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Abstract

Given any colouring of the edges of a graph, we say that two vertices are
properly connected if there exists a path between them which is properly
coloured. The least number of colours in a colouring for which each pair
of vertices is properly connected is called the proper connection number.
Borozan et al. proved that each 2-edge-connected finite graph has proper
connection number at most 3. We extend this result and prove that any
finite or infinite 2-edge connected graph has a colouring from any set of
lists of size 3 such that each pair of vertices is properly connected.

1 Introduction

Proper edge colourings is one of the most studied topics of graph theory. A funda-
mental theorem of Vizing states that every finite graph G has a proper colouring
using at most ∆(G) + 1 colours. Weakenings of proper colourings which may re-
quire fewer colours are also intensively studied. One such notion was introduced by
Borozan, Fujita, Gerek, Magnant, Manoussakis, Montero and Tuza [2], where we
require that any pair of vertices in a component of a given graph G are connected by
a properly coloured path. We say that such vertices are properly connected. We call
G properly connected if any two vertices of G are properly connected. The minimal
number of colours in such a colouring is called the proper connection number of G,
and it is denoted by pc(G).

Clearly, pc(G) ≤ χ′(G), and for some classes of graphs, the proper connection
number and the chromatic index coincide. For example, Borozan et al. argued that
for any finite tree T , we have pc(T ) = ∆(T ) because any colouring which makes
every pair of vertices properly connected must be a proper colouring, and hence
require ∆(T ) colours by Kőnig’s Theorem. However, the same authors proved that
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the bound obtained from Vizing’s Theorem may be greatly reduced if we assume
that the graph is 2-edge-connected.

Let x, y be two vertices of an edge-coloured graph G, and let P be a path from x

to y. By start(P ) we denote the colour on the first edge of P (i.e. the one incident
to x), and by end(P ), the colour on the last edge of P (i.e. the one incident to y).

Theorem 1 ([2]). Let G be a finite 2-edge-connected graph. Then there exists a

3-edge colouring of G that makes it properly connected with the following strong

property. For any pair of distinct vertices v, w there exist two paths P1, P2 between

them, such that start(P1) 6= start(P2) and end(P1) 6= end(P2).

For more results on proper connection, see [9, 4, 3, 8, 10, 5, 6]. None of these
results, however, apply to the list variant. This may be a particularly interesting
version of this problem, due to the famous List Colouring Conjecture by Bollobás and
Harris [1] which states that any k-edge-colourable graph admits a proper colouring
from any set of lists of size k. In this paper, we introduce the list proper connection

number of a graph G, which is the minimum number k such that there exists an
edge colouring from any set of lists of size k in which any two vertices are properly
connected. We denote this parameter by lpc(G). By analogy for the proper edge
colourings, we propose the following conjecture.

Conjecture 2. For any connected graph G, lpc(G) = pc(G).

Note that by the result of Galvin [7] confirming the List Colouring Conjecture
for all bipartite graphs, the result of Borozan et al. about trees also holds in the case
of list colourings. Therefore, Conjecture 2 holds for trees. We further support this
conjecture by extending the claim of Theorem 1 to list colourings. Since the authors
of [2] constructed a family of finite graphs such that pc(G) = 3, then our result is
also tight, both for finite graphs and for infinite graphs of any infinite cardinality
(where we can append a graph from that family as an induced subgraph connected
to a given infinite graph by a single edge).

Before we proceed to the main result, we highlight one more novelty that we are
introducing to this problem. Until now, the proper connection was studied only for
finite graphs, whereas our result holds for both finite and infinite graphs. Note that
both reasonings about trees stated above are true as well for infinite graphs.

In the proof of the main theorem, we use the ear decomposition of a graph. For
any graph G, an ear decomposition of G is an edge-decomposition of G into a family
of paths (open or closed) P0, . . . , Pα, . . . (for α < β) for some ordinal number β such
that P0 is a closed path (i.e. a cycle) and the intersection of any path Pi, i > 0 and⋃

j<i
Pj is precisely the two end-vertices of Pi. We call such paths ears. A well-known

result of Robbins [11] states that a finite graph is 2-edge-connected graph if and only
if it has an ear decomposition. We also generalize this result to infinite graphs.

Theorem 3. An infinite graph is 2-edge-connected if and only if it admits an ear

decomposition.
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2 Main result

We start with proving Theorem 3.

Proof. Let G be an 2-edge-connected infinite graph of order κ. Fix an ordering on
V (G), say {vi : i < κ}. Note that this ordering induces a lexicographic ordering of
the edge set. Let P0 be a cycle containing v0. We iteratively construct the remaining
ears (Pi :< κ), which shall form the ear decomposition of G.

Assume that we already defined the paths (Pi : i < α) for some 0 < α < κ. If
there exists an edge that connects two vertices of (Pi : i < α) but it is not covered by
any of these paths, then we consider the least (by the induced edge ordering) such
edge e and define the path Pα as consisting of this single edge. Otherwise, if no such
edge exists, then we consider the least vertex vi which does not belong to (Pi : i < α)
and has a neighbour w in (Pi : i < α). By 2-edge-connectivity, there exists a shortest
path P from vi to (Pi : i < α) in G− viw. We append the edge viw to P and define
the result as Pα. It is easy to see that Pα is a valid ear.

Note that (similarly for finite graphs) if a graph is 2-edge-connected, we can
further demand that the ear decomposition is open, which means that each path in
an ear decomposition is open except the first one.

Now we proceed to prove the main theorem of this paper.

Theorem 4. Let G be a 2-edge-connected graph. Then there exists an edge colouring

of G from any set of lists for edges of size 3 that makes it proper connected with the

following strong property. For any pair of distinct vertices v, w there exist two paths

P1, P2 between them, such that start(P1) 6= start(P2) and end(P1) 6= end(P2).

Proof. Denote by L = {L(e) : e ∈ E(G)} the set of lists for the edges of G, each
of size 3. We consider a minimal 2-edge-connected spanning subgraph H of G. The
proper list connectivity is monotone with respect to adding edges, so we can assume
that G = H. Let (Pi : i < β) be an ear decomposition of G for some β ≤ |G|. The
proof is by induction on the number of ears, i.e. the induction hypothesis is that the
claim holds for the subgraph induced by (Pi : i ≤ α), where α < β.

If α = 0, then we properly colour the cycle P0 from its lists of size 3. Let
α > 0 and let Gα be a subgraph induced by the edges of (Pi : i ≤ α). Moreover,
let G′

α = Gα − Pα. Notice that Pα must contain an internal vertex because G is
assumed to be minimal. Denote Pα = uu1u2 . . . upv, where u, v ∈ G′

α. By induction,
G′

α admits a colouring from the set of lists L. We shall extend this colouring by
choosing colours for the edges of Pα.

By the assumption, there exist two paths P1, P2 between the vertices u, v such
that start(P1) 6= start(P2) and end(P1) 6= end(P2). The colouring of Pα depends on
the configuration of colours on the pendant edges of these paths, and also on the
length of Pα. Let L′(uu1) = L(uu1) \ {start(P1), start(P2)} and L′(upv) = L(upv) \
{end(P1), end(P2)}.
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Case 1. The path Pα contains at least two internal vertices, i.e. p ≥ 2.

We choose a colour other than start(P1) and start(P2) for the edge uu1 and a
colour other than end(P1) and end(P2) for the edge upv. Then we choose the colours
for the remaining edges of Pα so that it is properly coloured.

Case 2. The path Pα contains only one internal vertex u1, and there are at least
two different colours in L′(uu1)∪L′(u1v). We choose a colour for the edge uu1 from
the modified list L′(uu1) and another, different colour from L′(u1v) for the edge u1v.

Case 3. The path Pα contains only one internal vertex u1, and there is only one
colour, say red, in L′(uu1)∪L′(u1v). We cannot choose this colour twice if we would
like to have two paths from u1 starting with different colours. Therefore, we choose
red for the edge uu1 and end(P2) for u1v (this colour must be in the list for u1v).

We show that in all these cases the resulting colouring of Gα makes it proper
connected with the strong property. Notice that for any two vertices of G′

α, the
claim follows from the induction. Moreover, since Pα ∪ P1 is a properly coloured
cycle, any pair of distinct vertices on this cycle also has the desired paths with the
strong property. Hence, we only need to check the pair ui, y, where y ∈ G′

α − P1.

By induction, in G′
α there is a pair of paths Pu1

and Pu2
from u to y with the

strong property, and similarly, a pair of paths Pv1 and Pv2 from v to y, also with the
strong property. One of Pu1

, Pu2
(say, Pu1

) does not start with the colour c(uu1), and
we append the path uiPαu and obtain a proper path Q1 = uiPαuPu1

y. Similarly,
one of Pv1 , Pv2 (say, Pv1) does not start with the colour c(upv), and we append the
edge uiPαv and obtain a proper path Q2 = uiPαvPv1y. Then the starting colours
of Q1 and Q2 are different, and if the ending colours are different, then we have the
required pair of paths. Note that if we can choose Pu2

or Pv2 as a proper path, then
we can replace one of these paths and obtain a pair with different terminal colours.

Now consider the case where end(Pu1
) = end(Pv1). By the last remark in the

previous paragraph, we can also assume that start(Pu2
) is c(uu1) and start(Pv2) =

c(upv). The next candidate for the pair of paths satisfying the strong property is
R1 = uiPαuP1vPv2y and R2 = uiPαvPv1y. If R1 is indeed a path, then it is a
proper path, since end(P1) 6= c(upv) = start(Pv2), and R1 and R2 do have the strong
property. If R1 is not a path, then pick the vertex z closest to y, which appears more
than once on R1. Then, R′

1 = uiPαuP1zPv2y is a path, and if it is proper, then we
can pair it with R2 and obtain the claim.

Finally, consider the case where R′
1 is not proper, i.e. that end(uP1z) =

start(zPv2y). Our last candidate is the pair S1 = uiPαvP1zPv2y and S2 = uiPαuPu1
y.

We already know by the choice of Pu1
that S2 is a proper path. Then, S1 is also a

proper path, since P1 is proper, and we approach z from the other side which has a
different colour. To argue that S1 and S2 have the strong property, it is enough to
recall that end(Pu1

) = end(Pv1) 6= end(Pv2).
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