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Abstract

We consider the rainbow Schur number RSm(n), defined to be the min-
imum number of colors such that every coloring of {1, 2, . . . , n}, using
all RSm(n) colors, contains a rainbow solution to the equation x1 + x2 +
· · ·+ xm−1 = xm. Recently, the exact values of RS3(n) and RS4(n) were
determined for all n. In this paper, we expand upon this work by provid-
ing a formula for RSm(n) that holds for all m ≥ 4 and all n. A weakened
version of the rainbow Schur number is also considered, for which one
seeks solutions to the above-mentioned linear equation, where, for a fixed
t ≤ m, at least t colors are used.

1 Introduction

Many classical problems in Ramsey theory involve determining the existence, or
non-existence, of certain monochromatic structures under finite colorings of a set.
The subject known as rainbow Ramsey theory deals with what might be considered
the opposite notion; namely, instead of looking for a structure such that all of its
members have the same color, we look for a structure where no two elements have
the same color.

An r-coloring of a set S is a map from S to {1, 2, . . . , r}. One of the earliest results
in Ramsey theory is due to Schur [16], which states that for any positive integer r,
there exists a least positive integer S(r) such that every r-coloring of {1, 2, . . . , S(r)}
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contains a monochromatic solution to the equation x1+x2 = x3. More generally, for
each m ≥ 3, one can consider the Schur-type numbers for the equation

Em : x1 + x2 + · · ·+ xm−1 = xm;

the existence of these numbers follows easily from the work of Rado [15]. In this
paper, we consider solutions to Em from the perspective of rainbow Ramsey theory.

If χ is an r-coloring of a set S that uses all r colors (i.e, it is surjective), we
say that χ is an exact r-coloring. For m ≥ 3 and n ≥ m(m−1)

2
, define the rainbow

Schur number RSm(n) to be the minimum number of colors such that every exact
RSm(n)-coloring of [1, n] contains a rainbow solution to Em. The assumption that
n ≥ m(m−1)

2
guarantees that Em is solvable using distinct elements from [1, n]. Since

coloring [1, n] using n colors will always produce a rainbow solution to Em, we know
that RSm(n) ≤ n. Note that rather than fix the number of colors and seek an optimal
value of n, as in the definition of Schur numbers, rainbow Schur numbers fall under
the subject of anti-Ramsey theory (introduced by Erdős, Simonovits, and Sós [6]) by
fixing n and seeking an optimal number of colors.

In [3], it was proved that

RS3(n) = ⌊log2(n)⌋+ 2, for all n ≥ 3.

This result was proved independently by Fallon et al. [7], where it was also shown
that

RS4(n) =

⌈
n+ 6

2

⌉

, for all n ≥ 6. (1)

In addition, [7] provides a general lower bound for Rm(n) by exhibiting a particular
coloring of [1, n] that avoids rainbow solutions to Em. In Section 2, we we determine
the exact value of RSm(n) for all m ≥ 4 and n ≥ m(m−1)

2
, which has Equation (1)

as a special case. In Section 3, we provide a formula for a generalization of rainbow
Schur numbers, which we call weakened rainbow Schur numbers, where, for a given
t ≤ m, we seek solutions to Em that use at least t colors.

2 The Value of RSm(n)

In this section, we give the exact value of RSm(n) for all m ≥ 4 and n ≥ m(m−1)
2

.
The next theorem shows that this value serves as a lower bound for RSm(n). In [7],
the authors give a proof of this lower bound, but for the sake of completeness we
include a proof here, which is similar to, but slightly different from their proof.

Theorem 2.1. Let m ≥ 4 and let n ≥ m(m−1)
2

. Then

RSm(n) ≥

⌈

(m− 3)n+ m(m−1)
2

m− 2

⌉

.
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Proof. Suppose that a1+ a2+ · · ·+ am−1 = am is any solution to Em that lies within
[1, n], where ai < ai+1 for all 1 ≤ i ≤ m− 2. Let

k = n+ 2−

⌈

(m− 3)n+ m(m−1)
2

m− 2

⌉

.

We claim that a2 ≤ k. For a contradiction, assume a2 > k. Then

m−1∑

i=1

ai ≥ 1 +
m−2∑

i=1

(k + i)

= 1 + (m− 2)(n+ 2)− (m− 2)

⌈

(m− 3)n+ m(m−1)
2

m− 2

⌉

+
(m− 1)(m− 2)

2

> 1 + (m− 2)(n+ 2)− (m− 2)
(m− 3)n+ m(m−1)

2

m− 2
− (m− 2)

+
(m− 1)(m− 2)

2

= 1 + n+ (m− 2)

(

2− 1 +
m− 1

2

)

−
m(m− 1)

2

= 1 + n+m− 2 +
m− 1

2
(−2) = n,

which contradicts the assumption that the solution lies in [1, n].
To complete the proof, color [1, n] as follows. Color all members of [1, k] the same

color, say red, and color each element of [k+1, n] its own unique color, different from
red. Note that this is an exact (n− k + 1)-coloring, that is, it uses

⌈

(m− 3)n+ m(m−1)
2

m− 2

⌉

− 1

colors. By the above claim, a1 and a2 are both colored red, and hence, the solution
is not rainbow. So, at least

⌈

(m− 3)n+ m(m−1)
2

m− 2

⌉

colors are needed to guarantee a rainbow solution to Em.

Before presenting the next theorem, we give a definition.

Definition 2.2. Let n ≥ r be positive integers, and let χ be an exact r-coloring of
[1, n]. An integer x ∈ [1, n] is called a surplus integer of χ if there exists a y < x such
that χ(x) = χ(y).
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Remark 2.3. Let sχ denote the number of surplus integers of χ. From the definition,
we see that, for any exact r-coloring χ of an interval [1, n], we have sχ = n− r.

Theorem 2.4. Let m,n ∈ Z
+ with m ≥ 4 and n ≥ m(m−1)

2
. Assume that one of the

following conditions holds:

m is odd and n ≡ 1 (mod (m− 2))

or

m is even and n ≡
m

2
(mod (m− 2)).

Let

c(n,m) =
(m− 3)n+m(m− 1)/2

m− 2
.

Then every exact c(n,m)-coloring of [1, n] contains a rainbow solution to Em.

Proof. First note that the assumptions regarding m and n imply that c(n,m) is a
positive integer for all such m and n. We begin with the case in which m is odd. We
use induction on ℓ ≥ m+1

2
, where n = (m− 2)ℓ+ 1. If ℓ = m+1

2
, then

n = (m− 2)
m+ 1

2
+ 1 =

m(m− 1)

2

and

c(n,m) =
(m− 3)m(m−1)

2
+ m(m−1)

2

m− 2
=

m(m− 1)

2
.

Since c(n,m) = n = m(m−1)
2

, there is only one exact c(n,m)-coloring of [1, n], and it
contains the rainbow equation 1 + 2 + · · · + (m − 1) = n. Therefore, the result is
true when ℓ = m+1

2
.

We now let ℓ ≥ m+1
2

and assume the result holds for n = (m−2)ℓ+1. To complete
the proof, we will show that the result holds for (m− 2)(ℓ+1)+ 1 = n+m− 2, i.e.,
that every exact c(n+m− 2,m)-coloring of [1, n+m− 2] has a rainbow solution to
Em. For a contradiction, assume χ is an exact c(n+m−2,m)-coloring of [1, n+m−2]
with no such rainbow solution. By the inductive hypothesis, we may assume that no
more than c(n,m) − 1 = c(n + m − 2,m) − (m − 2) colors are used in [1, n]. This
implies that each member of [n+ 1, n+m− 2] is the only member of its color class
under χ.

For each j such that 0 ≤ j ≤ m − 4, we define tj recursively as follows. Let
t0 = 1. For each j = 1, 2, . . . ,m − 4, define tj to be the least integer greater than
tj−1 such that χ(tj) 6∈ {χ(ti) : 0 ≤ i ≤ j − 1}. From this definition, we see that the
number of surplus integers of χ that lie within [1, tm−4] is tm−4 − (m − 3), so that
(using the notation of Remark 2.3)

tm−4 ≤ sχ +m− 3. (2)

Note that, by Remark 2.3 and the definition of χ,

sχ = n+m− 2− c(n+m− 2,m)

= n+m− 2−
(m− 3)(n+m− 2) + m(m−1)

2

m− 2
. (3)
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By Equations (2) and (3), we have

tm−4 ≤ n+ 2m− 5−
(m− 3)(n+m− 2) + m(m−1)

2

m− 2

=
n

m− 2
+m− 2−

m(m−1)
2

m− 2
.

Since the tj are strictly increasing, it follows that

tm−5 ≤
n

m− 2
+m− 3−

m(m−1)
2

m− 2

and, more generally,

tj ≤
n

m− 2
+ j + 2−

m(m−1)
2

m− 2
, (4)

for 1 ≤ j ≤ m− 4.
Let

v =

⌊

n− 3tm−4 −
∑m−5

j=1 tj +m− 4

2

⌋

.

Note that v ≥ 1 since, using Inequality (4),

n− 3tm−4 −
m−5∑

j=1

tj +m− 4 ≥ n−
3n

m− 2
− 3

(

m− 2−
m(m−1)

2

m− 2

)

+m− 4

− (m− 5)
n

m− 2
−

m−5∑

j=1

(

j + 2−
m(m−1)

2

m− 2

)

= −4m+ 12 +
3m(m−1)

2

m− 2
−

(m− 5)(m− 4)

2

+
(m− 5)m(m−1)

2

m− 2

= −4m+ 12 +
m(m− 1)

2
−

(m− 5)(m− 4)

2
= 2.

For each i such that 1 ≤ i ≤ v, let

ai = tm−4 + i

and

bi = n+m− 3− 2tm−4 −
m−5∑

j=1

tj − i,

and let Pi = {ai, bi}. Note that the ai’s are strictly increasing, the bi’s are strictly
decreasing, and that max{ai} and min{bi} both occur when i = v. Also, we have
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that av < bv, since

bv − av = n+m− 3− 2tm−4 −
m−5∑

j=1

tj − v − (tm−4 + v)

> n+m− 4− 3tm−4 −
m−5∑

j=1

tj − 2v ≥ 0.

From these facts, we see that the sets Pi are pairwise disjoint and that |Pi| = 2 for
each i.

If there is some pair Pu = {au, bu} such that χ(au) 6= χ(bu) and

{χ(au), χ(bu)} ∩ {χ(ti) : 0 ≤ i ≤ m− 4} = ∅,

then Em has the rainbow solution

1 + t1 + t2 + · · ·+ tm−4 + (tm−4 + u) +

(

n+m−3− 2tm−4 −
m−5∑

j=1

tj − u

)

= n+m−2

since, as noted previously, n+m− 2 is the only member of its color class. Hence, by
our assumption about χ, no such Pu exists. Thus, each Pi contributes at least one
surplus integer to sχ. This implies that

sχ ≥ tm−4 − (m− 3) + v, (5)

because there are exactly tm − (m− 3) surplus integers contained in [1, tm−4].
By Inequality (4), we have

m−4∑

j=1

tj ≤ (m− 4)

(

n− m(m−1)
2

m− 2
+ 2

)

+
(m− 4)(m− 3)

2

= (m− 4)
2n−m(m− 1) + 4(m− 2) + (m− 3)(m− 2)

2(m− 2)

=
(m− 4)(n− 1)

m− 2
. (6)

Using Inequalities (5) and (6), and the definition of v, we have

sχ ≥ tm−4 − (m− 3) +
n− 3tm−4 −

∑m−5
j=1 tj +m− 5

2

=
n

2
−

∑m−4
j=1 tj

2
−

m− 1

2

≥
n

2
−

(m− 4)(n− 1)

2(m− 2)
−

m− 1

2

=
n

m− 2
−

m2 − 4m+ 6

2(m− 2)
. (7)
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Now, from Equation (3) we have

sχ =
n

m− 2
+

2(m− 2)2 − 3m2 + 11m− 12

2(m− 2)

=
n

m− 2
−

m2 − 3m+ 4

2(m− 2)
,

which contradicts Inequality (7). This completes the proof for the case in which m
is odd.

The proof for m even is almost identical to the proof for m odd. The only
difference is that the induction is done on ℓ where n = (m− 2)ℓ+ m

2
, and the initial

value of ℓ is taken to be m
2
. Then, just as in the odd case, this initial value of ℓ again

gives

n =
m(m− 1)

2
= c(n,m).

Hence, as explained in the case of m odd, for the initial step of the induction for m
even, the result holds for ℓ = m

2
. For the inductive step, we assume that the result

holds for n = ℓ(m − 2) + m
2

for some ℓ ≥ m
2
, and must then show that it holds for

(ℓ+ 1)(m− 2) + m
2
. The rest of the proof is the same as that for the odd case.

We are now able to give the exact value of RSm(n) when m ≥ 4.

Theorem 2.5. Let m ≥ 4 and n ≥ m(m−1)
2

. Then

RSm(n) =

⌈

(m− 3)n+ m(m−1)
2

m− 2

⌉

. (8)

Proof. Let m ≥ 4 and n ≥ m(m−1)
2

. Let a(n,m) denote the right-hand side of
Equation (8). By Theorem 2.1, we know that a(n,m) is a lower bound for RSm(n).
We claim that a(n,m) is also an upper bound. We begin with the case in which

n =
m(m− 1)

2
+ i,

such that 0 ≤ i ≤ m− 4. In this case, we have

a(n,m) =

⌈

(m− 2)m(m−1)
2

+ i(m− 3)

m− 2

⌉

=
m(m− 1)

2
+

⌈

i−
1

m− 2

⌉

= n.

Since the only exact n-coloring of [1, n] has no two elements with the same color, we
have that 1 + 2 + · · · + (m − 1) = m(m−1)

2
is a rainbow solution to Em. This shows

that, in this case, a(n,m) is an upper bound on RSm(n). Thus, we will assume that

n ≥
m(m− 1)

2
+m− 3.
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Consider the case in which m is odd. By Theorem 2.4, we know that the claim
is true whenever n ≡ 1 (mod (m− 2)), so we may assume that n ≡ i (mod (m− 2))

where 2 ≤ i ≤ m− 2. Since m is odd, m(m−1)
2

≡ 1 (mod (m− 2)), and therefore

(m− 3)n+
m(m− 1)

2
≡ −i+ 1 (mod (m− 2)). (9)

Let χ be any exact a(n,m)-coloring of [1, n]. Since 1 ≤ i−1 ≤ m−3, from Equation
(9), we have

a(n,m) =
(m− 3)n+ m(m−1)

2
+ i− 1

m− 2
. (10)

From Equation (10), within the interval [1, n− i+ 1], there must be at least

a(n,m)− i+ 1 =
(m− 3)n+ m(m−1)

2
+ i− 1 + (m− 2)(−i+ 1)

m− 2

=
(m− 3)(n− i+ 1) + m(m−1)

2

m− 2
(11)

different colors.
By Theorem 2.4, since n − i + 1 ≡ 1 (mod (m − 2)) and n − i + 1 ≥ m(m−1)

2
, it

follows that

RSm(n− i+ 1) ≤
(m− 3)(n− i+ 1) + m(m−1)

2

m− 2
.

Hence, from Equation (11), under χ there is a rainbow solution to Em within
[1, a(n,m) − i + 1], and therefore within [1, a(n,m)], which completes the proof for
odd values of m.

Now assume that m is even. Similar to the proof of the odd case, we may assume
that n ≡ i (mod (m− 2)) where m

2
+ 1 ≤ i ≤ m

2
+m− 3. Since m is even, we have

m(m−1)
2

≡ m
2
(mod (m− 2)), so that

(m− 3)n+
m(m− 1)

2
≡ −i+

m

2
(mod (m− 2)).

From this and the fact that 1 ≤ i− m
2
≤ m− 3, it follows that

a(n,m) =
(m− 3)n+ m(m−1)

2
+ i− m

2

m− 2
.

As in the odd case, if χ is any exact a(n,m)-coloring of [1, n], then within the interval
[1, n− i+ m

2
] there must be at least

a(n,m)− i+
m

2
=

(m− 3)(n− i+ m
2
) + m(m−1)

2

m− 2
(12)

different colors. By Theorem 2.4, since n− i+ m
2
≡ m

2
(mod (m− 2)), it follows that

RSm(n− i+
m

2
) ≤

(m− 3)(n− i+ m
2
) + m(m−1)

2

m− 2
.

Hence, from Equation (12), under χ there is a rainbow solution to Em within
[1, a(n,m)− i+ m

2
], and therefore within [1, a(n,m)], which completes the proof.
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3 Weakened Rainbow Schur Numbers

For m ≥ 3 and 2 ≤ t ≤ m, define the weakened rainbow Schur number RSt,m(n) to
be the minimum number of colors such that every exact RSt,m(n)-coloring of [1, n]
contains a solution to Em that uses at least t of the colors. Here, RSm,m(n) agrees
with the rainbow Schur number RSm(n). Note that if t < m then, in contrast to
the situation with rainbow colorings of Em, the relevant solutions to Em do not
necessarily consist of distinct summands.

When t1 ≤ t2, observe that every solution to Em that uses at least t2 colors
necessarily uses at least t1 colors. It follows that

RSt1,m(n) ≤ RSt2,m(n),

for all m ≥ 3 and n for which a solution to Em exists that can use at least t2 colors.
From this observation, we see that RSt,m(n) is defined for all t such that 2 ≤ t < m
whenever RSm(n) is defined.

While a range of values for n was not specified in the definition of Rt,m, it is
natural to only consider values of n for which there can exist a solution to Em that
uses at least t colors. For any m ≥ 3 and 2 ≤ t ≤ m, the equation

1 + 1 + · · ·+ 1
︸ ︷︷ ︸

m−t+1 terms

+2 + 3 + · · ·+ (t− 1) =
t(t− 1)

2
+m− t

has the least sum among all equations in Em that can be colored using at least t
colors. For this reason, we assume n ≥ t(t−1)

2
+m− t when considering RSt,m(n). In

the evaluations of RSt,m(n) that follow, we often restrict the values of n beyond this
natural bound.

Theorem 3.1. For all m ≥ 3 and n ≥ 2m− 4, we have RS2,m(n) = 2.

Proof. At least two colors are required in order to have a 2-colored solution to E3,
and hence RS2,3(n) ≥ 2. Now consider an exact 2-coloring of [1, n]. Without loss
of generality, assume that 1 is red and i ∈ [2, n] is the least positive integer that is
colored blue. We consider two cases, based on the value of i.

Case 1 If i ≤ n−m+ 2, then the equation

1 + 1 + · · ·+ 1
︸ ︷︷ ︸

m−2 terms

+i = i+m− 2 ≤ n

is in Em and uses at least two colors.
Case 2 If i > n−m+ 2, then consider the equation

1 + 1 + · · ·+ 1
︸ ︷︷ ︸

m−2 terms

+(i− (m− 2)) = i.

This equation uses at least two colors and is in Em whenever i ≥ m − 1, which for
this case, occurs when

n−m+ 3 ≥ m− 1.
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This is equivalent to n ≥ 2m− 4, as assumed in the statement of the theorem.
In both cases, we find that there exists an equation in Em that uses two colors,

from which it follows that RS2,m(n) ≤ 2.

To demonstrate the need for the assumption n ≥ 2m−4 in the previous theorem,
consider the case where m = 6, t = 2, and n = 6. The only solutions to E6 contained
in [1, n] are

1 + 1 + 1 + 1 + 1 = 5 and 1 + 1 + 1 + 1 + 2 = 6.

Using the color classes

C1 = {1, 2, 5, 6}, C2 = {3}, and C3 = {4},

we find that RS2,6(6) ≥ 4.

Theorem 3.2. Let m ≥ 4 and 3 ≤ t ≤ m. Then for all n ≥ t(t−1)
2

+m− t, we have

RSt,m(n) =

⌈

(t− 3)n+ t(t−1)
2

+m− t

t− 2

⌉

.

Proof. Let

k = k(n,m, t) =

⌈

(t− 3)n+ t(t−1)
2

+m− t

t− 2

⌉

and note that

k(t− 2) ≤ (t− 3)(n) +
t(t− 1)

2
+m− 3. (13)

Let α be the exact (k − 1)-coloring of [1, n] having the following color classes:

C1 = [1, n+ 2− k], C2 = {n+ 3− k}, C3 = {n+ 4− k}, . . . , Ck−1 = {n}.

To show that RSt,m(n) ≥ k, it suffices to show that α does not have a solution to
Em that uses at least t colors. For a contradiction, assume that

a1 + a2 + · · · am−1 = am, where a1 ≤ a2 ≤ · · · ≤ am−1,

is such a solution. Since at least t colors occur among the ai, no color class contains
more than m− t+ 1 of the ai. Hence, by Inequality (13),

a1 + a2 + · · ·+ am−1

≤ 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

m−t+1 terms

+(n+ 3− k) + (n+ 4− k) + · · ·+ (n+ t− k)

= (m− t+ 1) + 3 + 4 + · · ·+ t+ n(t− 2)− k(t− 2)

= (m− t− 2) +
t(t+ 1)

2
+ n(t− 2)− k(t− 2)

≥ (m− t− 2) +
t(t+ 1)

2
+ n(t− 2)

−

(

(t− 3)n+
t(t− 1)

2
+m− 3

)

= n+ 1,
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which contradicts the fact that am ≤ n.
To prove that

RSt,m(n) ≤ k(n,m, t), (14)

we use induction on m + n, where m ≥ 4 and n ≥ t(t−1)
2

+m − t. To establish the
base cases of the induction, we will show that the Inequality (14) holds for each of
the following two cases: (a) all n ≥ t(t−1)

2
+m − t, when m = 4 and 3 ≤ t ≤ 4; and

(b) n = t(t−1)
2

+m− t, for all m ≥ 4 and 3 ≤ t ≤ m.
To establish Inequality (14) in case (a), note that for m = 4, we have either t = 3

or t = 4. When m = t = 4, Inequality (14) holds by Equation (1). Now assume
that m = 4 and t = 3. We will show that RS3,4(n) ≤ k(n, 4, 3) = 4 by induction on
n ≥ 4. When n = 4, an exact 4-coloring of [1, 4] has every number receiving a unique
color, and hence 1 + 1 + 2 = 4 is a solution to E4 that uses (at least) 3 colors. Now
assume that RS3,4(n − 1) ≤ 4 for some n − 1 ≥ 4 and let β be an exact 4-coloring
of [1, n]. If n is a surplus integer under β, then [1, n− 1] uses all 4 colors and, since
RS3,4(n− 1) ≤ 4, it contains a solution to E4 that uses at least 3 colors.

If n is not a surplus integer under β, then it receives its own unique color and
[1, n− 1] uses 3 colors. In this latter situation, let i ∈ [2, n] be the least integer such
that β(i) 6= β(1), and consider the equation

1 + i+ (n− i− 1) = n. (15)

Note that n− i−1 is a positive integer, since otherwise i ≥ n−1, which would imply
that β uses at least 5 colors. It follows that Equation (15) is a solution to E4 that
uses at least 3 colors.

To show that Inequality (14) holds in case (b), we have

k(n,m, t) =







(t− 3)
(

t(t−1)
2

+m− t
)

+ t(t−1)
2

+m− t

t− 2







=







(t− 2)
(

t(t−1)
2

+m− t
)

t− 2







=
t(t− 1)

2
+m− t = n,

and hence, in any exact
(

t(t−1)
2

+m− t
)

-coloring of [1, n], each element is the only

member of its color class. So, in this case, every solution to Em is necessarily rainbow,
establishing Inequality (14) in this case.

Having taken care of the base cases in the inductive proof of Inequality (14), we
now let m ≥ 5, t ≥ 3, and n ≥ t(t−1)

2
+m − t + 1. Assume that for all m′ ≥ 4 and

n′ ≥ t(t−1)
2

+m− t with m′ + n′ < m+ n, we have

RSt,m′(n′) ≤ k(n′,m′, t) (16)
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for all 3 ≤ t ≤ m′. To complete the proof, it suffices to prove that for every t such
that 3 ≤ t ≤ m, every exact k(n,m, t)-coloring of [1, n] contains a solution to Em

using at least t colors. Let χ be an exact k(n,m, t)-coloring of [1, n]. By the division
algorithm, let

(t− 3)n+
t(t− 1)

2
+m− t = (t− 2)ℓ+ j, (17)

where ℓ, j ∈ Z and 0 ≤ j ≤ t− 3. The remainder of the proof is separated into two
cases.

Case 1 Assume that 1 ≤ j ≤ t− 3. By Equation (17),

k(n,m, t) =

⌈

(t− 3)n+ t(t−1)
2

+m− t

t− 2

⌉

=

⌈

ℓ+
j

t− 2

⌉

= ℓ+ 1.

Therefore, the interval [1, n − 1] uses at least ℓ colors under χ. Now, by Equation
(16),

RSt,m(n− 1) ≤ k(n− 1,m, t)

=

⌈

(t− 3)n+ t(t−1)
2

+m− t

t− 2
−

t− 3

t− 2

⌉

=

⌈

ℓ−
(t− 3)− j

t− 2

⌉

= ℓ.

Therefore, in [1, n − 1] (and hence in [1, n]) there is a solution to Em that uses at
least t colors.

Case 2 Assume that j = 0. Then k(n,m, t) = ℓ and

k(n− 1,m, t) =

⌈

(t− 3)(n− 1) + t(t−1)
2

+m− t

t− 2

⌉

=

⌈

ℓ−
t− 3

t− 2

⌉

= ℓ.

If [1, n − 1] uses all ℓ colors of χ, then by Equation (16) there exists a solution to
Em that uses at least t colors. Otherwise, [1, n − 1] uses only ℓ − 1 colors and the
integer n is the only member of its color class. We may assume that t ≤ m− 1 since
the t = m case corresponds with Theorem 2.5. For 3 ≤ t ≤ m− 1, by Equation (16)
we obtain

RSt,m−1(n− 1) ≤ k(n− 1,m− 1, t)

=

⌈

(t− 3)(n− 1) + t(t−1)
2

+ (m− t− 1)

t− 2

⌉

=

⌈

ℓ−
t− 3

t− 2
−

1

t− 2

⌉

= ℓ− 1.

It follows that there exists a solution a1 + a2 + · · ·+ am−2 = am−1 to Em−1 that uses
at least t colors, where am−1 ≤ n− 1. Then

a1 + a2 + · · ·+ am−2 + (n− (a1 + a2 + · · ·+ am−2)) = n
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is a solution to Em that uses at least t colors.
In both cases, χ contains a solution to Em that uses at least t colors. It follows

that RSt,m(n) ≤ k(n,m, t), completing the proof.

4 Final Remarks

Results involving rainbow Ramsey numbers for 3-term and 4-term arithmetic pro-
gressions may be found in [13]. In [5], the authors provide a rainbow version of
Rado’s work on systems of linear homogeneous equations. Work on rainbow solu-
tions to 3-variable linear equations in the group Zn appears in [1], [2], [11], [12],
and [14]. Related work arises in [4], [9], and [10], where additional restrictions are
placed on the number of times each color occurs. The work in [8] deals with rainbow
solutions to E3 in the rectangular grid [1,m]× [1, n], with coordinate-wise addition.
As far as we know, weakened versions of the results contained in these related papers
have not yet been studied, but are worthy of investigation.

Future research may also consider whether or not the techniques used in this
paper can be applied to some of the variations mentioned above. For example, one
could consider rainbow solutions in Zn to the equations

x1 + x2 + · · ·+ xm−1 = kxm or a1x1 + a2x2 + · · ·+ amxm = b,

for values of m larger than those considered in [1] and [2]. Our techniques may also
be considered for rainbow numbers for En in the rectangular grid [1,m]×[1, n], where
n ≥ 4, extending the numbers introduced in [8].
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