 5 are (11 : 3)-colorable, showing that t ≤ 11/3. As a relaxation of
Question 1.1, one can use the idea of Erdős to also exclude cycles of longer length.
Wu, Chen, and Hu [8] showed that planar graphs with no cycles of length 4 or 6 are
(7 : 2)-colorable. We will examine a separate relaxation of Question 1.1 by instead
including a Bordeaux-style restriction. Given an embedding of a planar graph, we
say two faces are incident if they have at least one common vertex.

Theorem 1.2 If G is a planar graph with no incident triangles, and no 4- or 5-
cycles, then G is (7 : 2)-colorable.

The study of Question 1.1 is also of interest in determining the size of a largest
independent set in such a graph G, denoted by α(G). For any graph G, it is known
that α(G) ≥ |V (G)|/χf (G). As a result, we obtain the following immediate corollary
of Theorem 1.2.

Corollary 1.3 If G is a planar graph with no incident triangles, and no 4- or 5-
cycles, then α(G) ≥ |V (G)|/3.5.

We conclude this section with some notation and terminology we will use through-
out the paper. Let G be a graph with a fixed planar embedding. A subgraph H of G
is called induced if for all u, v ∈ V (H) we have uv ∈ E(H) if and only if uv ∈ E(G).
We use F (G) to denote the set of faces of G (with respect to the fixed embedding).
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Two faces are adjacent if they have at least one common edge. For any f ∈ F (G), we
use d(f) to denote the length of f , where the length of a face is the number of edges
in its facial walk counting multiplicities. For any v ∈ V (G), we use d(v) to denote
the degree of v, and we say that v is a k-vertex (respectively, k+-vertex ) if d(v) = k
(respectively, d(v) ≥ k). We define k-face and k+-face analogously. NG(v) denotes
the set of neighbors of v in G. A vertex v is incident to a face f if v belongs to the
facial walk of f . For brevity, by a (d1, . . . , dk)-face v1, . . . , vk, we will mean a face
with facial walk v1, . . . , vk such that d(vi) = di for i ∈ {1, . . . , k}. A (d1, . . . , dk)-path
is defined analogously.

2 Reducible Configurations

In this section, we provide reducible configurations that we will need for the proof of
Theorem 1.2. We will say a graph G is minimal if G is a minimal counterexample
to Theorem 1.2. That is, G is a planar graph with no incident triangles and no 4- or
5-cycles that is not (7 : 2)-colorable, but any planar graph on fewer vertices with no
incident triangles and no 4- or 5-cycles is (7 : 2)-colorable.

Suppose that φ is a function which assigns to each vertex v ∈ V (G) a subset
of {1, 2, . . . , 7} such that |φ(v)| ≤ 2 and φ(v) ∩ φ(u) = ∅ for every u ∈ NG(v).
Informally, such a function φ can be thought of as a partial (7 : 2)-coloring of G.
Then for each v ∈ V (G) with |φ(v)| < 2, we define Lφ(v) (or simply L(v) if the
coloring φ is clear) to be the set

Lφ(v) = {1, 2, . . . , 7} \
⋃

u∈NG(v)

φ(u) ∪ φ(v).

That is, L(v) is the set of available colors at v.

By assigning a color c to φ(v), we mean extending φ to a coloring φ∗ of G by
setting φ∗(v) = φ(v) ∪ {c} and φ∗(u) = φ(u) for all u 6= v. If |φ(v)| < 2, then
by greedily coloring v, we mean extending φ to a coloring φ∗ of G by arbitrarily
selecting a set C ⊆ L(v) with |C| = 2 − |φ(v)| and setting φ∗(v) = φ(v) ∪ C and
φ∗(u) = φ(u) for all u 6= v. In either situation, we will assume any such coloring φ∗

is then renamed to φ, replacing the original coloring. Hence we omit the ∗ notation
in our proofs. For a sequence of vertices v1, . . . , vk, if

(2− |φ(vi)|) +
∑

{j<i : vj∈NG(vi)}

(2− |φ(vj)|) ≤ |L(vi)|

for each i ∈ {1, . . . , k}, that is the total number of colors needed at vi and its
neighbors which appear before it in the sequence is at most |L(vi)|, then we may
greedily color v1, . . . , vk in order. We will frequently use that observation in the
following proofs.

Lemma 2.1 If G is minimal, then δ(G) ≥ 3.
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Proof. Suppose for a contradiction that there exists v ∈ V (G) such that d(v) ≤ 2.
Since G is minimal, there exists a (7 : 2)-coloring φ of G − {v}. Since v has at
most two neighbors, |L(v)| ≥ 3, and so we can greedily color v to extend φ to a
(7 : 2)-coloring of G, a contradiction. �

Lemma 2.2 If G is minimal, then G is 2-connected.

Proof. Clearly, we may assume that G is connected. So suppose that v is a cut-
vertex of G. Let G1 and G2 be subgraphs of G such that G1 ∪ G2 = G, G1 ∩ G2 =
G[{v}], and V (Gi) 6= {v} for i ∈ {1, 2}. Since G is minimal, there exists a (7 : 2)-
coloring φi of Gi for i = {1, 2}. By permuting the colors of φ2, say, we may assume
that φ1(v) = φ2(v). But then φ1 and φ2 may be combined to give a (7 : 2)-coloring
of G, a contradiction. �

As an immediate consequence of Lemma 2.2, we get the following.

Lemma 2.3 If G is minimal, then every face in G is bounded by a cycle.

We remark that the reducible configurations of the following Lemmas 2.4 and 2.5
were also shown in [8]. We provide proofs here for the sake of completeness.

Lemma 2.4 If G is minimal, then G has no induced (3, 3, 3)-path.

Proof. Suppose v1v2v3 is an induced (3, 3, 3)-path in G such that d(v1) = d(v2) =
d(v3) = 3. Since G is minimal, there exists a (7 : 2)-coloring φ of G−{v1, v2, v3}. By
choosing an arbitrary subset if necessary, we may assume |L(vi)| = 3 for i ∈ {1, 3},
and |L(v2)| = 5. Since |L(v1)| + |L(v3)| > |L(v2)| either L(v1) ∩ L(v3) 6= ∅ or
(L(v1) ∪ L(v3)) \ L(v2) 6= ∅. In the former case, we assign the same color from
L(v1) ∩ L(v3) to both φ(v1) and φ(v3). In the latter case, say L(v1) \ L(v2) 6= ∅, and
we assign a color from L(v1) \ L(v2) to φ(v1) and an arbitrary color from L(v3) to
φ(v3). In either case, we now have |L(v1)| = |L(v3)| = 2 and |L(v2)| ≥ 4. We may
then greedily color v1, v3, v2 in order to obtain a (7 : 2)-coloring of G, a contradiction.

�

Lemma 2.5 If G is minimal, then G has no induced (3, 3, 4, 3)-path.

Proof. Suppose v1v2v3v4 is an induced (3, 3, 4, 3)-path in G such that d(v1) =
d(v2) = d(v4) = 3 and d(v3) = 4. Since G is minimal, there exists a (7 : 2)-coloring
φ′ of the graph G − {v1, v2}. Consider the restriction φ of φ′ to G − {v1, . . . , v4}.
Clearly, φ is a (7 : 2)-coloring of G−{v1, . . . , v4}. Without loss of generality, we may
assume |Lφ(vi)| = 3 for i ∈ {1, 3, 4}, and |Lφ(v2)| = 5. Note that by the existence of
φ′, we may further assume that Lφ(v3) 6= Lφ(v4). Hence we may assign a color from
Lφ(v4) \ Lφ(v3) to φ(v4) and a color from Lφ(v3) \ Lφ(v4) to φ(v3) arbitrarily. Now
|Lφ(v1)| = 3, |Lφ(v2)| ≥ 4, and |Lφ(vi)| = 2 for i ∈ {3, 4}. Next, arbitrarily assign
a color from Lφ(v2) \ Lφ(v3) to φ(v2). Then greedily color v1, v2, v3, v4 in order to
extend φ to a (7 : 2)-coloring of G, a contradiction. �
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Lemma 2.6 If G is minimal, then G has no induced (3, 4, 3, 4, 3)-path.

Proof. Suppose v1 . . . v5 is an induced (3, 4, 3, 4, 3)-path in G such that d(v1) =
d(v3) = d(v5) = 3 and d(v2) = d(v4) = 4. Since G is minimal, there exists a (7 : 2)-
coloring φ′ of the graph G−{v3}. Consider the restriction φ of φ′ to G−{v1, . . . , v5}.
Without loss of generality, we may assume |Lφ(vi)| = 3 for i ∈ {1, 2, 4, 5}, and
|Lφ(v3)| = 5. By the existence of φ′, we may further assume that Lφ(v1) 6= Lφ(v2) and
Lφ(v4) 6= Lφ(v5). We now assign a color from Lφ(v1)\Lφ(v2) to φ(v1), and a color from
Lφ(v5)\Lφ(v4) to φ(v5). This leaves |Lφ(v1)| = |Lφ(v5)| = 2, |Lφ(v2)| = |Lφ(v4)| = 3,
and |Lφ(v3)| = 5. Since |Lφ(v2)| + |Lφ(v4)| > |Lφ(v3)| either Lφ(v2) ∩ Lφ(v4) 6= ∅ or
(Lφ(v2) ∪ Lφ(v4)) \ Lφ(v3) 6= ∅. In the former case, we assign the same color from
Lφ(v2)∩Lφ(v4) to both φ(v2) and φ(v4). In the latter case, say Lφ(v2)\Lφ(v3) 6= ∅, and
we assign a color from Lφ(v2) \Lφ(v3) to φ(v2) and an arbitrary color from Lφ(v4) to
φ(v4). In either case, we now have |Lφ(vi)| ≥ 1 for i ∈ {1, 5}, |Lφ(v2)| = |Lφ(v4)| = 2,
and |Lφ(v3)| ≥ 4. We can then greedily color v1, v2, v5, v4, v3 in order to extend φ to
a (7 : 2)-coloring of G, a contradiction. �

Lemma 2.7 If G is minimal, then any 5-vertex of G has at most four neighbors of

degree 3.

Proof. Suppose v is a 5-vertex with neighbors v1, . . . , v5, such that d(vi) = 3 for
i ∈ {1, . . . , 5}. Let φ be a (7 : 2)-coloring of G − {v, v1, . . . , v5}. We consider two
cases.

First, suppose that v is not incident to a triangle. Without loss of generality,
we may assume |L(vi)| = 3 for i ∈ {1, . . . , 5}, and |L(v)| = 7. By the pigeonhole
principle, there must be a common color on three of the lists L(vi), say L(v1) ∩
L(v2) ∩ L(v3) 6= ∅. Assign this common color to φ(vi) for i ∈ {1, 2, 3}. Then
|L(v)| = 6, |L(vi)| = 2 for i ∈ {1, 2, 3}, and |L(v4)| = |L(v5)| = 3. Next assign a
color from L(v)\(L(v3)∪L(v4)) to φ(v), leaving |L(v)| = 5, |L(vi)| ≥ 1 for i ∈ {1, 2},
|L(vi)| ≥ 2 for i ∈ {3, 5}, and |L(v4)| = 3. We then greedily color v1, v2, v5, v, v3, v4
in order to obtain a (7 : 2)-coloring of G, a contradiction.

Now, suppose v is incident with a triangle, say v4v5 ∈ E(G). Without loss of
generality, |L(vi)| = 3 for i ∈ {1, 2, 3}, |L(v4)| = |L(v5)| = 5, and |L(v)| = 7. By
the pigeonhole principle, some two of L(v1), L(v2), L(v3) share a common color, say
L(v1) ∩ L(v2) 6= ∅. Assign this common color to φ(v1) and φ(v2). Now, |L(v)| = 6,
while |L(v4)| = 5, so we assign a color from L(v) \ L(v4) to φ(v). This leaves
|L(vi)| ≥ 1 for i ∈ {1, 2}, |L(v3)| ≥ 2, |L(v4)| = 5, |L(v5)| ≥ 4, and |L(v)| = 5.
We then greedily color v1, v2, v3, v, v5, v4 in order to obtain a (7 : 2)-coloring of G, a
contradiction. �

Lemma 2.8 Suppose φ is a (7 : 2)-coloring of G − {v1, v2, v3}, where v1v2v3 is a

3-face, and suppose |L(vi)| = 5 for i ∈ {1, 2, 3}. Then φ can be extended to a

(7 : 2)-coloring of G if and only if L(vi) 6= L(vj) for some i, j.

Proof. Clearly, if φ can be extended to a (7 : 2)-coloring of G then |L(v1)∪L(v2)∪
L(v3)| ≥ 6, so necessarily L(vi) 6= L(vj) for some i, j. So to prove the reverse,
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(a) A bad face (b) Two bad faces adjacent
along a (5, 3)-edge

Figure 2.1

suppose L(v1) 6= L(v2), say. Assign a color from L(v1) \ L(v2) to φ(v1) and a color
from L(v2) \ L(v1) to φ(v2). Then |L(vi)| = 4 for i ∈ {1, 2}, and |L(v3)| ≥ 3, and
without loss of generality we may assume |L(v3)| = 3. Next assign a color from
L(v1) \ L(v3) to φ(v1). Now |L(vi)| ≥ 3 for i ∈ {2, 3}, so we can greedily color v2, v3
to obtain a (7 : 2)-coloring of G. �

If a (3, 5+, 3, 3, 5+, 3)-face f is adjacent to a 3-face along each of its (3, 3)-edges,
then we say f is a bad face, see Figure 2.1(a).

Lemma 2.9 If G is minimal, then no two bad faces of G can be adjacent along a

(5, 3)-edge.

Proof. Suppose f1 = v1v2u3u4u5u6 and f2 = v1v2w3w4w5w6 are adjacent bad faces,
where d(v1) = d(ui) = d(wi) = 3 for i ∈ {3, 4, 6}, d(v2) = 5, d(u5) ≥ 5, d(w5) ≥ 5,
and u6w6 ∈ E(G), and suppose x1 is the common neighbor of u3, u4, and x2 is the
common neighbor of w3, w4, see Figure 2.1(b). It is straightforward to verify that all
labeled vertices must be distinct because G has no 4- or 5-cycles.

Since G is minimal, there exists a (7 : 2)-coloring φ′ of G − {v1, u6, w6}. Then
|Lφ′(v1)| = |Lφ′(u6)| = |Lφ′(w6)| = 5. Since G is not (7 : 2)-colorable, it follows from
Lemma 2.8 that Lφ′(u6) = Lφ′(w6). Since each of u6, w6 has only one neighbor in G
colored by φ′, it must be the case that φ′(u5) = φ′(w5), say φ′(u5) = φ′(w5) = {6, 7}.
Now, consider the restriction φ of φ′ to G − {v1, v2, u3, u4, u6, w3, w4, w6}. Then
|Lφ(v1)| = 7, |Lφ(v2)| ≥ 3, |Lφ(u3)| = |Lφ(w3)| = 5, |Lφ(u4)| ≥ 3, |Lφ(w4)| ≥ 3, and
Lφ(u6) = Lφ(w6) = {1, . . . , 5}. We claim that we may extend φ to a (7 : 2)-coloring
of G − {v1, u6, w6} such that φ(v2) 6= {6, 7}. If so, then we will have |Lφ(v1)| =
|Lφ(u6)| = |Lφ(w6)| = 5 with Lφ(v1) 6= Lφ(u6), so we will be able to extend φ to a
(7 : 2)-coloring of G by Lemma 2.8, a contradiction which completes the proof. Since
|Lφ(v2)| ≥ 3, we may assign a color from Lφ(v2) \ {6, 7} to φ(v2). Without loss of
generality, we may assume |Lφ(u3)| = |Lφ(w3)| = 4 and |Lφ(v2)| = 2. To complete
our claim, we consider two cases.

First, suppose that |Lφ(u4)| > 3, say. Without loss of generality, |Lφ(u4)| = 4
and |Lφ(w4)| = 3. Assign a color from Lφ(w3) \ Lφ(w4) to φ(w3). Then we may
greedily color v2, w3, w4, u3, u4 in order to obtain a (7 : 2)-coloring of G−{v1, u6, w6}
with φ(v2) 6= {6, 7}, as claimed.
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Therefore |Lφ(u4)| = 3, and by symmetry |Lφ(w4)| = 3. Since u4 has only
two neighbors u5 and x1 colored by φ, we must have φ(u5) ∩ φ(x1) = ∅, that is
φ(x1) ∩ {6, 7} = ∅. Since φ(v2) ∩ {6, 7} = ∅ as well, it follows that {6, 7} ⊂ Lφ(u3).
Similarly, {6, 7} ⊂ Lφ(w3). We assign the color 7, say, to φ(u3) and φ(w3). This leaves
|Lφ(u3)| = |Lφ(w3)| = |Lφ(u4)| = |Lφ(w4)| = 3 and |Lφ(v2)| ≥ 1. We then greedily
color v2, u3, u4, w3, w4 in order to again obtain a (7 : 2)-coloring of G − {v1, u6, w6}
with φ(v2) 6= {6, 7}, as claimed. �

3 Proof of Theorem 1.2

We will now proceed to prove Theorem 1.2 using the discharging method. For more
on this proof technique, the reader is referred to an informative survey by Cranston
and West [5].

Let G be minimal. To each vertex or face x ∈ V (G) ∪ F (G) we assign an initial
charge ch(x) = d(x)− 4. By Euler’s formula, it follows that

∑

v∈V (G)

(d(v)− 4) +
∑

f∈F (G)

(d(f)− 4) = −8.

We will redistribute charge according to the following rules.

(R1) Every 3-face takes 1
3
charge from each of its adjacent 6+-faces.

(R2) Suppose v is a 3-vertex. If v is incident to a 3-face, then v takes 1
2
from each of

its incident 6+-faces. Otherwise, v takes 1
3
from each of its incident 6+-faces.

(R3) Suppose v is a 5+-vertex whose two neighbors u1 and u2 on the facial walk of
a face f are both 3-vertices. If either edge vui belongs to a 3-face adjacent to
f , then v gives 1

2
to f . If f is a bad face, then v gives 1

3
to f . Otherwise, v

gives 1
6
to f .

We will denote the final charge of each vertex or face x by ch∗(x). The following
lemmas will demonstrate that ch∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G).

Lemma 3.1 If v ∈ V (G), then ch∗(v) ≥ 0.

Proof. By Lemma 2.1, δ(G) ≥ 3. Note that since G has no 4- or 5-cycle, by
Lemma 2.3, v is incident with no 4- or 5-face. Furthermore, since G has no triangles
sharing a vertex, any vertex v is incident to at most one 3-face, and all its other
incident faces are 6+-faces. If v is a 3-vertex, then by (R2), ch∗(v) = (3−4)+2 · 1

2
= 0

if v is incident to a 3-face, and ch∗(v) = (3−4)+3 · 1
3
= 0 otherwise. If v is a 4-vertex,

then v is not involved in the discharging procedure, so ch∗(v) = ch(v) = 0.

Suppose v is a 5-vertex. Note that v has at most four degree 3 neighbors by
Lemma 2.7, and so gives charge to at most three faces by (R3). If v is not incident
to a 3-face, then by (R3), ch∗(v) ≥ (5− 4)− 3 · 1

3
= 0. So suppose v is incident to a

3-face f . Observe that the two faces f1, f2 incident to v and adjacent to f along an
edge which includes v are not adjacent to f along a (3, 3)-edge. Hence by definition
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of a bad face, neither f1 nor f2 can be a bad face. Then by Lemma 2.9, v can be
incident to at most one bad face. Therefore by (R3), ch∗(v) ≥ (5−4)− 1

2
− 1

3
− 1

6
= 0.

Lastly, suppose v is a 6+-vertex. If v is not incident to a 3-face, then by (R3),
ch∗(v) ≥ (d(v)− 4)− d(v) · 1

3
= 2

3
d(v)− 4 ≥ 2

3
· 6− 4 = 0. If v is incident to a 3-face,

then ch∗(v) ≥ (d(v)− 4)− 2 · 1
2
− (d(v)− 3) · 1

3
= 2

3
d(v)− 4 ≥ 0. �

Lemma 3.2 If f ∈ F (G), then ch∗(f) ≥ 0.

Proof. If f is a 3-face, then every face adjacent to f is a 6+-face, so by (R1),
ch∗(f) ≥ (3 − 4) + 3 · 1

3
= 0. Note that G has no 4- or 5-faces since any such face

must be bounded by a cycle by Lemma 2.3.

Since no two triangles of G share a vertex, any 6+-face f is adjacent to at most
⌊

1
2
d(f)

⌋

3-faces. Furthermore, since G has no induced (3, 3, 3)-path by Lemma 2.4
and every face is bounded by a cycle by Lemma 2.3, it follows that f has at most
⌊

2
3
d(f)

⌋

vertices of degree 3. If f is a 7-face, then f is adjacent to at most three
3-faces and four 3-vertices, so by (R1) and (R2), ch∗(f) ≥ (7−4)−3· 1

3
−4· 1

2
= 0. If f

is an 8+-face, then by (R1) and (R2), ch∗(f) ≥ (d(f)−4)−
⌊

1
2
d(f)

⌋

· 1
3
−
⌊

2
3
d(f)

⌋

· 1
2
≥

1
2
d(f)− 4 ≥ 0.

Hence, we may assume that f = v1 . . . v6 is a 6-face. Note that because G has no
4- or 5-cycles, the cycle v1 . . . v6 has no chords, so any subpath of the facial walk of
f is an induced path. Let t denote the number of 3-vertices on f . Then t ≤ 4. If
t ≤ 2, then since f is adjacent to at most three 3-faces, by (R1) and (R2) we have
ch∗(f) ≥ (6− 4)− 3 · 1

3
− t · 1

2
≥ 0.

Suppose t = 3. By Lemma 2.4, at most one pair of 3-vertices of f can be adjacent
on the facial walk of f . Suppose first that some pair of 3-vertices is adjacent, say v1,
v2, and v4 are 3-vertices. By Lemma 2.5, v3 must be a 5+-vertex. If f is adjacent to
at most two 3-faces, then by (R1)–(R3), ch∗(f) ≥ (6−4)−2 · 1

3
−3 · 1

2
+ 1

6
= 0. Hence,

suppose f is adjacent to three 3-faces. Since no two 3-faces share a vertex, v3 must
be incident to a 3-face. Thus by (R1)–(R3), ch∗(f) ≥ (6− 4)− 3 · 1

3
− 3 · 1

2
+ 1

2
= 0.

Thus we may assume no two 3-vertices of f are adjacent, say v1, v3, and v5
are 3-vertices. By Lemma 2.6, at least two of v2, v4, v6 must be 5+-vertices, say
v2 and v4 are 5+-vertices. If f is adjacent to at most two 3-faces, then at most
two of its 3-vertices are incident to 3-faces, and so by (R1)–(R3) we have ch∗(f) ≥
(6−4)−2 · 1

3
−
(

2 · 1
2
+ 1

3

)

+2 · 1
6
> 0. So suppose f is adjacent to three 3-faces. Then

every vertex of f is incident to a 3-face, and so ch∗(f) ≥ (6−4)−3 · 1
3
−3 · 1

2
+2 · 1

2
> 0.

Lastly, suppose t = 4. By Lemmas 2.4 and 2.5, f must be a (3, 5+, 3, 3, 5+, 3)-
face. If f is adjacent to at most one 3-face, then at most two 3-vertices of f are
incident to a 3-face, so ch∗(f) ≥ (6 − 4) − 1

3
−

(

2 · 1
2
+ 2 · 1

3

)

+ 2 · 1
6
> 0. If f

is adjacent to two 3-faces, first suppose at least one 5+-vertex is incident to a 3-
face adjacent to f . Then at most three 3-vertices of f are incident with a 3-face,
and so ch∗(f) ≥ (6 − 4) − 2 · 1

3
−

(

3 · 1
2
+ 1

3

)

+
(

1
2
+ 1

6

)

> 0. Thus neither 5+-
vertex of f is incident to a 3-face adjacent to f , so f is a bad face. In this case,
ch∗(f) ≥ (6− 4)− 2 · 1

3
− 4 · 1

2
+ 2 · 1

3
= 0. Finally, if f is adjacent to three 3-faces,

then ch∗(f) ≥ (6− 4)− 3 · 1
3
− 4 · 1

2
+ 2 · 1

2
= 0. �
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Since no charge is created or destroyed by (R1)–(R3), from Lemmas 3.1 and 3.2,
it follows that

−8 =
∑

v∈V (G)

ch(v) +
∑

f∈F (G)

ch(f) =
∑

v∈V (G)

ch∗(v) +
∑

f∈F (G)

ch∗(f) ≥ 0.

This contradiction completes the proof of Theorem 1.2.
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